ON THE VALUE DISTRIBUTION OF DIFFERENCE POLYNOMIALS

TRAN VAN TAN and NGUYEN VAN THIN

Communicated by Vasile Brînzănescu

We investigate the value distribution of difference polynomials

\[f^n - \sum_{\lambda \in I} a_{\lambda}(z) \prod_{\nu=1}^{m} f(z + c_{\nu})^{l_{\lambda,\nu}} - s(z) \]

and

\[f^n - \sum_{\lambda \in I} a_{\lambda}(z) \prod_{\nu=1}^{m} (\Delta^{\nu} f)^{l_{\lambda,\nu}} - s(z), \]

where \(s(z) \) and the coefficients \(a_{\lambda}(z) (\lambda \in I) \) are small functions relative of \(f \), \(I = \{ \lambda : \lambda = (l_{\lambda,1}, \ldots, l_{\lambda,m}) | l_{\lambda,\nu} \in \mathbb{N} \} \) is a finite index set, \(c_{\nu}, \nu = 1, \ldots, m \) are distinct complex numbers, and \(\Delta \) is a difference operator.

AMS 2010 Subject Classification: Primary 30D35.

Key words: meromorphic function, polynomial difference, value distribution.

1. INTRODUCTION

We use standard notations from Nevanlinna theory. We denote by \(\sigma(f) \) the order of growth of the meromorphic function \(f \) on the complex plane \(\mathbb{C} \), and also use the notation \(\varsigma(f) \) to denote the hyper-order of \(f \),

\[\sigma(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}, \quad \varsigma(f) = \limsup_{r \to \infty} \frac{\log \log T(r, f)}{\log r}, \]

where \(T(r, f) \) is the characteristic function of \(f \).

A well known result of Hayman [2] is stated that:

Theorem A. Let \(f \) be a transcendental meromorphic function and \(a \neq 0, b \) be finite complex constants. Then \(f^n + af' - b \) has infinitely many zeros for \(n \geq 5 \). If \(f \) is transcendental entire, this holds for \(n \geq 3 \), resp. \(n \geq 2 \), if \(b = 0 \).

Recently, Halburd-Korhonen [3, 4], and Chiang-Feng [1] have established the Nevanlinna theory for difference operators. As an application of this theory, Liu and Lain [6, 7] gave the following difference counterpart of Theorem A.

MATH. REPORTS 20(70), 2 (2018), 161–170
Theorem B. Let f be a transcendental meromorphic function of finite order $\rho(f) = \rho$, not of period c, a be a non-zero complex constant. Then the difference polynomial $f^n(z) + a(f(z + c) - f(z)) - s(z)$ has infinitely many zeros in the complex plane, provided $n \geq 8$, where $s(z)$ is small function respective of f. If f is transcendental entire function with finite order and $s(z)$ is entire function which is small function of f, then statement holds with $n \geq 3$.

A number of results on the value distribution of some difference polynomials were given by Qi-Ding-Yuan [10], Zheng-Chen [11], Liu-Yi [8]. However, these results have been still restricted to the case of meromorphic functions f having finite order, and hence, hyper-order $\varsigma(f) = 0$. The purpose of this paper is to examine this problem in the case where meromorphic function f having hyper-order $\varsigma(f) < 1$, and in the general case of difference polynomials.

For each meromorphic function f on complex plane, by a difference product, we mean a difference monomial and its shifts, that is, an expression of type

$$\prod_{\nu=1}^{m} f(z + c_{\nu})^{l_{\nu}},$$

where c_1, \ldots, c_m are distinct complex numbers and l_1, \ldots, l_m are natural numbers. The difference polynomial of f is given by

$$P(z, f) = \sum_{\lambda \in I} a_{\lambda}(z) \prod_{\nu=1}^{m} f(z + c_{\nu})^{l_{\lambda,\nu}},$$

where the coefficients $a_{\lambda}(z)(\lambda \in I)$ are small functions with respect to f and $I = \{ \lambda : \lambda = (l_{\lambda,1}, \ldots, l_{\lambda,m})| l_{\lambda,\nu} \in \mathbb{N} \}$ is a finite index set and $c_{\nu}, \nu = 1, \ldots, m$ are distinct complex numbers. We denote $l_{\nu} = \max_{\lambda \in I} l_{\lambda,\nu}$ and $\ell = \sum_{\nu=1}^{m} l_{\nu}$.

