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An element in a ring R is called uniquely weakly nil-clean if it can be uniquely
written as the sum or difference of a nilpotent element and an idempotent. The
structure of rings in which every zero-divisor is uniquely weakly nil-clean is
completely determined. We prove that every zero-divisor in a ring R is uniquely
weakly nil-clean if and only if R is a D-ring, or R is abelian, periodic, and R/J(R)
is isomorphic to a field F , Z3 ⊕ Z3, Z3 ⊕ B where B is Boolean, or a Boolean
ring. As a specific case, rings in which every zero-divisor a or −a is a nilpotent or
an idempotent are characterized. Furthermore, we prove that every zero-divisor
in a ring R can be uniquely written as the sum of a nilpotent element and an
idempotent if and only if R is a D-ring, or R is abelian, periodic and R/J(R) is
Boolean.
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1. INTRODUCTION

A ring R is clean provided that every element in R is the sum of a unit and

an idempotent. Over the last ten to fifteen years there has been an explosion

of interest in this class of rings as well as in their many generalizations and

variations (cf. [7]). In [12], Diesl introduced an interesting subclass of clean

rings: nil-clean rings. A ring R is nil-clean provided that every element in R is

the sum of a nilpotent and an idempotent. If the decomposition is unique, R is

called a uniquely nil-clean ring. The structure of such rings is very attractive

(cf. [3, 8, 12] and [14–15]). In [2], Ahn and Anderson introduced weakly

clean rings. A ring R is weakly clean provided that every element in R is the

sum or difference of a nilpotent element and an idempotent. Very recently,

uniquely weakly clean rings were studied by Tat (cf. [16]). On the other

hand, Danchev and McGovern investigated weakly nil-clean rings, i.e., rings in
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which every element is either the sum or difference of a nilpotent element and

an idempotent (cf. [6] and [10]).

The motivation of this paper is to explore weak nil-cleanness of zero-

divisors over noncommutative rings and its uniqueness. We say that e ∈ R is

a very idempotent if e or −e is an idempotent. An element a ∈ R is weakly

nil-clean provided that it can be written as the sum of a nilpotent and a very

idempotent. Thus, a ring R is weakly nil-clean provided that every element

in R is weakly nil-clean. A weakly nil-clean a ∈ R is called uniquely weakly

nil-clean provided that a = w1 + e1 = w2 + e2 where w1, w2 are nilpotent and

e1, e2 are very idempotents =⇒ e21 = e22. In this sense, we say that a can

be uniquely written as the sum or difference of a nilpotent element and an

idempotent. A ring R is called uniquely weakly nil-clean if every element in R

is uniquely weakly nil-clean. Clearly, Z4 is weakly uniquely nil-clean. Notice

that in Z4,−1 = 2 + 1 is the sum of a nilpotent element and an idempotent

and −1 = 0−1 is the difference of a nilpotent element and an idempotent, but

1 6= −1. Thus, the unique presentation of such decomposition is in the sense

for very idempotents.

An element a of a ring R is a zero-divisor if there exist nonzero b, c ∈ R

such that ab = 0 = ca. Zero-divisors occur in many classes of rings. In this

article, we are concerned on rings in which every zero-divisor is uniquely weakly

nil-clean. The structure of such rings is completely determined. Furthermore,

rings in which every zero-divisor can be uniquely written as the sum of a

nilpotent element and an idempotent are also studied.

A ring R is called a periodic ring if for any a ∈ R there exist distinct
m,n ∈ N such that am = an. A ring R is called a D-ring if every zero-divisor
in R is nilpotent ((cf. [1]). We call a ring R is uniquely weakly D-nil-clean
provided that every zero-divisor in R is uniquely weakly nil-clean. We shall
prove that a ring R is uniquely weakly D-nil-clean if and only if R is a D-ring,
or R is abelian, periodic and R/J(R) is isomorphic to a field F , Z3⊕Z3, Z3⊕B
where B is Boolean, or a Boolean ring. As a specific case, we shall explore rings
in which every zero-divisor is a nilpotent or a very idempotent. A ring R is
called uniquely D-nil-clean provided that every zero-divisor in R is uniquely
nil-clean. Moreover, we prove that a ring R is uniquely D-nil-clean if and only
if R is a D-ring, or R is abelian, periodic; and R/J(R) is Boolean.

