
REGULARITY OF LOCAL TIMES
OF GAUSSIAN SELF-SIMILAR QUASI-HELICES

CIPRIAN TUDOR and MARIA TUDOR

Communicated by Lucian Beznea

We analyze the regularity in Sobolev-Watanabe spaces of the local times of
Gaussian self-similar processes with a certain trajectorial regularity. The main
purpose is to understand which of these parameters (the self-similarity index or
the sample path regularity order) gives the regularity of the local time. We study
several examples, such as fractional Brownian motion, bifractional Brownian
motion or the solutions to the heat or wave equation with additive Gaussian
noise.
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1. INTRODUCTION

The local time of a stochastic process measures the time spent by the
process in a given Borel set. It is an important characteristic of a stochastic
process. Especially for Gaussian processes, the local time has been widely
studied. We refer, among others, to the recent monograph [18] for a complete
exposition.

In the case of the Gaussian processes, one of the methods which has been
widely employed to study their local time is the so-called chaos decomposition
into multiple Wiener-Itô stochastic integrals. This approach has been first
applied to the Brownian motion in [20,21] and then to several other Gaussian
processes, such as fractional Brownian motion [7, 11], bifractional Brownian
motion [23] or the solution to the heat equation [25].

One of the problems analyzed via chaos expansion is the regularity of the
local time in the so-called Sobolev-Watanabe spaces. This is a kind of regula-
rity with respect to the variable of randomness ω. In particular, it extends the
Lp- regularity of the local time since the Sobolev-Watanabe space D0,2 coincides
with L2(Ω). We refer to Section 2.2 for the definition of these spaces which have
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been originally introduced by Watanabe in [28]. For instance, the local time
of the Wiener process belongs to the Sobolev-Watanabe space Dγ,2 for every
γ < 1

2 , see [20]. The result has been extended to fractional Brownian motion
(BH

t )t≥0 (fBm in the sequel) in [11]. It has been showed that the local time of
the fBm belongs to Dγ,2 for every γ < 1

2H−
1
2 . Note that the index H represents

the self-similarity index of the fBm but also the order of the regularity of its
sample paths since for every s, t ≥ 0 one has E

∣∣BH
t −BH

s

∣∣2 = |t − s|2H .
Consider now the bifractional Brownian motion (see Section 4). This Gaussian
process, denoted (BH,K

t )t≥0, with H ∈ (0, 1) and K ∈ (0, 1] is HK-self-similar
and it satisfies the quasi-helix property: for every s, t ≥ 0,

C1|t− s|2HK ≤ E
∣∣∣BH,K

t −BH,K
s

∣∣∣2 ≤ C2|t− s|2HK

where C1, C2 are two strictly positive constants. In this case the local time of
the bi-fBm belongs to the space Dγ,2 for every γ < 1

2HK −
1
2 (see [23]) and the

index HK can be interpreted as the self-similarity index and simultaneously,
as the order of the sample paths regularity. The same phenomenon happens
in the case of the solution to the heat equation (see [25]).

The purpose of this work is to understand which of these two parameters
(the self-similarity index or the Hölder continuity index) gives the regularity
of the local time. For certain Gaussian stochastic processes, these two para-
meters do no coincide. Such an example is the solution to the stochastic wave
equation with additive noise which will be discussed later. We will show that
the regularity of the local time in the Sobolev-Watanabe sense is rather related
to the sample path regularity than to the self-similarity index.

We organized our paper as follows. In Section 2, we present our main
assumptions and we introduce the multiple stochastic integrals and the local
time. In Section 3, we prove our main result and finally, in Section 4 we discuss
several examples.

2. PRELIMINARIES

2.1. ASSUMPTIONS

We consider throughout the paper a centered Gaussian process (Xt)t≥0

withX0 = 0 and we denote byR(s, t) = EXtXs, s, t ≥ 0 its covariance function.
Fix an interval I = [ε, 1] with ε > 0 small enough.

Let us make the following assumptions:

C1) The process (Xt)t≥0 is self-similar of order H ∈ (0,∞), meaning that
for every c > 0 the stochastic processes (Xct)t≥0 and (cHXt)t≥0 have the
same finite dimensional-distributions.
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C2) The process (Xt)t≥0 satisfies, for every s, t ∈ I,

(1) C1|t− s|2α ≤ E |Xt −Xs|2 ≤ C2|t− s|2α

with some constants 0 < C1 < C2 and with α > 0. This property means
that the process X is a quasi-helix in the sense of [15,16].

