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We consider fractional linear programming production games for single-objective
and multiobjective cases. We use the method of Chakraborty and Gupta (2002)
in order to transform the fractional linear programming problems into linear
programming problems. A cooperative game is attached and we prove the non-
emptiness of the core by using the duality theory from linear programming. In
the multiobjective case, we characterize the stable outcome of the associated
cooperative game, which is balanced. By using a similar method as above, we
also study the form of the elements belonging to the stable outcome of the
cooperative game associated to an exchange economy with a finite number of
agents and fractional linear utilities.

AMS 2010 Subject Classification: 90C05, 90C32, 91A12.

Key words: fractional linear programming production games, fractional linear
utilities, core.

1. INTRODUCTION

The purpose of the paper is twofold. Firstly, it attempts to determine
the elements of the core, respectively of the stable outcome of two new types
of generalized Owen models: fractional linear programming production games
for single-objective and multiobjective cases. Secondly, it studies the form
of elements of the stable outcome of the cooperative game associated to an
exchange economy with a finite number of agents and fractional linear utilities.

Owen considered the linear programming production problem with n pro-
ducers, who have m resources and cooperate in order to produce p goods. The
producers’ aim is the maximization of their income, which is modeled as ob-
jective function of the discussed problem. A cooperative game is attached, and
the fair allocation of income is put into question. Relating methods from the
duality theory with methods from cooperative games, we prove that the core
is nonempty and we can find its elements. The condition of the nonemptiness
of the core for a cooperative game is the balancedness, as it was proved in
Bondareva (1963) or Shapley (1967).
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The seminal work of Owen has many extensions. Samet and Zemel (1984)
studied the relation between the core of a given LP-game and the set of pa-
yoff vectors generated by optimal dual solutions to the corresponding linear
program. Granot (1986) generalized the Owen’s model, so that the resources
held by any subset of producers S is not restricted to be the vector sum of the
resources held by the members of S. He also proved the non-emptiness of the
core of the associated game. Curiel, Derks and Tijs (1989) considered linear
production games with committee control. After that, Gellekom, Potters, Rei-
jnierse, Engel and Tijs (2001) also studied linear production processes, while
Nishizaki and Sakawa (1999, 2001) treated the multiobjective case.

In this paper, we consider that the producers want to maximize the
average income on unit time, which is modeled by a fractional linear objective
function. We generalize the Owen’s model by introducing the fractional linear
programming production games for the single-objective and multiobjective ca-
ses. The transformation of the fractional linear programming problems into
linear programming problems is made by using the method of Chakraborty and
Gupta (2002). We attach a cooperative game and we prove the non-emptiness
of its core. The multiobjective game is balanced, but not superadditive, and
for this case, we give a characterization of the stable outcome derived from the
associate cooperative game.

Finally, we consider the cooperative game associated to an exchange eco-
nomy with a finite number of agents. The agents’ preferences are modeled by
utilities, which are considered to be fractional linear functions. We consider
the problem of allocations of goods among consumers, and we provide an ans-
wer by associating a cooperative game to the exchange economy. We study the
properties of the game and describe the elements of its stable outcome. Even if
the two problems presented in this paper seem to be different, the methods of
approaching them are very similar. The unity of the models and ideas in this
field of research can be emphasized. Our results generalize the ones obtained
so far by considering the case of the fractional linear functions, which are used
more and more often with a precise economic meaning. Our methods of rese-
arch are quite new, in particularly because they concern the transformation of
a fractional linear multiobjective linear programming problem in a linear mul-
tiobjective linear programming one. We can quote here the results obtained
by Chakraborty and Gupta (2002).

The paper is organized in the following way: fractional linear program-
ming production game is presented in Section 2, the multiobjective model is
treated in Section 3 and the study of the exchange economies’ model with a
finite number of agents and fractional linear utility functions is the content of
Section 4. Further research is outlined in Section 5.
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2. FRACTIONAL LINEAR PROGRAMMING PRODUCTION GAMES

2.1. THE MODEL

This section is dedicated to defining a new model for a production problem
which requires to maximize the average income on unit time, expressed by a
unique fractional linear objective function.

We consider here the following model of fractional linear production game.
There are m types of resources used for the production of p goods. For each
i ∈ N = {1, 2, ..., n}, the player i is endowed with a vector bi of resources,
where bi = (bi1, b

i
2, ..., b

i
m). Any coalition S will use a total of bk(S) =

∑
i∈S b

i
k

units of the kth resource. We assume that a unit of the jth good (j = 1, ..., p)
requires akj units of the kth resource (k = 1, ...,m). A coalition S uses all its
resources in order to produce a vector (x1, x2, ..., xp) of goods which satisfies

a11x1 + a12x2 + ...+ a1pxp ≤ b1(S)

a21x1 + a22x2 + ...+ a2pxp ≤ b2(S)

(1) ................................................

am1x1 + am2x2 + ...+ ampxp ≤ bm(S)T

x1, x2, ..., xp ≥ 0.

The players of the coalition S want to maximize the average income on
unit time, which is given by the objective function N(x)

D(x) =
c1x1+c2x2+...+cpxp+c0
d1x1+d2x2+...+dpxp+d0

.

We will denote by x = (x1, x2, ..., xp)
T the vector of goods, c = (c1, c2, ...,

cp)
T ∈ Rp and d = (d1, d2, ..., dp)

T ∈ Rp the vectors which define the objective
function, A = (aij)i=1,m

j=1,p

∈ Rm×p the matrix with the coefficients of the con-

straints and b(S) = (b1(S), b2(S), ..., bm(S))T ∈ Rm the vector of the resources
used by coalition S. Let also denote by FS the set of all feasible solutions of
the problem: FS = {x ∈ Rp : Ax ≤ b(S), x ≥ 0} ⊆ Rp+. The problem can now
be stated in the following concise form:

for each coalition S, maximize N(x)
D(x)

(2) subject to FS .

