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The main purpose of this paper is using the analytic methods and the properties
of Gauss sums to study the computational problem of the number of the solutions
of one kind diagonal cubic congruence equation mod p, an odd prime, and give
an interesting calculating formula for it.
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1. INTRODUCTION

Let q ≥ 3 be a positive integer. For any integers m and n, the two-term
exponential sum C(m,n, k; q) is defined as follows:

C(m,n, k; q) =

q∑
a=1

e

(
mak + na

q

)
,

where e(y) = e2πiy, k is an integer with k ≥ 2.
About this two-term exponential sum, some authors have studied its va-

rious properties, and obtained a series of interesting results, see [3–8]. For
example, Gauss’s classical work (referred in [1]) gave an exact computational
formula for C(1, 0, 2; q). From the A. Weil’s important work [3], one can get
the upper bound estimate

|C(m,n, k; p)| �k
√
p,

where p be an odd prime, m and n are integers with (m, p) = 1, and �k

denotes the big-O constant depend only on k.
Recently, H. Zhang and W. Zhang [8] studied the calculating problem

of the fourth power mean of the two-term exponential sum, and proved the
following beautiful formula
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p−1∑
m=1

∣∣∣∣∣
p−1∑
a=0

e

(
ma3 + na

p

)∣∣∣∣∣
4

=

{
2p3 − p2, if 3 - p− 1,
2p3 − 7p2, if 3 | p− 1,

where p is an odd prime and (n, p) = 1.

At the same time, H. Zhang and W. Zhang [8] also proposed the following
open problem:

Can the number of solutions to the cubic equation

x31 + x32 + x33 + x34 ≡ c mod p(1)

be calculated when c 6= 0?

In this paper, as a note of [8], we will give a formula for the number of
solutions of equation (1). That is, we shall prove the following:

Theorem 1. Let p be an odd prime with 3|(p− 1), ψ be any three order
character mod p. Then we have the identity

τ3 (ψ) + τ3
(
ψ
)

= dp,

where τ (ψ) denotes the classical Gauss sums, d is uniquely determined by
4p = d2 + 27b2 and d ≡ 1 mod 3.

Theorem 2. Let p > 3 be a prime with 3|(p−1), S(c) denotes the number
of solutions of the congruence equation (1). Then for any integer c with (c, p) =
1, we have the identity

S(c) =


p3 − 6p− 1

2p (5d∓ 27b) , if c ≡ g3k+1 mod p;
p3 − 6p− 1

2p (5d± 27b) , if c ≡ g3k+2 mod p;
p3 − 6p+ 5dp, if c ≡ g3k mod p,

where g is a primitive root mod p, d and b are defined as in Theorem 1, and
k be any integer with 0 ≤ k ≤ p−1

3 .

Some notes. It seems that our main result (Theorem 2) cannot be gene-
ralized to any other composite number q, because in the process of the proof
of Theorem 2, we used S. Chowla, J. Cowles and M. Cowles’ important work
[2], which is only applicable to the finite field GF (p).

For any integers k > 2 and h > 3, there exists an exact calculating
formula for the mean value

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=1

e

(
ma3 + na

p

)∣∣∣∣∣
2k

or

p−1∑
m=1

∣∣∣∣∣
p−1∑
a=1

e

(
mah + na

p

)∣∣∣∣∣
4

?

These are two interesting open problems.
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Let ψ(n) = e
(
ind(n)

3

)
denotes the three order character mod p, where

ind(n) denotes the index of n corresponding to primitive root g mod p. That
is, n ≡ gind(n) mod p. We also let τ3 (ψ) = u+ iv. In this time, we have

(A): If v > 0, then we have the computational formula:

S(c) =

{
p3 − 6p− 1

2p (5d− 27b) , if c ≡ g3k+1 mod p;
p3 − 6p− 1

2p (5d+ 27b) , if c ≡ g3k+2 mod p.

(B): If v < 0, then we have the computational formula:

S(c) =

{
p3 − 6p− 1

2p (5d+ 27b) , if c ≡ g3k+1 mod p;
p3 − 6p− 1

2p (5d− 27b) , if c ≡ g3k+2 mod p.

How to determine the plus or minus of v is also an interesting problem.
We hope that the interested readers can study it with us.

Combining some earlier results and our Theorem 1 we may immediately
deduce the following:

Corollary 1. Let p be an odd prime, then we have the identity

p∑
m=1

∣∣∣∣∣
p−1∑
a=1

e

(
ma3 + na

p

)∣∣∣∣∣
4

=

{
2p3 − 3p2 − 3p, if 3 - p− 1;
2p3 − 5p2 − 15p+ 4dp, if 3|p− 1,

where (n, p) = 1, d is defined as in Theorem 1.