Throughout, all rings are associative with an identity. We use Id(R), N(R)
and J(R) to denote the sets of all idempotents, all nilpotent elements and the
Jacobson radical of a ring R. Z(R) and NZ(R) stand for the sets of all zero-
divisors and non zero-divisors of a ring R.
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2. UNIQUELY WEAKLY NIL-CLEAN RINGS

The aim of this section is to characterize uniquely weakly nil-clean rings
which will be repeatedly used in the sequel. The necessary and sufficient condi-
tions under which a group ring is uniquely weakly nil-clean are thereby obtai-
ned. We begin with

Lemma 2.1 ([2, Theorem 2.28]). Let R be a ring. Then every element in
R is a very idempotent if and only if R is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3 ⊕B where B is a Boolean.

Theorem 2.2. Let R be a ring. Then R is uniquely weakly nil-clean if
and only if

(1) R is abelian;

(2) R is periodic;

(3) R/J(R) is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3 ⊕B where B is a Boolean.

Proof. Suppose that R is uniquely weakly nil-clean. For any idempotent
e ∈ R and any a ∈ R, e + ea(1 − e) ∈ R is an idempotent. Since

(
e +

ea(1 − e)
)

+ 0 = e + ea(1 − e), by the uniqueness,
(
e + ea(1 − e)

)2
= e2;

hence, ea(1 − e) = 0. This yields that ea = eae. Likewise, ae = eae, and
so ea = ae. Thus, R is abelian. Let a ∈ R. Then there exists a central
very idempotent e ∈ R such that w := a − e ∈ N(R). If e2 = e, then
a−a2 = w−2ew−w2 ∈ N(R). If e2 = −e, then a+a2 = w+2ew+w2 ∈ N(R).
In any case, we can find some n ∈ N such that an = an+1f(a) where f(t) ∈ R[t].
In view of Herstein’s Theorem, R is periodic, and then N(R) forms an ideal
of R. Therefore, J(R) = N(R), and so every element in R/J(R) is a very
idempotent. In light of Lemma 2.1, (3) is satisfied.

Conversely, assume that (1) − (3) hold. Let a ∈ R. Then a is a very
idempotent, in terms of Lemma 2.1. As J(R) is nil, every idempotent lifts
modulo J(R), and so every very idempotent lifts modulo J(R). Thus, we can
find a very idempotent e ∈ R such that a = e. Hence, v := a − e ∈ J(R) ⊆
N(R). If there exists a very idempotent f ∈ R such that w := a− f ∈ N(R),
then e2 − f2 = (a − v)2 − (a − w)2 = (−av − va + v2) + (aw + wa − w2). As
v ∈ J(R), we see that−av−va+v2 ∈ J(R). Furthermore, aw+wa−w2 ∈ N(R)
since aw = wa. This implies that 1−(e2−f2) = −(−av−va+v2)+

(
1−(aw+



96 M.S. Abdolyousefi and H. Chen 4

wa−w2)
)
∈ U(R). As e2, f2 ∈ R are idempotents, we have (e2−f2)3 = e2−f2,

and so (e2 − f2)
(
1− (e2 − f2)

)
= 0. Accordingly, e2 = f2, as asserted. �

Corollary 2.3. Let R be a ring. Then R is uniquely weakly nil-clean if
and only if

(1) R is abelian;

(2) J(R) is nil;

(3) R/J(R) is isomorphic to one of the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3 ⊕B where B is a Boolean.

Proof. =⇒ In view of Theorem 2.2, R is periodic. Thus, J(R) is nil, as
required.

⇐= By (3), every element in R/J(R) is a very idempotent. By (2), every
idempotent lifts modulo J(R). Let a ∈ R. Then a−a2 ∈ N(R). As in the proof
of Theorem 2.2, R is periodic. This completes the proof, by Theorem 2.2. �

For a local ring R, we further derive that R is uniquely weakly nil-clean
if and only if J(R) is nil; R/J(R) is isomorphic to Z2 or Z3.

Corollary 2.4. Let R be a ring. Then R is uniquely weakly nil-clean if
and only if

(1) R is periodic;

(2) R is uniquely weakly D-nil-clean;

(3) U(R) = {x± 1 | x ∈ N(R)}.

Proof. Suppose that R is uniquely weakly nil-clean. In view of Theo-
rem 2.2, R is periodic. (2) is obvious. Let x ∈ U(R). Then we have a very
idempotent e ∈ R such that w := x− e ∈ N(R). As R is abelian, we see that
e = x− w and ew = we, and so e = ±1. Therefore x = w ± 1, as desired.