Our approach to solve the problem (2) consists of using the substitution
proposed by Charnes and Cooper (1962): y = tx, t = 1

dT x+d0
. Thus, Problem

(2) becomes equivalent with (3), where

Max tN(yt )

(3) subject to tD(yt ) ≤ 1

A(yt )− b(S) ≤ 0

t > 0, y ≥ 0.
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In order to find solutions for the problem above, we can make the following
assumption, which is not a restrictive one:

for each S ⊆ N, x ∈ FS := {x : Ax ≤ b(S), x ≥ 0} implies D(x) > 0.
Furthermore, the fractional linear programming problem (3) can be re-

duced in a simple way to the linear programming problem (4) in its inequality
standard form:

P(S): Max cT y + c0t
subject to dT y + d0t ≤ 1

(4) Ay − tb(S) ≤ 0
t > 0, y ≥ 0.

The relationships between the optimal solutions of the fractional linear
programming problem (2) and the ones of the linear programming problem (4)
were investigated by Schaible (1976, 1978) and expressed in the following re-
sults. Both theorems state a certain type of equivalence between the maximum
points of the considered problems. Their importance consists in the fact that
we can reduce our study to the linear programming case.

Theorem 1 (Schaible 1976, 1978). For some ξ ∈ ∆, N(ξ) ≥ 0, if (2)
reaches a (global) maximum at x = x∗, then (3) reaches a (global) maximum
at a point (t, y) = (t∗, y∗), where y∗

t∗ = x∗ and the objective functions at these
points are equal.

Theorem 2 (Schaible 1976). If (2) reaches a (global) maximum at a point
x∗, then the corresponding transformed problem (3) attains the same maximum
value at a point (t∗, y∗) where x∗ = y∗

t∗ . Moreover (3) has a concave objective
function and a convex feasible set.

2.2. THE ASSOCIATED COOPERATIVE GAME

We associate to the problem (4) the cooperative game (N,V ), where
N = {1, 2, ..., n} is the set of players (or decision makers), P(N), the set of
nonempty subsets of N, is the set of coalitions formed with players 1, 2, ..., n,
and V : P(N)→ R describes the gain of a set of players by forming a coalition.
The players have to choose which coalitions to form, by taking into account
the appropriate payment methods of the coalition members.

We define the function V by

V (S) = c1y1 + c2y2 + ... + cpyp + c0t if S ( N, where y is an optimal
solution to problem P (S),

V (N) = γ(c1y1 + c2y2 + ... + cpyp + c0t), where y is an optimal solution
to problem P (N),
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and γ > max(γ∗, n) and γ∗ = max
∑

S∈B γ(S), B being any balanced
coalition of N.

We recall that a collection B of coalitions is said to be balanced if there
exists γ(S) > 0 for each S ∈ B such that, for each i ∈ N,

∑
S∈B
i∈S

γ(S) = 1.

The cooperative game (N,V ) is called balanced if for each balanced collection
B,
∑

S∈B γ(S)V (S) ≤ V (N).

The core of the game (N,V ) is a set of payoff allocations u ∈ RN with
the property that no coalition can improve upon. Formally, the core is a set of
payoff allocations u ∈ RN satisfying

i) Efficiency:
∑

i∈N ui = V (N),
ii) Coalitional rationality:

∑
i∈S ui ≥ V (S) for all coalitions S ⊆ N .

The Bondareva–Shapley theorem (Bondareva 1963, Shapley 1967) asserts
that the core of a game is nonempty if and only if the game is balanced.

Firstly, we prove the nonemptiness of the core of the game (N,V ), which
is a consequence of the balancedness.

Theorem 3. The game (N,V ) is balanced.

Proof. Let B be a balanced collection of N. Firstly, we know that∑
S∈B γ(S)bk(S) = bk(N) for each k ∈ {1, 2, ...,m}, and then,∑
S∈B γ(S)V (S) =

∑
S∈B γ(S)(c1y1(S)+c2y2(S)+...+cpyp(S)+c0t(S)) =

=
∑p

j=1 cj(
∑

S∈B γ(S)yj(S)) + c0
∑

S∈B γ(S)t(S) =

= γ′(
∑p

j=1 cj ŷj + c0t̂),

where γ
′

=
∑

S∈B V (S), ŷj :=
∑

S∈B
γ(S)
γ′ yj(S) and t̂ =

∑
S∈B

γ(S)
γ′ t(S).

Let us assume that

(
y(S)
t(S)

)
is a feasible solution of Problem (4).

Since Ay(S) ≤ t(S)b(S) for each S ∈ B and γ(S)
γ′ ≥ 0, we obtain that

Aγ(S)
γ′ y(s) ≤ t(S)γ(S)γ′ b(S).

By adding, we obtain

A(
∑

S∈B
γ(S)
γ′ y(s)) ≤ (

∑
S∈B

γ(S)
γ′ b(S))t(S),

and then,

A(
∑

S∈B
γ(S)
γ′ y(s)) ≤ b(N)(

∑
S∈B

γ(S)
γ′ t(S)).

Therefore, Aŷ ≤ b(N)t̂, that is

(
ŷ

t̂

)
verifies Ay − tb(N) ≤ 0.