Our results are stated as follows:

Theorem 1. Let f be a transcendental meromorphic function with hyper-order $\varsigma := \varsigma(f) < 1$ and $s(z)$ be a small function with respect to f. Assume that $n \geq \ell + m + 3$ and $P(z, f) + s(z) \not\equiv 0$. Then the polynomial difference $f^n(z) - P(z, f) - s(z)$ has infinitely many zeros.

If in Theorem 1 we take $\ell = m$ and $P(z, f) = \sum_{j=1}^{m} a_{j}(z)f(z + c_{j})$, then we obtain the following corollary.

Corollary 1. Let f be a transcendental meromorphic function with hyper-order $\varsigma(f) = \varsigma < 1$, $s(z)$, $a_{j}(z)$, $j = 1, \ldots, m$ be small functions with respect to f, and c_{j}, $j = 1, \ldots, m$ be complex distinct constants. Assume that $n \geq 2m + 3$ and $\sum_{j=1}^{m} a_{j}(z)f(z + c_{j}) + s(z) \not\equiv 0$. Then the polynomial difference $f^n(z) - \sum_{j=1}^{m} a_{j}(z)f(z + c_{j}) - s(z)$ has infinitely many zeros.
If in Corollary 1 we take $m = 1$, $a_1(z) = \frac{1}{a}, a \neq 0$, $s(z) = -\frac{b}{a}, a, b \in \mathbb{C}$, we get the following corollary.

COROLLARY 2. Let f be a transcendental meromorphic function with hyper-order $\varsigma(f) = \varsigma < 1$, and a, c be non-zero complex constants. Then for any integer $n \geq 5$,

$$\Psi_1(z) = f(z + c) - af^n(z)$$

assume all finite $b \in \mathbb{C}$ infinitely often.

For each meromorphic function f, then $\Delta(f) = f(z+c) - f(z)$ ($c \in \mathbb{C}\{0\}$) is called a difference of $f(z)$. Set $\Delta^m f = \Delta(\Delta^{m-1} f)$, for each integer $m \geq 2$. By an easy computation, we have

$$\Delta^m f(z) = \sum_{i=0}^{m} (-1)^i \binom{m}{i} f(z + (m - i)c).$$

Now we consider the difference polynomial

$$Q(z, f) = \sum_{\lambda \in I} a_\lambda(z) \prod_{\nu=1}^{m} (\Delta^\nu f)^{l_{\lambda,\nu}},$$

where the coefficients $a_\lambda(z)(\lambda \in I)$ are small functions with respect to f and $I = \{\lambda : \lambda = (l_{\lambda,1}, \ldots, l_{\lambda,m})|l_{\lambda,\nu} \in \mathbb{N}\}$ is a finite index set. We also denote $\ell_\nu = \max_{\lambda \in I} l_{\lambda,\nu}$ and $\ell = \sum_{\nu=1}^{m} \ell_\nu$.

THEOREM 2. Let f be a transcendental meromorphic function with hyper-order $\varsigma(f) = \varsigma < 1$ and $s(z)$ be a small function with respect to f. Assume that $n \geq \sum_{\nu=1}^{m} \ell_\nu (\nu + 1) + m + 4$ and $Q(z, f) + s(z) \neq 0$. Then the polynomial difference $f^n(z) - Q(z, f) - s(z)$ has infinitely many zeros.

2. SOME LEMMAS

In order to prove the two theorems, we need the following lemmas, due to Halburd-Korhonen-Tohge [4].

LEMMA 2.1. Let $T : [0, +\infty) \to [0, +\infty)$ be a non-decreasing continuous function, and let $s \in (0, +\infty)$. If the hyper-order of T is strictly less than one, i.e.,

$$\limsup_{r \to \infty} \frac{\log \log T(r)}{\log r} = \varsigma < 1,$$

then

$$T(r + s) = T(r) + o(T(r) e^{-\varepsilon}),$$

where $\varepsilon > 0$ and $r \to \infty$ outside of a set of finite logarithmic measure.
Lemma 2.2. Let f be a non-constant meromorphic function, $\varepsilon > 0$ and $c \in \mathbb{C}$.

If f is of finite order, then there exists a set $E = E(f, \varepsilon)$ satisfying
\[
\limsup_{r \to \infty} \frac{\int_{E \cap [1, r)} \frac{dt}{t}}{\log r} \leq \varepsilon
\]
(i.e. of logarithmic density at most ε), such that
\[
m\left(r, \frac{f(z + c)}{f(z)}\right) = O\left(\frac{\log r}{r} T(r, f)\right)
\]
for all r outside the set E.