Conversely, assume that (1)− (3) hold. Let a ∈ R. Then we have distinct
m,n ∈ N(m > n) such that am = an. If a is a zero-divisor, then a is uniquely
weakly nil-clean. If a is a non zero-divisor, am−n = 1. By (3), we see that a is
uniquely weakly nil-clean. This completes the proof. �

Let P (R) be the intersection of all prime ideals of R, i.e., P (R) is the
prime radical of R. As is well known, P (R) is the intersection of all minimal
prime ideals of R.

Proposition 2.5. Let R be a ring. Then R is uniquely weakly nil-clean
if and only if

(1) R is abelian;



5 The sum or difference of a nilpotent element and an idempotent 97

(2) R/P (R) is uniquely weakly nil-clean.

Proof. Suppose that R is uniquely weakly nil-clean. Then R is abelian.
In view of Theorem 2.2, R is clean, and so it is an exchange ring. Thus,
R/P (R) is abelian. Obviously, J

(
R/P (R)

)
= J(R)/P (R) is nil. Further,(

R/P (R)
)
/J
(
R/P (R)

) ∼= R/J(R). By Theorem 2.2 again, R/P (R) is uniquely
weakly nil-clean.

Conversely, assume that (1) and (2) hold. For any x ∈ J(R), we see that
x ∈ J

(
R/P (R)

)
is nilpotent. Since P (R) is nil, we see that x ∈ R is a nilpotent;

hence that J(R) is nil. As R/J(R) ∼=
(
R/P (R)

)
/J
(
R/P (R)

)
, it follows from

Theorem 2.2 that R is uniquely weakly nil-clean, as asserted. �

Let R be a ring, and let G be a group. The augmentation ideal I(R,G) of
the group ring RG is the kernel of the homomorphism from RG to R induced by
collapsing G to 1. That is, I(R,G) = ker(ω), where ω = {

∑
g∈G

rgg |
∑
g∈G

rg = 0}.

Lemma 2.6. Let R be a ring, and let G be a group. If RG is uniquely
weakly nil-clean, then so is R.

Proof. Let a ∈ R. Then we have a very idempotent e ∈ RG such that
a − e ∈ N(RG) and that such representation is unique. Hence, a − ω(e) =
ω(a− e) ∈ N(R). Obviously, ω(e) ∈ R is a very idempotent. If a− f ∈ N(R)
for a very idempotent f ∈ R, then e = f , as desired. �

Theorem 2.7. Let R be a ring, and let G be a group. If I(R,G) is nil,
then RG is uniquely weakly nil-clean if and only if so is R.

Proof. One direction is obvious by Lemma 2.6. Conversely, assume that
R is uniquely weakly nil-clean. Let x ∈ RG. Then x = ω(x) +

(
x− ω(x)

)
. By

hypothesis, there exists a very idempotent e ∈ R such that w := ω(x) − e ∈
N(R). Hence, x = e +

(
w + (x − ω(x))

)
. Since ker(ω) is nil, we see that

v := w+ (x−ω(x)) ∈ N(R). Assume that x = f +w where f ∈ RG is an very
idempotent and w ∈ N(RG). Then f − ω(f) ∈ ker(ω) is nil. As R is uniquely
weakly nil-clean, R is abelian. Hence,

(
f −ω(f)

)(
1− (f −ω(f))2

)
= 0, and so

f = ω(f) ∈ R. It is easy to verify that vw = (x−e)(x−f) = (x−f)(x−e) = wv,
and then e− f = w− v ∈ N(R). It follows from (e− f)

(
1− (e− f)2

)
= 0 that

e = f , as needed. �

Corollary 2.8. Let R be a ring with a prime p ∈ J(R), and let G be a
locally finite p-group. Then RG is uniquely weakly nil-clean if and only if R is
uniquely weakly nil-clean.