Since dT y(S) + d0t(S) ≤ 1 for each S ∈ B and γ(S)
γ′ ≥ 0, it follows that

dT
∑

S∈B
γ(S)
γ′ y(S) + d0

∑
S∈B

γ(S)
γ′ t(S) ≤ 1

and then,
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dT ŷ + d0t̂ ≤ 1.

We notice that ŷ ≥ 0, t̂ ≥ 0 and we can also conclude that

(
ŷ

t̂

)
is a

feasible solution for the linear problem associated to the coalition N. Thus, the
following inequality holds:

V (N) ≥ γ′(c1ŷ1 + c2ŷ2 + ...+ cpŷp + c0t̂).

Consequently,∑
S∈B γ(S)V (S) ≤ V (N),

which means that the game (N,V ) is balanced. �

Shapley (1967) proved that a balanced game has a non-empty core. Based
on this, we can state the following corollary:

Corollary 1. The core of the game (N,V ) is nonempty.

Furthermore, we will find the elements of the core for the game (N,V ).

For this purpose, we denote e = (1, 0, .., 0, 0)T ∈ Rm+1, c′ =

(
c
c0

)
∈ Rp+1, y′ =

(
y
t

)
∈ Rp+1, b′(S) =

(
d0
−b(S)

)
∈ Rm+1 and A′(S)

=

(
dT d0
A −b(S)

)
∈ R(m+1)×(p+1).

By using the above notations, the primal problem (4) can be written as

P (S) : Max (c′)T y′

subject to A′(S)y′ ≤ e
y′ ≥ 0.

The dual to P (S) is the problem D(S), where

D(S) : Min ω1

subject to (A′(S))Tω ≥ c′
ωi ≥ 0 for each i ∈ {1, ...,m+ 1}.

Explicitly, for each S ( N, D(S) is

D(S) : Min ω1

subject to dω1 +AT (ω2, ω3, ..., ωm+1)
T ≥ c

d0ω1 − b(S)(ω2, ω3, ..., ωm+1)
T ≥ c0

ωi ≥ 0 for each i ∈ {1, ...,m+ 1}.

Suppose that the grand coalition N is formed. The dual to the problem
P (N) is D(N), where
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P (N) : Max γ(c′)T y′

subject to A′(N)y′ ≤ e
y′ ≥ 0.

D(N) : Min ω1

subject to dω1 +AT (ω2, ω3, ..., ωm+1)
T ≥ γc

d0ω1 − b(N)(ω2, ω3, ..., ωm+1)
T ≥ γc0

ωi ≥ 0 for each i ∈ {1, ...,m+ 1}.

We can formulate the results of our research concerning the form of the
elements of the core of the game (N,V ) in the next theorem.

Theorem 4. Let ω∗ be an optimal solution for the dual problem of the
associated linear programming problem P (S) with S = N. Then the payoff
u = (u1, u2, ..., un) ∈ Rn, ui defined by ui = 1

nω
∗
1, i = 1, 2, ..., n belongs to the

core of the game (N,V ).

Let ω∗ = (ω∗1, ω
∗
2, ..., ω

∗
m+1)

T be a solution of D(N). Then, V (N) = ω∗1
and let u = (u1, u2, ..., un)T be the vector with the components ui = 1

nω
∗
1 for

each i ∈ {1, 2, ..., n}.
We will prove that the payoff vector (u1, u2, ..., un)T is an element of the

core(N,V ).

Firstly, we note that
∑

i∈N ui = v(N). We must show, in addition, that∑
i∈S ui ≥ v(S) for each S ⊂ N.

We also notice that
∑

i∈S ui = |S|
n ω
∗
1.

The vector (
ω∗1
γ ,

ω∗2
γ , ...,

ω∗m+1

γ )T verifies the restrictions of the problem
D(S) :

d0
ω∗1
γ −

b(S)
γ (ω∗2, ..., ω

∗
m+1)

T =

= d0
ω∗1
γ −

b(N)
γ (ω∗2, ..., ω

∗
m+1)

T + b(N)−b(S)
γ (ω∗2, ..., ω

∗
m+1)

T ≥ c0
and

d
ω∗1
γ −

1
γA

T (ω∗2, ..., ω
∗
m+1)

T ≥ c.

Then, V (S) ≤ ω∗1
γ .

Since γ ≥ n, we have that 1
γ ≤

1
n ≤

|S|
n for each S ⊆ N and then,∑

i∈S ui = |S|
n ω
∗
1 ≥ 1

γω
∗
1 ≥ V (S) for each S ⊆ N.

We conclude that (u1, u2, ..., un)T ∈core(N,V ). �
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3. MULTIOBJECTIVE FRACTIONAL LINEAR PROGRAMMING
PRODUCTION GAMES

This section is designed to treating the case of the multiobjective fractio-
nal linear programming problem, where multiple decision makers, with different
interests, are implied in the production process. A method due to Chakraborty
and Gupta (2002) is used in order to obtain an equivalent multiobjective li-
near programming problem and it is shown that a cooperative game with values
of coalitions arises from it. It is also proven that the associated cooperative
game is balanced and a characterization of the Stable outcome of the associate
cooperative game is given.

3.1. THE MODEL

In the following subsections, we will use the following notations. Let
Rp+ = {x ∈ Rp : xj ≥ 0, j = 1, 2, ..., p} be the nonnegative orthant of the
p-dimensional real space R. If A ⊂ Rp, we will denote by MaxA = {a ∈ A :
(A− a) ∩ Rp+ = {0}} the the set of all Pareto maximal points.

We start by describing the multiobjective fractional linear production
programming problem.

Let n be a fixed positive integer, let N = {1, 2, ..., n} be the set of players
(or decision makers) and P(N), the set of nonempty subsets of N being the
set of coalitions formed with players 1, 2, ..., n.