If $\varsigma(f) = \varsigma < 1$ and $\varepsilon > 0$, then
\[
m\left(r, \frac{f(z + c)}{f(z)}\right) = o\left(\frac{T(r, f)}{r^{1-\varsigma-\varepsilon}}\right)
\]
for all r outside of a set of finite logarithmic measure.

Lemma 2.3. Let f be a non-constant meromorphic function with $\varsigma(f) = \varsigma < 1$, and $c \in \mathbb{C} \setminus \{0\}$. Then
\[
N(r, f(z + c)) \leq N(r, f) + S(r, f),
\]
\[
T(r, f(z + c)) \leq T(r, f) + S(r, f).
\]

Proof. We have
\[
\delta := \limsup_{r \to \infty} \frac{\log \log N(r, f)}{\log r} \leq \limsup_{r \to \infty} \frac{\log \log T(r, f)}{\log r} = \varsigma(f) < 1.
\]
Hence, by Lemma 2.1, we get
\[
N(r + |c|, f) = N(r, f) + o\left(\frac{N(r, f)}{r^{1-\delta-\varepsilon}}\right)
\]
\[
\leq N(r, f) + o\left(\frac{T(r, f)}{r^{1-\varsigma-\varepsilon}}\right)
\]
\[
= N(r, f) + S(r, f).
\]
Therefore, by Lemma 2.2, we have
\[
T(r, f(z + c)) = m(r, f(z + c)) + N(r, f(z + c))
\]
\[
= m(r, \frac{f(z + c)}{f(z)} \cdot f(z)) + N(r, f(z + c))
\]
\[
\leq m(r, \frac{f(z + c)}{f(z)}) + m(r, f) + N(r + |c|, f)
\]
\[
\leq m(r, \frac{f(z + c)}{f(z)}) + m(r, f) + N(r, f) + S(r, f)
\]
We have completed the proof of Lemma 2.3. □

From the basic properties of characteristic function, we get easily that:

Lemma 2.4. Let \(f_1, \ldots, f_n \) be distinct meromorphic functions. Then

\[
T(r, \sum_{\lambda \in I} a_{\lambda} f_1^{l_{\lambda,1}} \cdots f_n^{l_{\lambda,n}}) \leq \sum_{j=1}^{n} \ell_j T(r, f_j) + \sum_{\lambda \in I} O(T(r, a_{\lambda})) ,
\]

where \(I = \{ \lambda : \lambda = (l_{\lambda,1}, \ldots, l_{\lambda,n}) | l_{\lambda,j} \in \mathbb{N}, j = 1, \ldots, n \} \) is a finite index, \(\ell_j = \max_{\lambda \in I} l_{\lambda,j}, j = 1, \ldots, n \) and \(a_{\lambda} (\lambda \in I) \) are meromorphic functions.

3. PROOF OF THEOREMS

Proof of Theorem 1. Take \(\phi(z) = f^n(z) - P(z, f) - s(z) \).

If \(\phi(z) \equiv c \), where \(c \) is a constant, then \(f^n(z) = P(z, f) + s(z) + c \). Then by Lemma 2.3 and Lemma 2.4, we have

\[
nT(r, f) \leq \ell T(r, f) + S(r, f).
\]

This is in contradiction with \(n \geq \ell + m + 3 \). Hence, \(\phi(z) \) is nonconstant.

It is easy to see that

\[
\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)} \neq 0.
\]

Indeed, otherwise,

\[
\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)} \equiv 0,
\]

then \(\phi(z) = bf^n(z) \). This implies that \((b - 1)f^n(z) = P(z, f) + s(z)\).

- If \(b = 1 \), then \(P(z, f) + s(z) \equiv 0 \). This is in contradiction with hypothesis.
- If \(b \neq 1 \), then \(nT(r, f) \leq \ell T(r, f) + S(r, f) \). This is in contradiction with \(n \geq \ell + m + 3 \).