C3) For every t ∈ I,

(2) VarXt ≥ C > 0.

C4) The covariance function is continuous in the sense that the mapping
(t, s)→ R(s, t) = EXtXs is continuous on [0,∞)× [0,∞).

2.2. MULTIPLE STOCHASTIC INTEGRALS AND WATANABE SPACES

Here we describe the elements from stochastic analysis that we will need
in the paper. Consider H a real separable Hilbert space and (B(ϕ), ϕ ∈ H )
an isonormal Gaussian process on a probability space (Ω,A , P ), that is a cen-
tered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H .
Denote by In the multiple stochastic integral with respect to B (see [19]). This
In is actually an isometry between the Hilbert space H �n (symmetric tensor
product i.e. the Hilbert space that contains the symmetrizations of the tensor
products h1 ⊗ ... ⊗ hn, with hi ∈ H , i = 1, .., n)) equipped with the scaled
norm 1√

n!
‖ · ‖H ⊗n and the Wiener chaos of order n which is defined as the

closed linear span of the random variables Hn(B(ϕ)) where ϕ ∈H , ‖ϕ‖H = 1
and Hn is the Hermite polynomial of degree n ≥ 1

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R.

The isometry of multiple integrals can be written as: for m,n positive
integers,

E (In(f)Im(g)) = n!〈f, g〉H ⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n.(3)

It also holds that

In(f) = In
(
f̃
)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xn) = 1
n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).
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We recall that any square integrable random variable which is measu-
rable with respect to the σ-algebra generated by B can be expanded into an
orthogonal sum of multiple stochastic integrals

(4) F =
∑
n≥0

In(fn)

where fn ∈H �n are (uniquely determined) symmetric functions and I0(f0) =
E [F ].

Let L be the Ornstein-Uhlenbeck operator

LF = −
∑
n≥0

nIn(fn)

if F is given by (4).

For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space Dα,p as
the closure of the set of polynomial random variables with respect to the norm

‖F‖α,p = ‖(I − L)
α
2 F‖Lp(Ω)

where I represents the identity. In this way, a random variable F as in (4)
belongs Dα,2 if and only if

(5)
∑
n≥0

(1 + n)α‖In(fn)‖2L2(Ω) =
∑
n≥0

(1 + n)αn!‖fn‖2H ⊗n <∞.

Throughout this paper we will denote by ps(x) the Gaussian kernel of

variance s > 0 given by ps(x) = 1√
2πs

e−
x2

2s , x ∈ R and for x = (x1, . . . , xd) ∈ Rd

by pds(x) =
∏d
i=1 ps(xi).

2.3. THE LOCAL TIME

We first introduce the local time of a stochastic process (Xt)t∈T . See [3,4]
for a more complete exposition on local times for Gaussian processes. For any
Borel set I ⊂ T the occupation measure of X on I is defined as

µI(A) = λ (t ∈ I,Xt ∈ A) , A ∈ B(R)

where λ denotes the Lebesque measure. If µI is absolutely continuous with
respect to the Lebesque measure, we say that the process X has local time
on I. The local time is defined as the Radon-Nykodim derivative of µI with
respect to the Lebesque measure

L(I, x) =
dµI
dλ

(x), x ∈ R.
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The local time L(I, x) measures the time spent in I by the process at x ∈ R.
We will use the notation L(t, x) := L([0, t], x), t ∈ R+, x ∈ R. The local time
satisfies the occupation time formula

(6)

∫
I
f(Xt)dt =

∫
R
f(x)L(I, x)dx

for any Borel set I in T and for any measurable non-negative function f : R
→ R.

Let now X be isonormal Gaussian process with variance R(s, t) = EXtXs

as introduced in Section 2.2. The local time of X can be formally written as
(see e.g. [20] or [21])

(7) L(t, x) =

∫ t

0
δ(x−Xs)ds

where δ denotes the Dirac function and the quantity δ(x−Xs) can be under-
stood as a distribution in the Watanabe spaces, see Section 2.2.