There are m types of resources used for the production of p goods. For
each i ∈ N, the player i is endowed with a vector bi of resources, where bi =
(bi1, b

i
2, ..., b

i
m). Any coalition S will use a total of bk(S) =

∑
i∈S b

i
k units of the

kth resource. We assume that a unit of the jth good (j = 1, ..., p) requires
akj units of the k th resource (k = 1, ...,m). A coalition S ⊆ N uses all its
resources in order to produce a vector (x1, x2, ..., xp) of goods which satisfies
the problem P (S) :

P (S) :

max z1(x) = N1(x)
D1(x)

= (c1)T x+c10
(d1)T x+d10

z2(x) = N2(x)
D2(x)

= (c2)T x+c20
(d2)T x+d20

..................................

zr(x) = Nr(x)
Dr(x)

= (cr)T x+cr0
(dr)T x+dr0

subject to

a11x1 + a12x2 + ...+ a1pxp ≤ b1(S)

a21x1 + a22x2 + ...+ a2pxp ≤ b2(S)

(5) ................................................
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am1x1 + am2x2 + ...+ ampxp ≤ bm(S)
x1, x2, ..., xp ≥ 0,

where ci, di ∈ Rp for each i ∈ {1, 2, ..., r), x ∈ Rp, A = (aij)i=1,m
j=1,p

∈ Rm×p,

b(S) = (b1(S), b2(S), ..., bm(S))T ∈ Rm, FS = {x ∈ Rp : Ax ≤ b(S), x ≥ 0} ⊆
Rp+.

Firstly, we make the following notations:

Let F (x) = ( (c1)T x+c10
(d1)T x+d10

, ..., (cr)
T x+cr0

(dr)T x+dr0
)T . Let us define I(S) = {i : Ni(x) ≥

0 for some x ∈ FS } and IC(S) = {i : Ni(x) ≤ 0 for every x ∈ FS } for each
S ⊆ N.

Suppose that for each S ⊆ N, FS is nonempty and bounded.
We will assume further that IC(S) = ∅ for each S ⊆ N .
In order to obtain an equivalent multiobjective linear programming pro-

blem, we shall use the method of Chakraborty and Gupta (2002).
Let t = ∩i∈{1,2,...,r} 1

dix+di0
⇔ 1

dix+di0
≥ t for each i ∈ {1, 2, ..., r} and

y = tx.
The multiobjective linear fractional programming problem (5) is equiva-

lent to the multiobjective linear programming problem (6):

Max {tNi(
y
t ) if i ∈ {1, 2, ..., r}

(6) tDi(
y
t ) ≤ 1 if i ∈ {1, 2, ..., r}

A(yt )− b(S) ≤ 0
t ≥ 0, y ≥ 0.

The problem (6) is equivalent to the problem (7)

Max (ci)
T y + ci0t, i ∈ {1, 2, ..., r}

(di)
T y + di0t ≤ 1, i ∈ {1, 2, ..., r}

(7) A(y)− tb(S) ≤ 0
t ≥ 0, y ≥ 0.

Chakraborty and Gupta (2002) proved that the constraint set of (6) is a
non-empty convex set having feasible points.

We will use the following notations:

TS = {
(
y
t

)
:

(
y
t

)
verifies the restriction of the problem (7)};

T̂S = {(z ∈ Rr : z = F

((
y
t

))
,

(
y
t

)
∈ TS}

V (S) = (MaxT̂S − Rr+) ∩ Rr+, where

MaxT̂S is the set of all Pareto optimal values to the multiobjective linear
production programming problem.
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By following Nishizaki and Sakawa (2001), we note that if a feasible solu-
tion area TS to the multiobjective linear production programming problem (6)
is a nonempty bounded set, the set TS is a bounded convex polyhedron and
the characteristic set V (S) is a comprehensive and compact subset of Rr. We
recall that the comprehensiveness of V (S) means that if u ≤ v for v ∈ V (S)
and u ∈ Rr, then, u ∈ V (S).

3.2. THE ASSOCIATED COOPERATIVE GAME

In this subsection, we construct an associated multi-commodity game
(N,V ) and we prove that the game is balanced. We note that it is not su-
peradditive. We recall that a game G = (N,V ) is called superadditive if
V (S ∪ T ) ≥ V (S) + V (T ) for any two disjoint coalitions S and T .

We also give a characterization of its stable outcome.

Let N = {1, 2, ..., n} and V : P (N)→ Rr be defined by

V (S) = (MaxT̂S − Rr+) ∩ Rr+ for each S ⊂ N and

V (N) = (MaxγT̂N − Rr+) ∩ Rr+,

where γ > max(γ∗, n) and γ∗ = max
∑

S∈B γ(S), B being any balanced coali-
tion of N.

The set of imputations of the game is defined by the set of payoff vec-
tors satisfying the conditions of individual and collective rationality and it is
expressed in the following way:

I(N,V ) = {u ∈ Rr×n+ : uN ∈MaxV (N), ui /∈ V ({i})\MaxV ({i}), ∀i ∈ N},
where u is the payoff vector u = (u1, u2, ..., un) ∈ Rr×n+ , ui = (u1i , u

2
i , ..., u

r
i )
T

for each i ∈ {1, 2, ..., n} and uN =
∑

i∈N ui.

The stable outcome is defined as

SO(N,V ) = {u ∈ Rr×n+ : uS /∈ V (S)\MaxV (S), ∀S ⊂ N},
where uS =

∑
i∈S ui.

Note that SO(N,V ) is the set of all feasible payoff vectors which no
coalition S can improve on.

