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We investigate the value distribution of difference polynomials
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where s(z) and the coefficients ax(z)(A € I) are small functions relative of f,
I={X:x=(x1,-.--,Ixm)|lrn,, € N} is a finite index set, ¢,,v = 1,...,m are
distinct complex numbers, and A is a difference operator.
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1. INTRODUCTION

We use standard notations from Nevanlinna theory. We denote by o(f)
the order of growth of the meromorphic function f on the complex plane C,
and also use the notation ¢(f) to denote the hyper-order of f,

logT loglogT
U(f):limsupm, s(f) :]jmsupw
r—00 log r—00 logr

where T'(r, f) is the characteristic function of f.
A well known result of Hayman [2] is stated that:

THEOREM A. Let f be a transcendental meromorphic function and a #
0,b be finite complex constants. Then f" + af’ — b has infinitely many zeros
forn > 5. If f is transcendental entire, this holds for n > 3, resp. n > 2, if
b=0.

Recently, Halburd-Korhonen [3,4], and Chiang-Feng [1] have established
the Nevanlinna theory for difference operators. As an application of this theory,
Liu and Lain [6,7] gave the following difference counterpart of Theorem A.
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THEOREM B. Let f be a transcendental meromorphic function of finite
order p(f) = p, not of period ¢, a be a non-zero complex constant. Then the
difference polynomial f™(z)+a(f(z+c)— f(z))—s(z) has infinitely many zeros
in the complex plane, provided n > 8, where s(z) is small function respective
of f. If f is transcendental entire function with finite order and s(z) is entire
function which is small function of f, then statement holds with n > 3.

A number of results on the value distribution of some difference polyno-
mials were given by Qi-Ding-Yuan [10], Zheng-Chen [11], Liu-Yi [8]. However,
these results have been still restricted to the case of meromorphic functions
f having finite order, and hence, hyper-order ¢(f) = 0. The purpose of this
paper is to examine this problem in the case where meromorphic function f
having hyper-order ¢(f) < 1, and in the general case of difference polynomials.

For each meromorphic function f on complex plane, by a difference pro-
duct, we mean a difference monomial and its shifts, that is, an expression of

type
m
[1/G+e)
v=1

where c1, ..., ¢y are distinct complex numbers and [4, ..., [, are natural num-
bers. The difference polynomial of f is given by

Pz, f) =Y an(x) [[ £z + ),
v=1

el

where the coefficients ay(z)(\ € I) are small functions with respect to f and

I={XA:X=(1,.--,1xm)|ln, € N} is a finite index set and ¢,,v =1,...,m

are distinct complex numbers. We denote £, = maxyesly, and £ =>""" | (,,.
Our results are stated as follows:

THEOREM 1. Let f be a transcendental meromorphic function with hyper-
order ¢ := ¢(f) < 1 and s(z) be a small function with respect to f. Assume
that n > £+ m + 3 and P(z, f) + s(z) # 0. Then the polynomial difference
f™"(z) — P(z, f) — s(z) has infinitely many zeros.

If in Theorem 1 we take £ = m and P(z, f) = > ", a;(2) f(z + ¢;), then
we obtain the following corollary.

COROLLARY 1. Let f be a transcendental meromorphic function with
hyper-order <(f) = ¢ < 1, s(2), a;(z), j = 1,...,m be small functions with
respect to f, and c;j, j = 1,...,m be complex distinct constants. Assume that
n>2m+3 and 1, aj(z)f(z+cj)+5(2) # 0. Then the polynomial difference
f(z) = 200 aj(2) f(2 + ¢j) — s(2) has infinitely many zeros.
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1 b
If in Corollary 1 we take m =1, a1(z) = —,a # 0,s(2) = ——,a,b € C,
a a
we get the following corollary.

COROLLARY 2. Let f be a transcendental meromorphic function with
hyper-order <(f) = ¢ < 1, and a,c be non-zero complex constants. Then for
any integer n > 5,

Ui(2) = f(z+ ) — af"(2)

assume all finite b € C infinitely often.

For each meromorphic function f, then A(f) = f(z+¢)—f(2) (c € C\{0})
is called a difference of f(z). Set A™f = A(A™~1f), for each integer m > 2.
By an easy computation, we have
m - if™m .
A () = 3 (1) ( >f(z T (m—i)o).
i=0
Now we consider the difference polynomial
Q(z, 1) = an(z) [J(A" )P,
Ael v=1
where the coefficients ay(z)(\ € I) are small functions with respect to f and
I={X:X=(Ixi,---,lxm)llxy € N} is a finite index set. We also denote
0, =maxyerly, and £ =370 0.