We will use the following decomposition of the delta Dirac function (see
Nualart and Vives [20], Imkeller et al. [14], Eddahbi et al. [11,12]; see also [17]
for a general theory) into orthogonal multiple Wiener-Itô integrals

(8) δ(x−Xs) =
∑
n≥0

R(s)−
n
2 pR(s)(x)Hn

(
x

R(s)
1
2

)
In

(
1⊗n[0,s]

)
where R(s) := R(s, s), pR(s) is the Gaussian kernel of variance R(s), Hn is
the Hermite polynomial of degree n and In represents the multiple Wiener-
Itô integral of degree n with respect to the Gaussian process X as defined in
Section 2.2.

3. REGULARITY OF THE LOCAL TIME

Consider X a Gaussian process that satisfies the assumptions stated in
Section 2.1. We analyze in this paragraph the regularity of the local time
L(t, x) of X, with t, x fixed, viewed as a functional in the Sobolev-Watanabe
spaces. Before proving our main result, let us state and prove two auxiliary
lemmas.

Lemma 1. Let X be a Gaussian process that satisfies the quasi-helix pro-
perty (1) and (2). Then there exists a constant c > 0 such that

R(t, s)2 ≤ R(s)R(t)− cE |Xt −Xs|2

for every s, t ∈ I.
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Proof. This follows from relation (3.15) in [6] by using assumptions (2)
and (1). �

The following lemma is the key point for the obtention of the regularity
of the local time.

Lemma 2. Assume that X is a Gaussian process satisfying conditions C1)
–C4). Then, for n large enough, there exist C > 0 such that∫ 1

0

∣∣∣∣∣ R(1, z)√
R(1)R(z)

∣∣∣∣∣
n

R(z)−
1
2 dz ≤ Cn−

1
2α .

Proof. Let us denote by F (z) := |R(1,z|)√
R(1)R(z)

for every z ∈ [0, 1].

We will divide the integral above upon the intervals (0, 1−δ) and (1−δ, 1)
with δ an arbitrary point between 0 and 1. So∫ 1

0

(
|R(1, z)|√
R(1)R(z)

)n
R(z)−

1
2 dz =

∫ 1−δ

0
|F (z)|nR(z)−

1
2 dz

+

∫ 1

1−δ
|F (z)|nR(z)−

1
2 dz

:= J1 + J2.

Note that F takes values in the interval [0, 1], it is continuous, F (0) = 0, F (1)
= 1. Moreover F (z) = 1 if and only if z = 1 from a well-known property of the
covariance function and the trivial fact that X1 and Xz are not proportional.
This implies that there exists a constant c0 ∈ (0, 1) such that F (z) ≤ c0 for
every z ∈ (0, 1− δ). Thus

J1 ≤ C(H,α, δ)cn0 .

Let us regard the term J2. By using Lemma 1, we see that the term J2 can be
bounded as follows (c is a generic constant small enough):

J2 ≤
∫ 1

1−δ
dz

(
1− c (1− z)2α√

R(1)R(z)

)n
2

R(z)−
1
2

≤ c(H, d, α, δ)

∫ 1

1−δ
dz
(
1− c(1− z)2α

)n
2

= c(H, d, α, δ)

∫ 1

1−δ
dze

n
2

log(1−c(1−z)2α)

where the constant c in the exponential function also depends on H, δ, d and
we noticed the trivial fact that R(z) is bounded below by a strictly positive
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constant for z outside the origin (condition C3)). Using the inequality − log z ≥
1− z for every z ∈ (0, 1] and hence for every z ∈ (1− δ, 1), we get

J2 ≤ c(H, d, α, δ)

∫ 1

1−δ
dze−

n
2
c(1−z)2H− d−α

2

= c(H, d, α, δ)

∫ δ

0
dze−

n
2
cz2H− d−α

2

and by n
2 z

2α = y we find that

J2 ≤ c(H,α, d, δ)n−
1
2α . �

Let us now state our main result. It gives the chaos expansion of the local
time of the process X and its regularity in the Watanabe spaces.

Theorem 1. For every t ≥ 0 and x ∈ R the local time L(t, x) of the pro-
cess X admits the following chaos expansion into multiple Wiener-Itô integrals
(9)

L(t, x) =

∫ t

0
δ(x−Xs)ds =

∫ t

0

∑
n≥0

R(s)−
n
2 pR(s)(x)Hn

(
x

R(s)
1
2

)
In(1[0,s]⊗n)ds.

Moreover L(t, x) belongs to the Sobolev-Watanabe space Dγ,2 for every

(10) γ <
1

2α
− 1

2
.