Furthermore, we prove the balancedness of the game (N,V ).

Theorem 5. The game (N,V ) is balanced.

Proof. Let B be a balanced collection of N. Firstly, we know that∑
S⊂N γ(S)bk(S) =

∑
S⊂N

∑
i∈S γ(S)bik(S) =

∑
i∈N{

∑
S⊂N,S3i γ(S)}bik =

=
∑

i∈N b
i
k = bk(N) for each k ∈ {1, 2, ...,m}.
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Let z(

(
y(S)
t(S)

)
) =


z1(((y(S)T , t(S))T )
z2(((y(S)T , t(S))T )

...
zr(((y(S)T , t(S))T )

 ∈ V (S) and with this no-

tation, we obtain

∑
S∈B

γ(S)
γ′ z(

(
y(S)
t(S)

)
) =

∑
S∈B

γ(S)
γ′


(c1)

T y(S) + t(S)c10
(c2)

T y(S) + t(S)c20
...

(cr)
T y(S) + t(S)cr0

=


t̂N1(

ŷ

t̂
)

t̂N2(
ŷ

t̂
)

...

t̂Nr(
ŷ

t̂
)


= z(

(
ŷ

t̂

)
),

where γ
′

=
∑

S∈B γ(S), ŷ :=
∑

S∈B
γ(S)
γ′ y(S) and t̂ =

∑
S∈B

γ(S)
γ′ t(S), ŷ ∈ Rp+,

t̂ ∈ R+.

Assume that

(
y(S)
t(S)

)
is a feasible solution of Problem 7.

Since Ay(S) ≤ t(S)b(S) for each S ∈ B and γ(S)
γ′ ≥ 0, it follows that

Aγ(S)
γ′ y(s) ≤ t(S)γ(S)γ′ b(S).

By adding, we obtain

A(
∑

S∈B
γ(S)
γ′ y(s)) ≤ (

∑
S∈B

γ(S)
γ′ b(S))t(S),

and then,

A(
∑

S∈B
γ(S)
γ′ y(s)) ≤ b(N)(

∑
S∈B

γ(S)
γ′ t(S)).

Therefore, Aŷ ≤ b(N)t̂, that is

(
ŷ

t̂

)
verifies Ay − tb(N) ≤ 0.

Since (di)
T y(S)+di0t(S) ≤ 1 for each S ∈ B, i ∈ {1, 2, ..., r} and γ(S)

γ′ ≥ 0,
it follows that

(di)
T
∑

S∈B
γ(S)
γ′ y(S) + di0

∑
S∈B

γ(S)
γ′ t(S) ≤ 1 for each i ∈ {1, 2, ..., r}

and then,

(di)
T ŷ + di0t̂ ≤ 1 for each i ∈ {1, 2, ..., r}.

We notice that ŷ ≥ 0 and t̂ ≥ 0 and conclude that

(
ŷ

t̂

)
∈ V (N) and

therefore ∑
S⊂N γ(S)

(
y(S)
t(S)

)
∈ V (N).

Since
∑

S⊂N γ(S)V (S) ⊂ V (N), it follows that the game (N,V ) is balan-
ced. �
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We consider the dual problem to the multiobjective linear problem in
order to find a point belonging to the core. We present here some useful
results concerning the duality of the multiobjective linear programming.

Let the primal and the dual problems be as follows:

max z(x) = Cx
(8) subject to z ∈ Tp = {x : Ax = b, x ∈ Rp+}

and respectively

min g(w) = wb
(9) subject to w ∈ Td = {w : wAu ≤ Cu for no u ∈ Rp+}, )

where z(x) = (z1(x), z2(x), ..., zr(x))T , g(w) = (g1(w), g2(w), ..., gr(w))T , C ∈
Rr×p, A ∈ Rm×p, b ∈ Rm, w ∈ Rr×m.

In order to obtain Theorem 10, we will use the following theorems con-
cerning the duality of multiobjective linear programming (see, for instance,
Nishizaki and Sakawa (1999)).

Theorem 6. If x is a feasible solution for the primal problem (8) and w is
a feasible solution for the dual problem (9), it is not the case that g(w) ≤ z(x).

Theorem 7. Assume that x∗ is a feasible solution of primal problem (8)
and w is a feasible solution of dual problem (9). Also assume that z(x∗) =
g(w∗) is satisfied. Then, x∗ is a Pareto optimal solution of primal problem
(8), and w∗ is a Pareto optimal solution of dual problem (9).

Theorem 8. Considering main problem (8) and dual problem (9), the
following two statements are equivalent.

(1) Each of the problems has a feasible solution.
(2) Each of the problems has a Pareto optimal solution, and there exists

at least a pair of Pareto optimal solutions such that z(x∗) = g(w∗).

Theorem 9. The necessary and sufficient condition for x∗ to be a Pareto
optimal solution of primal problem (8) is that there exists a feasible solution
w∗ of dual problem (9) such that z(x∗) = g(w∗). Then, w∗ itself is a Pareto
optimal solution of dual problem (9).

The next theorem is the main result of this section. It gives an element
of the stable outcome for the game (N,V ).

Theorem 10. Let ω∗ be a Pareto optimal solution for the dual problem
of the associated multiobjective linear programming problem (3) with S = N.
Then the payoff u = (u1·, u2·, ..., un·) ∈ Rr×n, ui· = (ui1, ui2, ..., uir) defined by
uik = 1

nω
∗
k1, i = 1, 2, ..., n and k = 1, 2, ..., r belongs to the stable outcome of

the game (N,V ).
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Proof. Firstly, we will reformulate the multiobjective linear production
programming problems P (S) for each S ⊆ N equivalent to the multiobjective
fractional linear production programming problems and the dual.