Proof. One direction is obvious. Conversely, assume that R is uniquely
weakly nil-clean. Then J(R) is nil by Corollary 2.3. We first suppose G is finite
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and prove the claim by induction on |G|. As the center of a nontrivial finite
p-group contains more than one element, we may take x ∈ G be an element
in the center with the order p. Let (x) be the subgroup of G generated by
x. Then G = G/(x) has smaller order. By induction hypothesis, ker

(
ω
)

is
nil, where ω : RG → R,

∑
g∈G

rgg. Let ϕ : RG → RG,
∑
g
rgg →

∑
g
rgg. Then

ker(ϕ) = (1 − x)RG. Since xp = 1, we see that (1 − x)p ∈ pRG; hence,
1− x ∈ RG is nilpotent. But ϕ

(
ker(ω)

)
= ker

(
ω
)

is nil. For any z ∈ ker(ω),
we have some m ∈ N such that zm ∈ ker(ϕ) is nilpotent. Thus, z ∈ RG is
nilpotent. We conclude that ker(ω) is nil, and therefore RG is uniquely weakly
nil-clean, in terms of Theorem 2.7. �

3. FACTORIZATION OF ZERO-DIVISORS

In this section, we work out the structure of uniquely weakly D-nil-clean
rings. To do this, we need the connections between uniquely weakly nil-clean
rings and uniquely weakly D-nil-clean rings.

Lemma 3.1. Every uniquely weakly D-nil-clean ring is abelian.

Proof. Let e ∈ R be an idempotent, and let x ∈ R. Then e+ex(1−e) ∈ R
is an idempotent. If e = 1, then ex = exe. If 1− e = ex(1− e), then ex = exe.
If e 6= 1 and 1− e 6= ex(1− e), then e + ex(1− e) ∈ R is a zero-divisor, as

(1− e)
(
e + ex(1− e)

)
= 0 =

(
e + ex(1− e)

)(
1− e− ex(1− e)

)
.

Since e + ex(1− e) = e + ex(1− e) + 0, by hypothesis, e2 =
(
e + ex(1− e)

)2
,

and then ex(1−e) = 0. That is, ex = exe. Likewise, xe = exe. Thus, ex = xe.
This completes the proof. �

Theorem 3.2. Every uniquely weakly D-nil-clean ring is a D-ring or the
product of two uniquely weakly nil-clean rings.

Proof. Let R be a uniquely weakly D-nil-clean ring. In view of Lemma 3.1,
R is abelian.

Case I. R is indecomposable. Then every zero-divisor is nilpotent or
invertible. The later is impossible, and so R is a D-ring.

Case II. R is decomposable. Write R = A ⊕ B. Let a ∈ A. Then
(a, 0) ∈ R is a zero-divisor. By hypothesis, there exists a very idempotent
(e, e′) ∈ R such that (a, 0) − (e, e′) ∈ N(R), and that (a, 0) − (f, f ′) ∈ N(R)
with a very idempotent (f, f ′) ∈ R implies that (e, e′)2 = (f, f ′)2. Thus,
a− e ∈ N(R). If there exists a very idempotent g ∈ A such that a− g ∈ N(A).
Then (a, 0)−(g, 0) ∈ N(R). This implies that (g, 0)2 = (e, e′)2, and so g2 = e2.
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Therefore A is uniquely weakly nil-clean. Similarly, B is uniquely weakly nil-
clean, as asserted. �

Lemma 3.3. Let R be a ring. Then every zero-divisor in R is a very
idempotent if and only if R is isomorphic to one of the following:

(1) a domain,

(2) Z3 ⊕ Z3,

(3) Z3 ⊕B where B is a Boolean, or

(4) a Boolean ring.

Proof. Suppose that every zero-divisor in R is a very idempotent. By
Lemma 3.1, R is abelian.

Case I. R is indecomposable. Then Id(R) = {0, 1} and−Id(R) = {0,−1}.
Thus, the only zero-divisor is zero. Hence, R is a domain.

Case II. R is decomposable. Then we have S, T 6= 0 such that R = S⊕T .
For any t ∈ T , (0, t) ∈ R is a zero-divisor. By hypothesis, (0, t) or −(0, t) is an
idempotent; hence that t or −t is an idempotent in T . Therefore every element
in T is a very idempotent. In light of Lemma 2.1, T is isomorphic to one of
the following:

(a) Z3,

(b) a Boolean ring, or

(c) Z3 ⊕B where B is a Boolean.

Likewise, S is isomorphic to one of the preceding. Thus, R is isomorphic to
one of the following: R is isomorphic to one of the following:

(i) Z3 ⊕ Z3,

(ii) a Boolean ring, or

(iii) Z3 ⊕B where B is a Boolean.

(iv) Z3 ⊕ Z3 ⊕B where B is a Boolean.