Proof. The decomposition (9) follows from the chaos expansion of the
deta Dirac function (8) and (7). Let us compute the Dγ,2 norm of the random
variable L(t, x) with t ≥ 0 and x ∈ R. The approach is classical and it has
been already used in several works (e.g. [11, 20, 23]). By using the isometry of
multiple Wiener-Itô integrals (3) and the expression of the Sobolev-Watanabe
norm (5), we can write

‖L(t, x)‖2γ,2

=
∑
n≥0

(1 + n)γ
∫ t

0

∫ t

0
dudvR(u)−

n
2R(v)−

n
2 pR(u)(x)Hn

(
x

R(u)
1
2

)

pR(v)(x)Hn

(
x

R(v)
1
2

)
EIn(1⊗n[0,u])In(1⊗n[0,v])

=
∑
n≥0

(1 + n)γn!

∫ t

0

∫ t

0
dudvR(u)−

n
2R(v)−

n
2 pR(u)(x)Hn

(
x

R(u)
1
2

)

pR(v)(x)Hn

(
x

R(v)
1
2

)
× 〈1⊗n[0,u], 1

⊗n
[0,v]〉H ⊗n
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=
∑
n≥0

(1 + n)γn!

∫ t

0

∫ t

0
dudvR(u)−

n
2R(v)−

n
2 pR(u)(x)Hn

(
x

R(u)
1
2

)

pR(v)(x)Hn

(
x

R(v)
1
2

)
R(u, v)n

= 2
∑
n≥0

(1 + n)γn!

∫ t

0
dv

∫ u

0
dvR(u)−

n
2R(v)−

n
2 pR(u)(x)Hn

(
x

R(u)
1
2

)

pR(v)(x)Hn

(
x

R(v)
1
2

)
R(u, v)n.

Above 〈·, ·〉 denotes the scalar product in the Hilbert space associated with the
Gaussian process X. We use the identity (see e.g. [7])

(11) Hn(y)e−
y2

2 = (−1)[n/2]2
n
2

2

n!π

∫ ∞
0

une−u
2
g(uy

√
2)du

where g(r) = cos(r) if n is even and g(r) = sin(r) if n is odd. Since |g(r)| ≤ 1,
we have the bound

(12)

∣∣∣∣Hn(x)e−
y2

2

∣∣∣∣ ≤ 2
n
2

2

n!π
Γ(
n+ 1

2
) := cn

Thus (with C a generic strictly positive constant)

(13)

‖L(t, x)‖2γ,2 ≤ C
∑
n≥0

(1 + n)γn!c2
n

∫ t

0

∫ u

0
dudvR(u)−

n+1
2 R(v)−

n+1
2 |R(u, v)|n

= C
∑
n≥0

(1 + n)γn!c2
n

∫ t

0
duR(u)−

n+1
2 u

∫ 1

0
dzR(uz)−

n+1
2 |R(uz, u)|n

where we made the change of variables v
u = z in the integral dv.

Notice that for every u, z ≥ 0 it holds that

(14) R(uz, uz′) = u2HR(z, z′).

This is an immediate consequence of the self-similarity property. From 14, we
immediately get

R(u, uz) = u2HR(1, z), R(uz) = u2HR(z), R(u) = u2HR(1)

and therefore, by (13)

‖L(t, x)‖2γ,2 ≤ C
∑
n≥0

(1 + n)γn!c2
n

∫ t

0
duu1−2H
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×
∫ 1

0

(
|R(1, z)|√
R(1)R(z)

)n
R(z)−

1
2 dz

and since n!c2
n behaves as

√
n for n large enough, and using also Lemma 2, we

obtain that, with some n0 enough,

∑
n≥0

(1 + n)γn!c2
n

∫ t

0
duu1−2H

∫ 1

0

(
R(1, z)√
R(1)R(z)

)n
R(z)−

1
2 dz

≤ C
∑
n≥n0

(1 + n)γ
√
nn−

1
2α

which is convergent if 1
2α − γ −

1
2 > 1 which gives γ < 1

2α −
1
2 . �

4. EXAMPLES

In this paragraph, we will discuss several examples of Gaussian processes
that fulfill the conditions C1)-C4) in Section 2.1. In the first three examples
treated below (the fractional Brownian motion, the bifractional Brownian mo-
tion and the solution to the heat equation with fractional-colored noise) the
self-similarity index coincides with the order of the regularity of the sample
paths. In the last two examples, these two parameters are different.