For this purpose, we make the following notations.
Let c′ ∈ Rr×(p+1), A′(S) ∈ R(r+m)×(p+1) for each S ⊆ N and b′ ∈ Rr+m

be defined as c′ =


cT1 c10
cT2 c20
... ...
cTr cr0

 , A′(S) =


dT1 d10
dT2 d20
... ...
dTr dr0
A −Imb(S)

 , b′ =

(
1Rr

0Rm

)
,

where
1Rr = (1, 1, ..., 1)T ∈ Rr and 0Rm = (0, 0, ..., 0)T ∈ Rm.
For each S ( N, the problem P (S) is

P (S) : Max c′ ·
(
y
t

)
subject to (y, t) ∈ Tp = {

(
y
t

)
: A′(S)

(
y
t

)
≤ b′,

(
y
t

)
∈ Rp+1

+ }

and

P (N) : Max γc′ ·
(
y
t

)
subject to

(
y
t

)
∈ Tp = {

(
y
t

)
: A′(N)

(
y
t

)
≤ b′,

(
y
t

)
∈ Rp+1

+ }

Let T̂S , T̂N be the feasible areas in the objective space of primal problems
P (S), respectively P (N).

For each S ( N, the duals D(S) and D(N) are

D(S) : Min ωb′

subject to ω ∈ Td = {ω : ωA′(S)u ≤ c′u for no u ∈ Rp+1
+ }

and

D(N): Min ωb′

subject to ω ∈ Td = {ω : ωA′(N)u ≤ γc′u for no u ∈ Rp+1
+ }.

Let ω∗ and

(
y∗

t∗

)
be Pareto optimal solutions for the problems D(N)

and P (N).

We conclude that ω∗b′ = c′ ·
(
y∗

t∗

)
and then, ω∗b′ ∈MaxT̂N . We have

that ∑
i∈N ui,· =

∑
i∈N (ui1, ui2, ..., uir)

T =
∑

i∈N ( 1
nw
∗
11,

1
nw
∗
21, ...,

1
nw
∗
r1)

T =
= (ω∗11, ..., ω

∗
r1)

T ∈MaxV (N).
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For each S ( N,
∑

i∈S ui,· =
|S|
n ω
∗
·,1

ω∗A′(N)u ≤ γc′u for no u ∈ Rp+1
+ implies ω∗

γ A
′(S)u ≤ c′u for no u ∈

Rp+1
+ . It follows that ω∗b′

γ ∈ V (S). Since γ ≥ n, 1
γ ≤

1
n ≤

|S|
n for each S ⊆ N.∑

i∈S ui,· =
|S|
n ω
∗
·,1 ≥ 1

γω
∗
·,1.

Then,
∑

i∈S ui,· /∈ V (S)−MaxV (S)
We conclude that u = (u1·, u2·, ..., un·)

T ∈ SO(N,V ). �

4. EXCHANGE ECONOMIES

In this section, we associate a cooperative game (N,V ) to a finite pure
exchange economy, whose utilities are fractional linear functions, and we study
its properties. The main results of this section state the balancedness of the
cooperative game and give the form of the stable outcome’s elements.

We start by defining the model of the economy which will be the object
of our research.

We consider a pure exchange economy E = (Xi, ei, Ui)i∈N with a finite
number of agents, N = {1, 2, ..., n}. The commodity space is the Euclidean
space Rm. Each agent i ∈ N is characterized by her consumption set Xi = Rm,
her initial endowment ei ∈ Rm+ and her utility function Ui :

∏
i∈N Xi → R. An

allocation is an element xi ∈ Rm+ . An allocation x is defined as a feasible
allocation if

∑
i∈N xi ≤

∑
i∈N ei.

Let p = mn. We will use the following notation: instead of x = (x1, x2, ...,
xn) = (x11, x

2
1, ..., x

m
1 , x

1
2, x

2
2, ..., x

m
2 , ..., x

1
n, x

2
n, ..., x

m
n ) ∈ Rp+, we will use x =

(x1, x2, ..., xm, x1+m, ..., x2m, ..., x(n−1)m+1, ..., xnm), where (x1i , x
2
i , ..., x

m
i ) =

(x(i−1)m+1, ..., xim).
The coefficients aij(S) are defined as follows.

For S ⊂ N, aij(S) =


1 if j = (k − 1)m+ i, i ∈ {1, 2, ...,m− 1} and k ∈ S;
0 if j ∈ (k − 1)m+ i, i ∈ {1, 2, ...,m− 1} and k /∈ S;
1 if j = km and k ∈ S;
0 if j = km and k /∈ S

for each i ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., p}.
For S ⊆ N, the coefficients bi(S) =

∑
j∈S e

i
j represent the initial endow-

ment from the ith good of the coalition S.
For each S ⊆ N, we define the following multiobjective fractional linear

problem P (S), associated to the exchange economy:

max U1(x) = N1(x)
D1(x)

= c11x1+c12x2+...+c1mxm+c10
d11x1+d12x2+...+d1mxm+d10

U2(x) = N2(x)
D2(x)

= c21xm+1+c22xm+2+...+c2mx2m+c20
d21xm+1+d22xm+2+...+d2mxm+2+d20
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...
Un(x) = Nn(x)

Dn(x)
=

cn1x(n−1)m+1+cn2x(n−1)m+2+...+cnmxmn+cn0

dn1x(n−1)m+1+dn2x(n−1)m+2+...+dnmxmn+dn0

subject to
a11(S)x1 + a12(S)x2 + ...+ a1p(S)xp ≤ b1(S)
a21(S)x1 + a22(S)x2 + ...+ a2p(S)xp ≤ b2(S)