But in Case (iv), (1, 2, 0) ∈ Z3⊕ Z3⊕B is a zero-divisor, while it is not a very
idempotent. Therefore Case (iv) will not appear, as desired.

Conversely, if R is a domain, then every zero-divisor is zero. If R = Z3 ⊕
Z3, then NZ(R) = {(1, 1), (1, 2), (2, 1)}, Id(R) = {(0, 0), (0, 1), (1, 0), (1, 1)}
and −Id(R) = {(0, 0), (0, 2), (2, 0), (2, 2)}. Therefore R = NZ(R)

⋃
Id(R)

⋃
−Id(R). If R = Z3

⊕
B where B is a Boolean, then Id(R) = {(0, b), (1, b) | b ∈

B} and −Id(R) = {(0, b), (2, b) | b ∈ B}. Therefore R = Id(R)
⋃
−Id(R). If

R is a Boolean ring, then every element in R is an idempotent. In any case,
every element in R is a very idempotent, the result follows. �

We will state now the main result of this section.

Theorem 3.4. Let R be a ring. Then R is uniquely weakly D-nil-clean if

and only if R is a D-ring, or R satisfies the conditions:



100 M.S. Abdolyousefi and H. Chen 8

(1) R is abelian;

(2) R is periodic;

(3) R/J(R) is isomorphic to one of the following:

(a) a field F ,

(b) Z3 ⊕ Z3,

(c) Z3 ⊕B where B is Boolean, or

(d) a Boolean ring.

Proof. =⇒ Suppose that R is not a D-ring. In view of Theorem 3.2, R is
the product of two uniquely weakly nil-clean rings R1 and R2. By Theorem 2.2,
R1 and R2 are abelian periodic rings, and then so is R. In view of [4, Theorem],
N(R) is an ideal of R. As R is periodic, J(R) is nil; hence, J(R) = N(R).
As every idempotent lifts modulo N(R), we see that R/J(R) is abelian. Let
a ∈ R/N(R) be a zero-divisor. If a ∈ R is not a zero-divisor, then a ∈ U(R),
and so a ∈ U

(
R/N(R)

)
, a contradiction. Thus, a ∈ R is a zero-divisor. By

hypothesis, a is the sum of a very idempotent and a nilpotent. Hence, a is a
very idempotent. That is, every zero-divisor in R/J(R) is a very idempotent.
In light of Lemma 3.3, R/J(R) is isomorphic to one of the following:

(i) a domain F ,

(ii) Z3 ⊕ Z3,

(iii) Z3 ⊕B where B is Boolean, or

(iv) a Boolean ring.

If R = F is a domain, then for any a ∈ R, a = 0 or am = 1 for some m ∈ N.
This shows that R is a field, as required.

⇐= In view of [4, Theorem ], N(R) forms an ideal of R. Let a ∈ R be
a zero divisor. Then a ∈ R/J(R) is a zero-divisor; otherwise, a ∈ R/J(R) is
invertible, and so a ∈ R is invertible, a contradiction. According to Lemma 3.5,
a is a very idempotent in R/J(R). As R is periodic, J(R) is nilpotent, and so
every idempotent modulo J(R). This implies that v := a− e ∈ N(R) for some
very idempotent e ∈ R. Let f ∈ R be a very idempotent such that w := a−f ∈
N(R). Then e2−f2 = (a−v)2−(a−w)2 = −av−va+v2+aw+wa−w2 ∈ N(R).
As e, f ∈ R are very clean, we se that e2, f2 ∈ R are idempotents. It is easy
to verify that (e2 − f2)

(
1 − (e2 − f2)2

)
= 0, and so e2 = f2. Therefore we

complete the proof. �

We now consider a specific case and explore the structure of rings in which
every zero-divisor is a very idempotent or a nilpotent element.

Lemma 3.5. Every ring in which every element is a very idempotent or
a nilpotent element is abelian.
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Proof. Let e ∈ R be an idempotent, and let x ∈ R. Then 1 − ex(1 −
e) ∈ U(R). If

(
1 − ex(1 − e)

)2
= 1 − ex(1 − e), then ex(1 − e) = 0, and so

ex = exe. If
(
1− ex(1− e)

)2
= −

(
1− ex(1− e)

)
, then ex(1− e) = 2. and so

ex(1− e) = 2e(1− e) = 0. Hence, ex = exe. If 1− ex(1− e) ∈ N(R), this will
be a contradiction. Thus, ex = exe. Likewise, xe = exe. Therefore ex = xe,
hence the result. �

Lemma 3.6. Let R be a ring. Then the following are equivalent:

(1) R = N(R) ∪ Id(R) ∪ −Id(R)

(2) R = J(R) ∪ Id(R) ∪ −Id(R)

(3) R is isomorphic to one of the following:

(a) Z3, Z4,

(b) a Boolean ring, or

(c) Z3 ⊕B where B is a Boolean.