4.1. THE FRACTIONAL BROWNIAN MOTION

The fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a
centered Gaussian process (BH

t )t≥0 with covariance

(15) EBH
t B

H
s =

1

2
(t2H + s2H − |t− s|2H), s, t ≥ 0.

Notice that assumption C4) holds. The process BH is self-similar of index H,
so it satisfies condition C1). It is actually the only self-similar Gaussian process
with stationary increments. Moreover, for every s, t ≥ 0,

E
∣∣BH

t −BH
s

∣∣2 = |t− s|2H

and consequently C2) holds. Clearly C3) is satisfied on every interval I = [t0, T ]
with t0 > 0. Then the local time of the fBm belongs to the Watanabe space
Dγ,2 with γ < 1

2H −
1
2 . This has been already proved in [11]. The order H

corresponds to the order of Hölder regularity of BH . It coincides in this case
with the self-similarity index.
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4.2. THE BIFRACTIONAL BROWNIAN MOTION

The bifractional Brownian motion (BH,K
t )t≥0 is a centered Gaussian pro-

cess, starting from zero, with covariance

(16) RH,K(t, s) =
1

2K

((
t2H + s2H

)K − |t− s|2HK) , s, t ≥ 0

with H ∈ (0, 1) and K ∈ (0, 1]. We refer to [13] and [23] for the definition
and the basic properties of this process. Note that, if K = 1 then BH,1 is the
fractional Brownian motion with Hurst parameter H ∈ (0, 1). When K = 1
and H = 1

2 then it reduces to the standard Brownian motion. It follows from
(16) that this stochastic process is self-similar of order HK. It has been proven
in [13] that for every s, t ≥ 0

2−K |t− s|2HK ≤ E
∣∣∣BH,K

t −BH,K
s

∣∣∣2 ≤ 21−K |t− s|2HK .

Thus C2) and C3) are satisfied on every interval I = [t0, T ] with t0 > 0. From
(16) we notice that C4) also holds. Consequently the local time of the fBm
belongs to the Watanabe space Dγ,2 with γ < 1

2HK −
1
2 . We retrieve in this

way the result in [23].

4.3. THE SUBFRACTIONAL BROWNIAN MOTION

This process has been introduced in [5]. The subfractional Brownian
motion (sub-fBm ) is defined as a centered Gaussian process (SHt )t≥0 with
covariance

R(t, s) = s2H + t2H − 1

2

(
(s+ t)2H + |t− s|2H

)
, s, t ≥ 0

with H ∈ (0, 1).
The sub-fBm arises from occupation time fluctuations of branching parti-

cle systems (see [5]). It has properties analogous to those of fBm (self-similarity,
long-range dependence, Hölder paths, variation and renormalized variation and
it is neither a Markov processes nor a semimartingale). The increments of the
process SH behaves in the following way

(2− 22H−1)|t− s|2H ≤ E
(
SHt − SHs

)2 ≤ |t− s|2H , si H > 1/2

and

|t− s|2H ≤ E
(
SHt − SHs

)2 ≤ (2− 22H−1)|t− s|H , si H < 1/2.

See [5] or [24], see also [26, 27] for other results on this process. That
means that the sub-fBm is, as the bi-fBm, a quasi-helix. Thus C2) and C3)
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are satisfied on every interval I = [t0, T ] with t0 > 0 and C4) also holds, so its
local time is in the space Dγ,2 with γ < 1

2H −
1
2 .

4.4. THE SOLUTION TO THE HEAT EQUATION
WITH FRACTIONAL-COLORED NOISE

First consider ”the noise” WH defined as a centered Gaussian process
WH = {WH(t, A); t ≥ 0, A ∈ Bb(Rd)} with covariance:

(17) E(WH(t, A)WH(s,B)) = RH(t, s)

∫
A

∫
B
f(y − y′)dydy′.

where RH denotes the covariance of the fractional Brownian motion (15) and
f is the Riesz kernel of order α given by

(18) f(x) = Rα(x) := γα,d|x|−d+α, 0 < α < d,

where γα,d = 2d−απd/2Γ((d− α)/2)/Γ(α/2). Note that f is the Fourier trans-
form of the measure µ(dξ) = |ξ|−αdξ.