THEOREM 2. Let f be a transcendental meromorphic function with hyper-
order <(f) =¢ < 1 and s(z) be a small function with respect to f. Assume that
n>>" " b(v+1)+m+4 and Q(z, f) + s(z) # 0. Then the polynomial
difference f"(z) — Q(z, f) — s(z) has infinitely many zeros.

2. SOME LEMMAS

In order to prove the two theorems, we need the following lemmas, due
to Halburd-Korhonen-Tohge [4].

LEMMA 2.1. Let T : [0,+00) — [0,4+00) be a non-decreasing continuous
function, and let s € (0,+00). If the hyper-order of T is strictly less than one,
i.e.,

loglog T
hmsupw =¢<1,
r—00 logr
then ()
r
T(r+s)=T(r)+ o(rl_g_e),

where € > 0 and r — oo outside of a set of finite logarithmic measure.
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LEMMA 2.2. Let f be a non-constant meromorphic function, € > 0 and
ceC.
If f is of finite order, then there exists a set E = E(f,¢) satisfying
fEﬁ[l,r) dt/t

limsup ———— < ¢
r—00 log

(i.e. of logarithmic density at most ), such that

m(r, f(]f(‘:)c)) = (2" 1(r, )

for all r outside the set E.
If(f) =< <1 and e > 0, then
[+ _ T f)
(T ) =)

for all v outside of a set of finite logarithmic measure.

LEMMA 2.3. Let f be a non-constant meromorphic function with <(f) =
¢ <1, and c € C\ {0}. Then

N(r,f(z4¢)) < N(r, f) + S(r, f),
T(r, f(z+¢) <T(r, f) +S(r, f).
Proof. We have

loglog N loglog T
5 = limsup 288N S) oo 10810870 /)
r—00 10g r r—00 10g r

=<(f) <1

Hence, by Lemma 2.1, we get

N+ el £) = NG, £) + of ey
< NG 1) o D))

=N(r, f)+ S(r, f).
Therefore, by Lemma 2.2, we have
T(r, f(z+c)) =m(r, f(z+¢)) + N(r, f(z + ¢))
=m(r fz+c) z r,f(z+c
= mir Lo 1) + NG (4 0)
fz+¢)
f(z)
fz+¢)
- f(z)

)+ m(r, f) + N(r+|c, f)

)+ m(r, f) + N(r, f) + 5(r, )
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=T(r,f)+S(r, [)
We have completed the proof of Lemma 2.3. [

From the basic properties of characteristic function, we get easily that:

LEMMA 2.4. Let fi,..., fn be distinct meromorphic functions. Then
Za,\fl“--- by <Z£Tr fi) +ZO (r,ay))
el el
where I = {\ : X\ = (l/\,l,-n,l)\,n)‘)\l,j € Nyj =1,...,n} is a finite indez,
U =maxyerlyj, 7 =1,...,n and ax(X € I) are meromorphic functions.

3. PROOF OF THEOREMS

Proof of Theorem 1. Take ¢(z) = f"(2) — P(z, f) — s(2).
If ¢(z) = ¢, where ¢ is a constant, then f"(z) = P(z, f) + s(z) + ¢. Then by
Lemma 2.3 and Lemma 2.4, we have

nT'(r, f) <LT(r, f)+ S(r, f).

This is in contradiction with n > ¢+ m + 3. Hence, ¢(z) is nonconstant.
It is easy to see that

(f"(2)) _ ()

i) o) 7

Indeed, otherwise,
(") _¢'(2) _
iz ez)

then ¢(z) = bf™(z). This implies that (b —1)f™(z) = P(z, f) + s(2).

—If b =1, then P(z, f) + s(z) = 0. This is in contradiction with hypothesis.
—If b # 1, then nT'(r, f) < £T(r,f) + S(r, f). This is in contradiction with
n>0+m+3.

We have
. 23W@n+ﬂm—wwﬁ+WW
—f"(2) = (f"(2)  (2)
m(z) o(z)
Then
¢'(2)

CE PG )+ 5(a)] - [P ) + 52
(3.1)  nT(r,f)=T(r
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+ 80 SENP G ) + 5] = [P ) + )
d_(PEHHsEY, (R H6)
G TR ) ) T G T et
)96, o
HNCTRG) e )
Set o1 = 5 N P(2. )+ 5(2)] = [P £) 4 5(2)-

It is clear that
(3.2) wansMnQ+Nmﬁ+NmP@n+am+smﬂ.

(note that Pole(¢) C Pole(f)).
Next, we prove that:

(f"(z)  ¢'(2)
3.3 N —
B3 NeTEey g

< N )+ N )+ NP f) +5(:) + S0 ).
It is clear that all pole of (fn)/ — ﬂ/ are simple and Pole((fz)/ — Z/) -
Zero(f)UPole(f)U Zero(¢). From this fact, for (3.3), it suffices to prove that:
If 2y is a pole of f but it is not a pole of P(z, f) + s(z), then (j;n) - (Z is

holomorphic at z.