We have

\[
-f^n(z) = \frac{\phi'(z)}{\phi(z)}[P(z, f) + s(z)] - \frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}.
\]

Then

\[
\frac{\phi'(z)}{\phi(z)}[P(z, f) + s(z)] - \frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}(3.1)
\]

\[
nT(r, f) = T(r, -f^n(z)) = T(r, \frac{\phi'(z)}{\phi(z)}[P(z, f) + s(z)] - \frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}).
\]
It is clear that

$$\leq m(r, P(z, f) + s(z))$$

$$+ N(r, \frac{\phi'(z)}{\phi(z)} [P(z, f) + s(z)] - [P(z, f) + s(z)]')$$

$$+ m(r, \frac{\phi'(z)}{\phi(z)} - \frac{(P(z, f) + s(z))'}{P(z, f) + s(z)} + m(r, \frac{f^n(z)'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)})$$

$$+ N(r, \frac{f^n(z)'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}) + S(r, f).$$

Set $\varphi_1 = \frac{\phi'(z)}{\phi(z)} [P(z, f) + s(z)] - [P(z, f) + s(z)]'$. It is clear that

$$(3.2) \quad N(r, \varphi_1) \leq \overline{N}(r, \frac{1}{\varphi_1}) + \overline{N}(r, f) + N(r, P(z, f) + s(z)) + S(r, f).$$

(note that $\text{Pole}(\phi) \subset \text{Pole}(f)$).

Next, we prove that:

$$(3.3) \quad N(r, \frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}) \leq \overline{N}(r, \frac{1}{\varphi_1}) + \overline{N}(r, \frac{1}{f}) + \overline{N}(r, P(z, f) + s(z)) + S(r, f).$$

It is clear that all pole of $\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}$ are simple and $\text{Pole}(\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}) \subset \text{Zero}(f) \cup \text{Pole}(f) \cup \text{Zero}(\phi)$. From this fact, for (3.3), it suffices to prove that:

If z_0 is a pole of f but it is not a pole of $P(z, f) + s(z)$, then $\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}$ is holomorphic at z_0.

Indeed, we write $f(z) = \frac{\varphi(z)}{(z-z_0)^k}$ in a neighborhood of z_0, where $\varphi(z)$ is a holomorphic function and $\varphi(z_0) \neq 0$ and $k \geq 1$.

We get easily that

$$\frac{f^n(z)'}{f^n(z)} = \frac{(z - z_0)(\varphi^n)' - nk\varphi^n}{(z - z_0)\varphi^n}$$

and

$$\phi = \frac{\varphi - (P(z, f) + s(z))(z - z_0)^n}{(z - z_0)^n}.$$

Hence

$$\frac{\phi'}{\phi} = \frac{(z - z_0)[\varphi^n - g(z)(z - z_0)^n]'}{(z - z_0)[\varphi^n - g(z)(z - z_0)^n]}.$$

This implies that

$$\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)} = \frac{(z - z_0)(\varphi^n)' - nk\varphi^n}{(z - z_0)\varphi^n}.$$
On the value distribution of difference polynomials

\[
\frac{(z - z_0)[\varphi^n - g(z)(z - z_0)^nk]' - nk[\varphi^n - g(z)(z - z_0)^nk]}{(z - z_0)[\varphi^n - g(z)(z - z_0)^nk]} = \frac{1}{z - z_0} \cdot \frac{\theta(z)}{\varphi^n(\varphi^n - g(z)(z - z_0)^nk)},
\]

where

\[
\theta(z) = [(z - z_0)(\varphi^n)' - nk\varphi^n][\varphi^n - g(z)(z - z_0)^nk] - [(z - z_0)[\varphi^n - g(z)(z - z_0)^nk]' - nk[\varphi^n - g(z)(z - z_0)^nk]]\varphi^n.
\]

On the other hand,

\[
\left. \frac{\theta(z)}{\varphi^n(\varphi^n - g(z)(z - z_0)^nk)} \right|_{z = z_0} = \frac{-nk\varphi^{2n}(z_0) + nk\varphi^{2n}(z_0)}{\varphi^{2n}(z_0)} = 0.
\]

Therefore, \(z_0\) is not a pole of \(\frac{(f^n(z))'}{f^n(z)} - \frac{\phi'(z)}{\phi(z)}\).