Proof. (1)⇔ This is proved by [10, Proposition 1.21]

(1)⇔ This is obvious by [10, Proposition 1.19] and Lemma 2.1. �

Theorem 3.7. Let R be a ring. Then R is an abelian ring in which every
zero-divisor in R is a very idempotent or a nilpotent element if and only if R
is isomorphic to one of the following:

(a) a D-ring,

(b) a Boolean ring,

(c) Z3 ⊕ Z3,

(d) Z3 ⊕B where B is a Boolean.

Proof. Suppose that R is an abelian ring in which every zero-divisor in R
is a very idempotent or a nilpotent element.

Case I. R is indecomposable. Then every very idempotent is 0, 1 or −1.
Hence, every zero-divisor in R is nilpotent. Hence, R is a D-ring.

Case II. R is decomposable. Write R = S ⊕ T . For any t ∈ T , (0, t) is a
very idempotent or a nilpotent element. We infer that every element in T is
a very idempotent or a nilpotent element. Similarly, every element in S is a
very idempotent or a nilpotent element. By virtue of Lemma 3.6, S and T are
both isomorphic to one of the following:

(a) Z3, Z4,

(b) a Boolean ring, or

(c) Z3 ⊕B where B is a Boolean.

But one easily checks that Z(R) 6= Id(R)
⋃
−Id(R)

⋃
N(R) for any of those

types

(1) Z3 ⊕ Z4,
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(2) Z3 ⊕ Z3 ⊕B where B is a Boolean ring,

(3) Z4 ⊕ Z4,

(4) Z4 ⊕B where B is a Boolean ring, and

(5) Z3 ⊕ Z4 ⊕B where B is a Boolean ring.

Therefore R is isomorphic to one of (a)− (d).
Conversely, R is abelian, as every D-ring is connected. One easily checks

that any of these four types of rings satisfy the desired condition. �

In light of Theorem 3.7 and Theorem 3.4, every abelian ring in which
every zero-divisor in R is a very idempotent or a nilpotent element is uniquely
weakly D-nil-clean.

Corollary 3.8. Let R be a ring. Then the following are equivalent:

(1) R is an abelian ring in which every zero-divisor in R is an idempotent
or a nilpotent element.

(2) R is a D-ring or a Boolean ring.

Proof. (1) ⇒ (2) In view of Theorem 3.7, R is isomorphic to one of the
following:

(a) a D-ring,

(b) a Boolean ring,

(c) Z3 ⊕ Z3,

(d) Z3 ⊕B where B is a Boolean.

But in the case Z3 ⊕ Z3, (0, 2) 6∈ Id(R)
⋃
N(R). In the case Z3 ⊕ B, (2, 0) 6∈

Id(R)
⋃
N(R). Therefore proving (2).

(2)⇒ (1) This is obvious. �

The abelian condition in Corollary 3.8 is necessary. For instance, every
zero-divisor in T2

(
Z2

)
is an idempotent or a nilpotent element. But T2

(
Z2

)
is

neither a Boolean ring nor a D-ring.

4. UNIQUELY D-NIL-CLEAN RINGS

The aim of this section is to describe the connection between uniquely
D-nil-clean rings and uniquely nil-clean rings, and thereby characterize the
structure of uniquely D-nil-clean rings.

Lemma 4.1. Every uniquely D-nil-clean ring is abelian.

Proof. This is similar to that in Lemma 3.1. �

Proposition 4.2. A ring R is uniquely D-nil-clean if and only if for
any zero-divisor a ∈ R there exists a central idempotent e ∈ R such that
a− e ∈ N(R).
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Proof. One direction is obvious from Lemma 4.1. Conversely, letting
e ∈ R be an idempotent, we have a central idempotent f ∈ R such that
w := e− f ∈ N(R). Thus, (e− f)3 = e− f , and so (e− f)

(
1− (e− f)2

)
= 0.