Corollary 2. For any odd prime p with 3|(p− 1), let A(p) denotes the
number of all integers 2 ≤ a ≤ p − 1 such that a(a − 1) is a cubic residue
mod p. Then we have the computational formula

A(p) =
1

3
(p− 2 + d) .

2. SEVERAL LEMMAS

In this section, we will give several lemmas which are necessary in the
proofs of our theorems. Hereinafter, we need some properties of Gauss sums,
all of which can be found in [1], so they will not be repeated here. First we
have the following:

Lemma 1. Let p be an odd prime with p ≡ 1 mod 3, for any integer
1 ≤ c ≤ p − 1, let S(c) denotes the number of solutions of the congruence
equation (1). Then we have the identity

S(c) = p3 − 6p+ ψ(c)τ3(ψ) + 4ψ(c)τ3(ψ) + 4ψ(c)τ3
(
ψ
)

+ ψ(c)τ3
(
ψ
)
.

where ψ be any three order character mod p.
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Proof. From the trigonometric identity

p−1∑
m=0

e

(
nm

p

)
=

{
p, if (p, n) = p;
0, if (p, n) = 1

we have

(2) S(c) =
1

p

p−1∑
m=0

(
p−1∑
a=0

e

(
ma3

p

))4

e

(
−mc
p

)

= p3 +
1

p

p−1∑
m=1

(
p−1∑
a=0

e

(
ma3

p

))4

e

(
−mc
p

)
.

For any three order character ψ mod p and integers 1 ≤ m ≤ p− 1, note that
ψ2 = ψ, from the definition and properties of Gauss sums we know that

(3)

p−1∑
a=0

e

(
ma3

p

)
= 1 +

p−1∑
a=1

(
1 + ψ(a) + ψ2(a)

)
e

(
ma

p

)

=

p−1∑
a=0

e

(
ma

p

)
+

p−1∑
a=1

ψ(a)e

(
ma

p

)
+

p−1∑
a=1

ψ(a)e

(
ma

p

)
= ψ(m)τ(ψ) + ψ(m)τ

(
ψ
)
.

Note that ψ(−1) = 1, τ(ψ)τ
(
ψ
)

= p and ψ3(m) = 1, so from (3) and the
definition of Gauss sums we have

(4)

p−1∑
m=1

(
p−1∑
a=0

e

(
ma3

p

))4

e

(
−mc
p

)
=

p−1∑
m=1

(
ψ(m)τ(ψ) + ψ(m)τ

(
ψ
))4

e

(
−mc
p

)
= pψ(c)τ3(ψ) + 4pψ(c)τ3(ψ)− 6p2 + 4pψ(c)τ3

(
ψ
)

+ pψ(c)τ3
(
ψ
)
.

Now combining (2) and (4) we have

S(c) = p3 + ψ(c)τ3(ψ) + 4ψ(c)τ3(ψ)− 6p+ 4ψ(c)τ3
(
ψ
)

+ ψ(c)τ3
(
ψ
)
.

This proves Lemma 1. �

Lemma 2. Let p be an odd prime with 3|(p− 1), Ms denotes the number
of solutions of the equation

X3
1 +X3

2 +X3
3 + · · ·+X3

s = 0

in the finite field GF (p), Us = Ms−ps−1. Then Us satisfy the linear recurrence
Us − 3pUs−2 − pdUs−3 = 0 with U1 = 0, U2 = 2p− 2 and U3 = (p− 1)d, where
d is uniquely determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.
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Proof. See Theorem 3 of [2]. �

Lemma 3. Let p be an odd prime with 3|(p− 1), then we have

S(1) = p3 − 6p+ 5dp.

Proof. From Lemma 2 we have U4 = 3p(2p − 2) = 6p(p − 1), U5 =
3pU3 + pdU2 = 3pd(p − 1) + pd(2p − 2) = 5dp(p − 1). So from the properties
of the complete residue system mod p we have

(5) 5dp(p− 1) + p4 = U5 + p4 = M5 =

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=0

a3+b3+c3+d3+e3≡0 mod p

1

=

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

a3+b3+c3+d3≡0 mod p

1 +

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

p−1∑
e=1

a3+b3+c3+d3≡(p−e)3 mod p

1

= M4 +

p−1∑
e=1

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

p−1∑
d=0

a3+b3+c3+d3≡1 mod p

1 = M4 + (p− 1)S(1).

Note that M4 = p3 + 6p(p− 1), from (5) we may immediately deduce that

S(1) = p3 + 5dp− 6p.