(10) ................................................
am1(S)x1 + am2(S)x2 + ...+ amp(S)xp ≤ bm(S)
a11(N)x1 + a12(N)x2 + ...+ a1p(N)xp ≤ b1(N)
a21(N)x1 + a22(N)x2 + ...+ a2p(N)xp ≤ b2(N)
................................................
am1(N)x1 + am2(N)x2 + ...+ amp(N)xp ≤ bm(N)
x1, x2, ..., xp ≥ 0,

where p = mn.
We will use the following notations:

ci = (0, ...0, ci1, ci2, ..., cim, 0, ...0)T ∈ Rp,
di = (0, ...0, di1, di2, ..., dim, 0, ..., 0)T ∈ Rp for each i ∈ {1, 2, ..., n}, x ∈ Rp,

A(S) = (aij(S))i=1,m
j=1,p

∈ Rm×p, b(S) = (b1(S), b2(S), ..., bm(S))T ∈ Rm,

FS = {x ∈ Rp : A(S)x ≤ b(S), A(N)x ≤ b(N), x ≥ 0} ⊆ Rp+.

The multiobjective linear fractional programming problem (10) is equi-
valent to the multiobjective linear programming problem (11):

Max {tNi(
y
t ), i ∈ N}

(11) subject to tDi(
y
t ) ≤ 1 if i ∈ N

A(S)(yt )− b(S) ≤ 0

A(N)(yt )− b(N) ≤ 0

t ∈ R+, y ∈ Rp+,

or, explicitly,

Max (ci)
T y + ci0t, i ∈ {1, ..., n};

subject to (di)
T y + di0t ≤ 1, i ∈ {1, ..., n};

(12) A(S)y − tb(S) ≤ 0

A(N)y − tb(N) ≤ 0

t ∈ R+, y ∈ Rm+ .

We will attach the following cooperative game (N,V ) to the economy E :

N = {1, 2, ..., n} and V : P(N)→ Rn, V (∅) = {0} is defined by



146 Monica Patriche 16

V (S) =

{
(MaxT̂S − Rn+) ∩ Rn+, if S ⊂ N ;

(MaxγT̂N − Rn+) ∩ Rn+, if S = N,

where γ > max(γ∗, n) and γ∗ = max
∑

S∈B γ(S), B being any balanced coali-

tion of N, TS = {
(
y
t

)
:

(
y
t

)
verifies the restrictions of the problem (11)};

T̂S = {z ∈ Rn : z = (tNi(
y
t ))i∈{1,2,...,n},

(
y
t

)
∈ TS}.

Our aim is to obtain characterizations of elements of the stable outcome
of the game (N,V ) associated to a pure finite exchange economy with fractional
linear utility functions. For this, we state a preliminary result concerning the
game (N,V ).

Theorem 11. The game (N,V ) is balanced.

Proof. Let B be a balanced collection of N. First, we know that∑
S⊂N γ(S)bk(S) =

∑
S⊂N

∑
i∈S γ(S)bik(S) =

∑
i∈N{

∑
S⊂N,S�i γ(S)}bik =

=
∑

i∈N b
i
k = bk(N) for each k ∈ {1, 2, ...,m}.

Let z(

(
y(S)
t(S)

)
) =


z1(((y(S)T , t(S))T )
z2(((y(S)T , t(S))T )

...
zn(((y(S)T , t(S))T )

 ∈ V (S) and then,

∑
S∈B

γ(S)
γ′ z(

(
y(S)
t(S)

)
) =

∑
S∈B

γ(S)
γ′


(c1)

T y(S) + t(S)c10
(c2)

T y(S) + t(S)c20
...

(cn)T y(S) + t(S)cn0

 =

=


t̂N1(

ŷ

t̂
)

t̂N2(
ŷ

t̂
)

...

t̂Nn( ŷ
t̂
)

 = z(

(
ŷ

t̂

)
),

where γ
′

=
∑

S∈B γ(S), ŷ :=
∑

S∈B
γ(S)
γ′ y(S) and t̂ =

∑
S∈B

γ(S)
γ′ t(S), ŷ ∈ Rp+,

t̂ ∈ R+.

Assume that

(
y(S)
t(S)

)
is a feasible solution of Problem (11).

We have that

A(S)y(S) ≤ t(S)b(S)

and

A(N)y(S) ≤ t(S)b(N) for each S ∈ B, γ(S)
γ′ ≥ 0.
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Consequently,

γ(S)

γ′
A(N)y(s) ≤ t(S)

γ(S)

γ′
b(N).

By adding, we obtain∑
S∈B A(N)γ(S)γ′ y(s)) ≤

∑
S∈B

γ(S)
γ′ A(N)y(s) ≤

∑
S∈B

γ(S)
γ′ t(S)b(N) ≤

≤ b(N)
∑

S∈B t(S)γ(S)γ′ ,

and then,

A(N)(
∑
S∈B

γ(S)

γ′
y(s)) ≤ b(N)(

∑
S∈B

γ(S)

γ′
t(S)).

Therefore,

A(N)ŷ ≤ b(N)t̂,

that is,

(
ŷ

t̂

)
verifies A(N)y − tb(N) ≤ 0.

Since (di)
T y(S) + di0t(S) ≤ 1 for each S ∈ B and i ∈ {1, 2, ..., n} and

also γ(S)
γ′ ≥ 0, it follows that

(di)
T
∑

S∈B
γ(S)
γ′ y(S) + di0

∑
S∈B

γ(S)
γ′ t(S) ≤ 1 for each S ∈ B and i ∈

{1, 2, ..., n}
and then, (di)

T ŷ + di0t̂ ≤ 1 for each i ∈ {1, 2, ..., n}.