This implies that e = f , and then R is abelian. Let a ∈ R be a zero-divisor.
Then there exists a central e ∈ R such that a − e ∈ N(R). If there exists an
idempotent f ∈ R such that a−f ∈ N(R), then e−f = (a−f)−(a−e) ∈ N(R).
It follows from (e− f)3 = e− f that e = f , which completes the proof. �

Lemma 4.3. Let R be a ring. Then R is a uniquely D-nil-clean ring if
and only if R is a D-ring or R is uniquely nil-clean.

Proof. =⇒ In view of Lemma 4.1, R is abelian.

Case I. R is indecomposable. Let a ∈ R be a zero-divisor. Then a ∈ R is
nilpotent or a ∈ U(R). This shows that every zero-divisor is nilpotent, i.e., R
is a D-ring.

Case II. R is decomposable. Write R = A⊕B. For any x ∈ A, (x, 0) ∈ R
is a zero-divisor. Hence, we can find a unique idempotent (e, f) ∈ R such that
(x, 0)− (e, f) ∈ N(R). Thus, x− e ∈ N(R) for an idempotent e ∈ R. If there
exists an idempotent g ∈ R such that x − g ∈ N(R). Then (x, 0) − (g, f) ∈
N(R). By the uniqueness, we get g = e, and therefore A is uniquely nil-clean.
Similarly, B is uniquely nil-clean, and then R is uniquely nil-clean.

⇐= If R is a D-ring, then R is a D-uniquely nil clean ring. So we assume
that R is uniquely nil-clean, and therefore R is a uniquely D-nil-clean ring. �

Theorem 4.4. Let R be a ring. Then R is uniquely D-nil-clean if and
only if R is a D-ring, or R satisfies the conditions:

(1) R is abelian;

(2) R is periodic;

(3) R/J(R) is Boolean.

Proof. =⇒ In view of Lemma 4.1, R is abelian. Suppose that R is not a
D-ring. Then R is a uniquely nil-clean ring, in terms of Lemma 4.3. In view
of [12, Theorem 5.9], R/J(R) is Boolean and J(R) is nil. Let a ∈ R. Then
a − a2 ∈ J(R), and so (a − a2)m = 0 for some m ∈ N. Similarly to Theorem
2.2, R is periodic, in terms of Herstein’s Theorem.

By virtue of [4, Theorem], N(R) forms an ideal of R. Hence, J(R) =
N(R). Let a ∈ R/J(R) is a zero-divisor. Then a ∈ R is a divisor; otherwise, a ∈
U(R) as R is periodic, a contradiction. Hence, a is the sum of an idempotent
and a nilpotent element. This shows that a is an idempotent. Therefore, every
zero-divisor in R/J(R) is an idempotent.

Set S = R/J(R). Suppose that S has a nonzero zero-divisor. Then
we have some x, y ∈ R such that xy = 0, x, y 6= 0. Hence, (yx)2 = 0. If
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yx 6= 0, then yx ∈ R is a zero-divisor. So yx ∈ R is an idempotent. Thus,
yx = (yx)2 = 0. This implies that x ∈ R is a zero-divisor, and so x = x2. It
follows that 1−x ∈ R is a zero-divisor; hence that 1−x = (1−x)2. Therefore
x2 = x.

Let a ∈ R. Then
(
xa(1 − x)

)2
= 0. Hence, xa(1 − x) = 0; otherwise,

xa(1− x) ∈ R is an idempotent, and so xa(1− x) = 0, a contradiction. Thus,
xa(1 − x) = 0, hence, xa = xax. Likewise, ax = xax. Thus, xa = ax. If
xa = 0, then a ∈ R is a zero-divisor, and so it is an idempotent. If xa 6= 0, it
follows from xa(1 − x) = 0 that xa ∈ R is a zero-divisor, and so xa = (xa)2.
Hence, xa(1 − a) = 0. This implies that 1 − a ∈ R is a zero-divisor, and
then 1 − a = (1 − a)2. Thus, a = a2. Therefore a ∈ R is an idempotent.
Consequently, R/J(R) is Boolean or R/J(R) is a domain. If R/J(R) is a
domain, the periodic property implies that R is a field. Thus, R is local. But
J(R) is nil, and so every zero-divisor is nilpotent. We infer that R is a D-ring,
an absurd. This shows that R/J(R) is Boolean, as desired.