This proves Lemma 3. �

3. PROOF OF THE THEOREMS AND COROLLARIES

In this section, we shall complete the proofs of our theorems and corol-
laries. First we prove Theorem 1. Taking c = 1 in Lemma 1 and note that
ψ(1) = 1, from Lemma 3 we have

p3 + 5dp− 6p = S(1)

= p3 − 6p+ ψ(1)τ3(ψ) + 4ψ(1)τ3(ψ) + 4ψ(1)τ3
(
ψ
)

+ ψ(1)τ3
(
ψ
)

= p3 − 6p+ 5τ3(ψ) + 5τ3
(
ψ
)
,

or
τ3(ψ) + τ3

(
ψ
)

= dp.
This proves Theorem 1.

Now we prove Theorem 2. Let g be any fixed primitive root mod p,

ψ(g) = e
(
1
3

)
= −1

2 +
√
3
2 i, then ψ(g) = −1

2 −
√
3
2 i. So from Lemma 1 and

Theorem 1 we have
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(6) S(g) = p3 − 6p+ ψ(g)τ3(ψ) + 4ψ(g)τ3(ψ) + 4ψ(g)τ3
(
ψ
)

+ ψ(g)τ3
(
ψ
)

= p3 − 6p+

(
−5

2
− 3
√

3

2
i

)
τ3(ψ) +

(
−5

2
+

3
√

3

2
i

)
τ3
(
ψ
)

= p3 − 6p− 5

2

(
τ3(ψ) + τ3

(
ψ
))
− 3
√

3

2
i
(
τ3(ψ)− τ3

(
ψ
))
.

Let τ3(ψ) = u + iv, then τ3
(
ψ
)

= u − iv. So from Theorem 1 we have

dp = τ3(ψ) + τ3
(
ψ
)

= 2u and u = dp
2 . Note that u2 + v2 =

∣∣τ3(ψ)
∣∣2 = p3, we

have

|v| = 1

2
p
√

4p− d2 =
3
√

3

2
bp,(7)

where 4p = d2 + 27b2.
Combining (6) and (7) we have the identity

S(g) = p3 − 6p− 5

2
dp+ 3

√
3v = p3 − 6p− 1

2
p (5d∓ 27b) .(8)

Similarly, we also have

S(g2) = p3 − 6p− 5

2
dp+ 3

√
3v = p3 − 6p− 1

2
p (5d± 27b) .(9)

Combining (7), (8), (9) and Lemma 2 we may immediately deduce the
computational formula

S(c) =


p3 − 6p− 1

2p (5d∓ 27b) , if c ≡ g3k+1 mod p;

p3 − 6p− 1
2p (5d± 27b) , if c ≡ g3k+2 mod p;

p3 − 6p+ 5dp, if c ≡ g3k mod p,

where k be an integer with 0 ≤ k ≤ p−1
3 .

This proves Theorem 2.

Now we prove Corollary 2. For any three order character ψ mod p, note

that ψ
2

= ψ, ψ(−1) = 1, τ(ψ)τ
(
ψ
)

= p, from the properties of Gauss sums
we have

(10)

p−1∑
a=1

ψ (a(a− 1)) =
1

τ
(
ψ
) p−1∑
a=1

ψ(a)

p−1∑
b=1

ψ(b)e

(
b(a− 1)

p

)

=
1

τ
(
ψ
) p−1∑
b=1

ψ(b)e

(
−b
p

) p−1∑
a=1

ψ(a)e

(
ba

p

)
=

τ(ψ)

τ
(
ψ
) p−1∑
b=1

ψ
2
(b)e

(
−b
p

)

=
τ(ψ)

τ
(
ψ
) p−1∑
b=1

ψ(b)e

(
−b
p

)
=
τ2(ψ)

τ
(
ψ
) =

τ3(ψ)

p
.
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Similarly, we also have

p−1∑
a=1

ψ (a(a− 1)) =
τ3
(
ψ
)

p
.(11)

Let A(p) denotes the number of all integers 2 ≤ a ≤ p − 1 such that a(a − 1)

is a cubic residue mod p and B(p) = p − 2 − A(p). Then from (10) and (11)

we have
p−1∑
a=1

[
ψ (a(a− 1)) + ψ (a(a− 1))

]
=

1

p

[
τ3(ψ) + τ3

(
ψ
)]
.(12)

For any integer n with (n, p) = 1, note that 1 +ψ(n) +ψ(n) = 3, if n is a cubic

residue mod p; and 1 +ψ(n) +ψ(n) = 0, if n is not a cubic residue mod p. So

from (12), Theorem 1 and the definition of A(p) and B(p) we have

2A(p)−B(p) =
1

p

[
τ3(ψ) + τ3

(
ψ
)]

= d(13)

Since A(p) +B(p) = p− 2, so from (13) we may immediately deduce that

A(p) = 1
3 (p− 2 + d) and B(p) = 1

3 (2p− 4− d).

This completes the proof of Corollary 2.
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