Consider the stochastic process (u(t, x), t ≥ 0, x ∈ Rd) given by

(19) u(t, x) =

∫ t

0

∫
Rd
G(t− u, x− y)WH(ds,dy), t ≥ 0, x ∈ Rd

where the above integral is a standard Wiener integral with respect to the
Gaussian noise WH (see [1]) and G is the solution of ∂u

∂t = 1
2∆u. The process

u is actually the mild solution to the heat equation

∂u

∂t
=

1

2
∆u+ ẆH , t ≥ 0, x ∈ Rd(20)

u(0, x) = 0, x ∈ Rd,

where ∆ denotes the Laplacian on Rd and the noise W is defined by (17).
Recall (see [1, 2]) that the process (u(t, x))t∈[0,T ],x∈Rd exists and satisfies

sup
t∈[0,T ],x∈Rd

E
(
u(t, x)2

)
< +∞

if and only if ∫
Rd

(
1

1 + |ξ|2

)2H

|ξ|−αdξ <∞.

and this translates into

(21) d < 4H + α.
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The covariance of the process (u(t, x))t≥0 (here x ∈ Rd is fixed) is given
by
(22)

R(t, s) = Eu(t, x)u(s, x) = d(α,H)

∫ t

0

∫ s

0
|u− v|2H−2(t+ s− u− v)−

d−α
2 dvdu.

with d(α,H) a strictly positive constant and as mentioned before H ∈ (1
2 , 1)

and 0 < α < d < 4H + α. From (22) we notice that the process t→ u(t, x) is
self-similar with parameter

H − d− α
4

.

The self-similarity index is strictly positive under (21). Therefore condition
C1) is satisfied.

The increments of the solution to (20) satisfy the following (see [22]):
there exists two strictly positive constants C1, C2 such that for any t, s ≥ 0
and for any x ∈ Rd

(23) C1|t− s|2H−
d−α
2 ≤ E |u(t, x)− u(s, x)|2 ≤ C2|t− s|2H−

d−α
2 .

Therefore again assumptions C2) and C3) are satisfied on intervals of the form
I = [t0, T ] with t0 > 0. It is not difficult to see that C4) holds true.

The local time of the process t→ u(t, x) (x ∈ Rd is fixed) belongs to the
Sobolev-Watanabe space Dγ,2 for every

(24) γ <
1

2H − d−α
2

− 1

2
.

Let us notice the following facts: the Hölder regularity index and the self-
similarity index coincide once again as in the previous examples. On the other
side, in this case the order γ may be always negative. Actually, the solution to
the fractional-colored heat equation (20) admits a local time in L2(Ω) = D0,2 if

2H − d− α
2
≤ 3

2
.

4.5. THE SOLUTION TO THE WAVE EQUATION
WITH WHITE NOISE IN TIME

Consider the linear stochastic wave equation driven by a white-colored
noise W . That is

∂2u

∂t2
(t, x) = ∆u(t, x) + Ẇ (t, x), t ≥ 0, x ∈ Rd(25)

u(0, x) = 0, x ∈ Rd
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∂u

∂t
(0, x) = 0, x ∈ Rd.

Here ∆ is the Laplacian on Rd and W = {Wt(A); t ≥ 0, A ∈ Bb(Rd)} is a
centered Gaussian field with covariance

(26) E(Wt(A)Ws(B)) = (t ∧ s)
∫
A

∫
B
f(x− y)dxdy

where f is Riesz kernel (18). The solution of (25) is a square-integrable process
u = {u(t, x); t ≥ 0, x ∈ Rd} defined by the Wiener integral representation with
respect to the noise (26)

(27) u(t, x) =

∫ t

0

∫
Rd
G1(t− s, x− y)W (ds, dy)

with G1 the fundamental solution of ∂2u
∂t2

(t, x) − ∆u = 0. The solution exists
when the above integral is well-defined. As for the heat equation, it depends
on the dimension d and on the spatial covariance. For example, when the noise
is white both in time and in space the solution exists if and only if d = 1.

The necessary and sufficient condition for the existence of the solution
follows from [8]. The stochastic wave equation (25) admits an unique mild
solution (u(t, x))t≥0,x∈Rd if and only if

(28)

∫
Rd

(
1

1 + |ξ|2

)
|ξ|−αdξ <∞

which means d < 2 + α.

Fix x ∈ Rd. The covariance of (u(t, x)t≥0 can be expressed as

Eu(t, x)u(s, x) =

∫ t∧s

0
du

∫
Rd

dξ
sin((t− u)|ξ|)

|ξ|
sin((s− u)|ξ|)

|ξ|
|ξ|−ddξ.