Combining (3.1), (3.2) and (3.3), we have

\[
nT(r, f) \leq m(r, P(z, f) + s(z)) + N(r, P(z, f) + s(z)) + 2N(r, \frac{1}{\phi}) + N(r, \frac{1}{f}) + N(r, P(z, f) + s(z)) + S(r, f)
\]

\[
= T(r, P(z, f)) + 2N(r, \frac{1}{\phi}) + N(r, f) + N(r, \frac{1}{f})
\]

\[
+ N(r, P(z, f) + s(z)) + S(r, f).
\]

From the definition of \(P(z, f)\) and Lemma 2.3, we have

\[
N(r, P(z, f) + s(z)) \leq \sum_{\nu=1}^{m} N(r, f(z + c_\nu)) \leq \sum_{\nu=1}^{m} T(r+, f(z + c_\nu)) + S(r, f)
\]

\[
(3.5)
\]

By Lemma 2.3 and Lemma 2.4, we have

\[
T(r, P(z, f)) \leq \ell T(r, f) + S(r, f).
\]

From (3.4), (3.5), and (3.6), we have

\[
nT(r, f) \leq (\ell + m + 2)T(r, f) + 2N(r, \frac{1}{\phi}) + S(r, f).
\]

On the other hand \(n \geq \ell + m + 3\). Hence, \(\phi\) has infinitely many zeros. This completes the proof of Theorem 1. \(\square\)
Proof of Theorem 2. By an argument similar to the proof of Theorem 1, we obtain that
\[
nT(r, f) \leq m(r, Q(z, f) + s(z)) + N(r, Q(z, f) + s(z))
\]
\[+ 2N(r, \frac{1}{\phi}) + \overline{N}(r, f) + \overline{N}(r, \frac{1}{f}) + \overline{N}(r, Q(z, f) + s(z)) + S(r, f)\]
\[= T(r, Q(z, f)) + 2N(r, \frac{1}{\phi}) + \overline{N}(r, f) + \overline{N}(r, \frac{1}{f}) + \overline{N}(r, Q(z, f) + s(z)) + S(r, f).
\]
(3.7)
\[
\Delta^\nu f(z) = \sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c),
\]
for all \(\nu = 0, \ldots, m\).

By Lemma 2.3, we have
\[
T(r, \Delta^\nu f(z)) = T(r, \sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c))
\]
\[= m(r, \sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c))
\]
\[+ N(r, \sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c))
\]
\[= m(r, \frac{\sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c)}{f}.f)
\]
\[+ N(r, \sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c))
\]
\[\leq \sum_{i=0}^{\nu} m(r, \frac{f(z + (\nu - i)c)}{f}) + m(r, f)
\]
\[+ N(r, \sum_{i=0}^{\nu} (-1)^i C^i_\nu f(z + (\nu - i)c))
\]
\[
\leq (\nu + 1)T(r, f) + S(r, f).
\]
(3.8)

From the definition of \(Q(z, f)\) and by Lemma 2.3, we have
\[
\overline{N}(r, Q(z, f) + s(z)) \leq \sum_{i=0}^{m} \overline{N}(r, f(z + (m - i)c))
\]
\[\leq (m + 1)T(r, f) + S(r, f).
\]
(3.9)
By (3.8) and Lemma 2.3 and Lemma 2.4, we have

$$T(r, Q(z, f)) \leq \sum_{\nu=1}^{m} \ell_{\nu} T(r, \Delta^{\nu} f) + S(r, f)$$

(3.10)

$$\leq \sum_{\nu=1}^{m} \ell_{\nu}(\nu + 1) T(r, f) + S(r, f).$$

By (3.7) and (3.10), we have

$$nT(r, f) \leq \left[\sum_{\nu=1}^{m} \ell_{\nu}(\nu + 1) + m + 3 \right] T(r, f) + 2N(r, \frac{1}{\phi}) + S(r, f).$$

On the other hand, $n \geq \sum_{\nu=1}^{m} \ell_{\nu}(\nu + 1) + m + 4$. Hence, $f^n - Q(z, f) - s(z)$ has infinitely zeros. We have completed the proof of Theorem 2. \(\square\)

Acknowledgments. Tran Van Tan was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.17. He is currently Regular Associate Member of ICTP, Trieste, Italy. Nguyen Van Thin is sponsored by China/Shandong University International Postdoctoral Exchange Program. A part of this work was done during a stay of the authors at Vietnam Institute for Advanced Studies in Mathematics. They would like to thank the institute for its hospitality and support.

REFERENCES

Received 16 March 2016

Hanoi National University of Education,
Department of Mathematics,
136 Xuan Thuy Street,
Cau Giay, Hanoi, Vietnam
tranvantanhn@yahoo.com

Shandong University,
Department of Mathematics,
Jinan, Shandong Province,
P.R. China
thinmath@gmail.com