We notice that ŷ ≥ 0, t̂ ≥ 0 and conclude that

(
ŷ

t̂

)
∈ V (N) and

therefore, ∑
S⊂N

γ(S)

(
y(S)
t(S)

)
∈ V (N).

We obtain that
∑

S⊂N γ(S)V (S) ⊂ V (N), resulting that the game is
balanced. �

We consider the dual problem to the multiobjective linear problem in
order to find a point belonging to the stable outcome

SO(N,V ) = {x ∈ Rn×n+ : xS /∈ V (S)\MaxV (S), ∀S ⊂ N}.
The next theorem is the main result of this section and it gives the form

of the elements of the stable outcome.

Theorem 12. Let ω∗ be a Pareto optimal solution for the dual problem
of the associated multiobjective linear programming problem (12) with S = N.
Then the payoff u = (u1·, u2·, ..., un·) ∈ Rn×n, ui· = (ui1, ui2, ..., uin) defined by
uik = 1

nω
∗
k1, i = 1, 2, ..., n and k = 1, 2, ..., n belongs to the stable outcome of

the game (N,V ).
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Proof. Firstly, we formulate the multiobjective linear production program-
ming problems P (S) for each S ⊆ N equivalent to the multiobjective fractional
linear production programming problems and the dual.

Let p = nm, c′ ∈ Rn×(p+1), A′(S) ∈ R(n+2m)×(p+1) and b′ ∈ Rn+2m be de-

fined as c′ =


cT1 c10
cT2 c20
... ...
cTn cn0

 , A′(S) =



dT1 d10
dT2 d20
... ...
dTn dn0
A(S) −Imb(S)
A(S) −Imb(N)

 , b′ =

 1Rn

0Rm

0Rm

 ,

where 1Rn = (1, 1, ..., 1)T ∈ Rn and 0Rm = (0, 0, ..., 0)T ∈ Rm.
For each S ( N, the problem P (S) is

P (S) : Max c′ ·
(
y
t

)
subject to

(
y
t

)
∈ Tp = {

(
y
t

)
: A′(S)

(
y
t

)
≤ b′,

(
y
t

)
∈ Rp+1

+ }.

Suppose that the grand coalition N is formed. Then, the multiobjective
linear production programming problem is represented as problem P (S) with
S = N.

P (N) : Max γc′ ·
(
y
t

)
subject to

(
y
t

)
∈ Tp={

(
y
t

)
: A′(N)

(
y
t

)
≤ b′,

(
y
t

)
∈ Rp+1

+ }.

Let T̂S , T̂N be the feasible areas in the objective space of primal problems
P (S), resp. P (N).

For each S ( N, the corresponding dual D(S) to the mathematical pro-
gramming problem P (S) is expressed as:

D(S) : Min ωb′

subject to ω ∈ Td = {ω : ωA′(S)u ≤ c′u for no u ∈ Rp+1
+ }

and the dual to P (N) is D(N).

D(N) : Min ωb′

subject to ω ∈ Td = {ω : ωA′(N)u ≤ γc′u for no u ∈ Rp+1
+ }.

Thus, we can obtain a point in the stable outcome of the game (N,V ) by
solving the above linear programming problem.

Let ω∗ and (y∗, t∗) be Pareto optimal solutions for the problems D(N)
and P (N).
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Theorem 9 guarantees that ω∗b′ = γc′ ·
(

y∗

t∗

)
and then, ω∗b′ ∈MaxT̂N .

We have that∑
i∈N ui,· =

∑
i∈N (ui1, ui2, ..., uin)T =

∑
i∈N ( 1

nw
∗
11,

1
nw
∗
21, ...,

1
nw
∗
n1)

T =

= (ω∗11, ..., ω
∗
n1)

T ∈MaxV (N).

Note that for each S ( N,∑
i∈S

ui,· =
|S|
n
ω∗·,1

We also obtain that ω∗A′(N)u ≤ γc′u for no u ∈ Rp+1
+ implies that

ω∗

γ A
′(S)u ≤ c′u for no u ∈ Rp+1

+ .

It follows that ω∗b′

γ ∈ V (S).

Since γ ≥ n, then, 1
γ ≤

1
n ≤

|S|
n for each S ⊆ N.

Furthermore, we find a lower limit for the sum of ui,·, as it can be seen:∑
i∈S ui,· =

|S|
n ω
∗
·,1 ≥ 1

γω
∗
·,1 and then,∑

i∈S ui,· /∈ V (S)−MaxV (S)

We conclude that u = (u1·, u2·, ..., un·) ∈ SO(N,V ). �

5. CONCLUDING REMARKS

Our paper focused on the examination of the properties of the cooperative
games associated to some new types of production games. The last games were
introduced in order to model the situations when the agents want to maximize
their average income on unit time. For this purpose, it was needed to use
fractional linear functions. Owen’s model was generalized in two directions,
by defining the fractional linear programming production games for the single-
objective and multiobjective cases. The methods and the approach used for
the description of the elements of the core of the associated cooperative game
proved to be suitable for the study of the cooperative game associated to a
finite exchange economy with fractional linear utilities. Open problems may
refer to new approaches meant to reduce a multiobjective fractional linear
programming problem to a multiobjective linear programming one. Or they
may refer to the fuzzy extensions of the obtained results and to the use of the
fuzzy methods for the mentioned problems. Another significant way to develop
further this topic of research is enrichment of the notions depicting the image
of the problems coming from the real world.
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