It follows that the process u(t, x), t ≥ 0 is self-similar of order 3−d+α
2 , so condi-

tion C1) is satisfied. Also, let t0,M > 0 and fix x ∈ [−M,M ]d. Then (see [9])
there exists two positive constants c1, c2 such that for every s, t ∈ [t0, T ]

c1|t− s|2−d+α ≤ E |u(t, x)− u(s, x)|2 ≤ c2|t− s|2−d+α

and this implies that C2)- C3) are satisfied on I = [t0, T ] with t0 > 0 for every
x ∈ [−M,M ]d.

Let us point out an interesting fact: in the case of the solution to the wave
equation, the Hölder regularity order and the self-similarity order are different.
The local time belongs to the space Dγ,2 with γ < 1

2−d+α −
1
2 . It is always a

random variable in L2(Ω) because 1
2−d+α −

1
2 > 0.
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4.6. THE SOLUTION TO THE WAVE EQUATION
WITH FRACTIONAL NOISE IN TIME

Now, the noise (26) is replaced by the fractional colored noise WH whose

covariance is defined by (17). The mild solution of (25) is a square-integrable

process u = {u(t, x); t ≥ 0, x ∈ Rd} defined by:

(29) u(t, x) =

∫ t

0

∫
Rd
G1(t− s, x− y)WH(ds, dy).

Again G1 denotes the fundamental solution of the wave equation that already

appeared in the previous paragraph. The above Wiener integral is well-defined

if

(30)

∫
Rd

(
1

1 + |ξ|2

)H+ 1
2

|ξ|−α <∞.

This means that

(31) d < α+ 2H + 1.

Note that the condition is different from the case of the heat equation (compare

(31) and (21)).

The covariance of u can be expressed as

Eu(t, x)u(s, x) = a(H)

∫ t

0
du

∫ s

0
dv|u− v|2H−2∫

Rd
dξ

sin((t− u)|ξ|)
|ξ|

sin((s− v)|ξ|)
|ξ|

|ξ|−d+βdξ.

It is easy to note that this process is self-similar of order

H + 1− d− α
2

which is positive, so assumption C1) holds true. From [10], there exists a

positive constants c1, c2 such that for every s, t ∈ [t0, T ]

c1|t− s|2H+1−β ≤ E |u(t, x)− u(s, x)|2 ≤ c2|t− s|2H+1−β.

The above inequality gives C2) and C3) for every time interval outside the

origin. Finally, we note that C4) is clearly satisfied.
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[15] J.P. Kahane, Hélices et quasi-hélices. Adv. Math. 7B (1981), 417–433.

[16] J.P. Kahane, Some Random Series of Functions. Cambridge Univ. Press, 1985.

[17] H.H. Kuo, White Noise Distribution Theory. CRC Press, Boca Raton, 1996.

[18] M. Marcus and J. Rosen, Markov Processes, Gaussian Processes, and Local Times.
Cambridge Studies in Advanced Mathematics, 2006.

[19] D. Nualart, Malliavin Calculus and Related Topics. Springer, 1995.

[20] D. Nualart and J. Vives, Smoothness of Brownian local times and related functionals.
Potential Anal. 1 (1992), 257-263.

[21] D. Nualart and J. Vives, Chaos expansions and local times. Publ. Mat. 36 (1992),
827–836.

[22] H. Ouahhabi and C.A. Tudor, Additive functionals of the solution to fractional stochastic
heat equation. J. Fourier Anal. Appl. 19 (2012), 777–791.



122 Ciprian Tudor and Maria Tudor 16

[23] F. Russo and C.A. Tudor, On the bifractional Brownian motion. Stochastic Process.
Appl. 5 (2006), 830–856.

[24] C. Tudor, Some properties of the sub-fractional Brownian motion. Stochastics 79
(2007), 431–448.

[25] C.A. Tudor, Chaos expansion and regularity of the local time of the solution to the
stochastic heat equation with additive fractional-colored noise. Taiwanese J. Math. 17
(2013), 1765–1777.

[26] M. Tudor, Double subfractional integrals and mollifier approximation. Math. Rep. (Bu-
cur.) 9(59) (2007), 385–390.

[27] M. Tudor, A strong approximation for double subfractional integrals. Appl. Anal. 86
(2007), 1037–1048.

[28] S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus.
Springer-Verlag, 1994.

Received 19 January 2016 Université de Lille 1,
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