¢(2)

(2 — 20)F
a holomorphic function and ¢(zp) # 0 and k > 1.

We get easily that
f(2) (2= 20)(¢") — nke"

Indeed, we write f(z) = in a neighborhood of zy, where ¢(z) is

. fr(2) (z — 20)9™
b= " — (P(2, f) + 5(2))(z = 20)""
Hence == ZO)nk

¢ (z—20)l¢" — g(2)(z — 20)"™) — nk[p" — g(2)(2 — 20)™"]
¢ (z = 20)[¢" = g(2) (2 — 20)""] '
This implies that
(f"(2))  ¢(z) _ (z—20)(¢") —nke"
Mz o(2) (2 — z0)"
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(z = 20)[¢" — 9(2)(z — 20)"*] — nk[p" — g(2)(z — 20)™]
(z — 20)[¢" — g(2)(z — z0)"F]
1 0(2)
z—z0 ©"(p" —g(2)(z — 20)"F)’

where
0(2) = [(z — 20)(¢") = nk@"][0" = g(2)(z — 20)""]
—[(z = 20)[¢" = 9(2)(z = 20)™)' = nklp" — g(2)(z — 20)"* )"
On the other hand,
0(2) _ —nke?(z0) + nke?"(20)
™ (" = 9(2)(z — 20)™) lz=20 > (20)

(f"(z)" _ ()

frz) o olz)
Combining (3.1), (3.2) and (3.3), we have

nT'(r, f) <m(r, P(z, ) + 5(2)) + N(r, P(z, f) + s(2))
,;) + N(r, f) + N(r, ;Lc) + N(r, P(z, f) +s(2)) + S(r, f)
= T(r, P(z, f)) + 2N(r, ;) N ) + N(r, })
(3.4) + N(r,P(z, f) + s(2)) + S(r, ).
From the definition of P(z, f) and Lemma 2.3, we have

=0.

Therefore, zg is not a pole of

+2N(r

N(r, Pz, f) +5(2) < D N(r, f(z + )
v=1

Ms

<D T+ f(z+ )+ S(r, f)
v=1
(3.5) <mT(r, )+ 5(r, f).
By Lemma 2.3 and Lemma 2.4, we have
(3.6) T(r,P(z, f)) <LT(r,f)+ S(r, f).

From (3.4), (3.5), and (3.6), we have
nT(r, f) < (£+m +2)T(r, f) + 2N(r, ;) + S0 f).

On the other hand n > ¢ + m + 3. Hence, ¢ has infinitely many zeros. This
completes the proof of Theorem 1. [
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Proof of Theorem 2. By an argument similar to the proof of Theorem 1,
we obtain that

nT(r, f) <m(r,Q(z, f) + s(2)) + N(r,Q(z, f) + s(2))
+2N(r, qlb) + N(r, f) + N(r, ;,) + N(r,Q(z, f) +s(2)) + S(r, f)
1

=T(r,Q(z, f)) +2N(r, ;) + N(r, f) 4+ N(r, ?)

(3.7) + N(r,Q(z, f) +5(2)) + S(r, f).
Note that

v

A"f(2) =D (-1)'Cof(z + (v = i)o),
i=0
forallv=0,...,m
By Lemma 2.3, we have

T(r,AVf(z r, (v —1)c))

=0
N(r, YC f(z+ (v —i)e))
. e Ol}% cw=io)
+N(r, Y (-1)'CLf(z+ (v —i)e)
i=0
<> LEELZ09) 4 gy
=0
+ N, (1)'CLf(z+ (v — i)c))
i=0
(3.8) <(w+1T(r,f)+ S(r f).
From the definition of Q(z, f) and by Lemma 2.3, we have
N(r,Q(z, f) +s(2)) < Y N(r, f(z + (m —i)c))

=0

(3.9) ( + DT, f) +5(r, ).

IN
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By (3.8) and Lemma 2.3 and Lemma 2.4, we have

(3.10)

T(Ta Q(Z7 f)) S ZZVT(h Ayf) + S(T, f)

1

<
Il

L, (v+1)T(r, f) + S(r, f).

NE

N
Il
—

By (3.7) and (3.10), we have

WT(r, £) < 13 by +1) +m+ 3T, ) + 2N(r, ;) + S0 f).

v=1

On the other hand, n > """ £, (v + 1) +m + 4. Hence, f™ — Q(z, f) — s(z)
has infinitely zeros. We have completed the proof of Theorem 2. [
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