⇐= If R is a D-ring, then R is uniquely D-nil-clean. We now assume
that (1) − (3) hold. Let a ∈ R be a zero-divisor. As R/J(R) is Boolean,
a − a2 ∈ J(R) ⊆ N(R). Thus, we can find an idempotent e ∈ R such that
a − e ∈ N(R). Since R is abelian, we see that such idempotent e is unique.
Therefore R is uniquely D-nil-clean. �

In light of Theorem 4.4 and Theorem 3.4, every uniquely D-nil-clean ring
is a uniquely weakly D-nil-clean ring.

Lemma 4.5. Let R be a ring. Then R is uniquely nil-clean if and only if

(1) R is abelian.

(2) R/J(R) is Boolean and J(R) is nil.

Proof. =⇒ This is obvious by [12, Lemma 5.5 and Theorem 5.9].

⇐= For any a ∈ R, a − a2 ∈ J(R), and so we have an idempotent
e ∈ R such that a − e ∈ J(R), as J(R) is nil. Write a = e + v. Then
v ∈ J(R) ⊆ N(R). If there exists an idempotent f ∈ R and a w ∈ N(R)
such that a = f + w, then e − f = (a − v) − (a − w) = w − v. Clearly,
wv = (a − f)(a − e) = (a − e)(a − f) = vw, and so e − f ∈ N(R). Since
(e − f)3 = e − f , we see that e − f = 0, and then e = f . Therefore R is
uniquely nil clean. �

Theorem 4.6. Let R be a ring. Then R is uniquely nil-clean if and only
if

(1) 2 ∈ R is nilpotent;

(2) R is uniquely weakly nil-clean.
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Proof. Suppose that R is uniquely nil clean. In view of Lemma 4.5, 2
2

= 2

in R/J(R), and so 2 ∈ J(R) is nilpotent. By Lemma 4.5 and Theorem 2.2, we

observe that every uniquely nil-clean ring is uniquely weakly nil-clean.

Conversely, assume that (1) and (2) hold. As 2 ∈ Z3 is not nilpotent. In

view of Theorem 2.2, R is abelian, J(R) is nil, and that R/J(R) is Boolean.

The result follows by Lemma 4.5. �

Corollary 4.7. Let R be a ring. Then R is uniquely nil-clean if and

only if

(1) R is abelian;

(2) R/P (R) is uniquely nil-clean.

Proof. One direction is obvious, by Theorem 4.6 and Proposition 2.5.

Conversely, assume that (1) and (2) hold. By virtue of Theorem 4.6, 2 ∈
R/P (R) is nilpotent. We infer that 2 ∈ R is nilpotent. Furthermore, R/P (R) is

uniquely weakly nil-clean. According to Proposition 2.5, R is uniquely weakly

nil-clean. By using Theorem 4.6 again, R is uniquely nil-clean. �

Corollary 4.8. Let R be a ring, and G be a group. Then RG is uniquely

nil-clean if and only if R is uniquely nil-clean and I(R,G) is nil.

Proof. Suppose RG is uniquely nil-clean. Then RG is uniquely weakly

nil-clean and 2 ∈ N(RG), by Theorem 4.6. Hence, R is uniquely weakly

nil-clean and 2 ∈ N(R). By using Theorem 4.6 again, R is uniquely nil-

clean. Thanks to Lemma 4.5, RG/J(RG) is Boolean. For any g ∈ G, we see

that (1 − g) − (1 − g)2 ∈ J(RG); hence, 1 − g ∈ J(RG). This implies that

ker(ω) ⊆ J(RG) is nil, as desired.

Conversely, assume that R is uniquely nil-clean and ker(ω) is nil. By

virtue of Theorem 4.6 and Theorem 2.7, 2 ∈ N(R) and RG is uniquely weakly

nil-clean. Therefore RG is uniquely nil-clean, in terms of Theorem 4.6. �

Let G be a 3-group. Then Z3G is not uniquely nil-clean by Corollary 4.8,

while it is uniquely weakly nil-clean.

Corollary 4.9. Let R be a ring in which 2 is nonnilpotent. Then R is

uniquely D-nil-clean if and only if R is uniquely weakly D-nil-clean.

Proof. =⇒ This is obvious.

⇐= In light of Theorem 3.2, R is a D-ring, or the product of two uniquely

weakly nil-clean rings. As 2 is nonnilpotent in R, every R is uniquely weakly

nil-clean is uniquely nil-clean, by Theorem 4.6. Therefore R is uniquely D-nil-

clean, in terms of Lemma 4.3. �
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