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The degree-diameter problem is the problem of finding the largest number of
vertices in graphs of given maximum degree and diameter. We use semidirect
products of groups to study bipartite Cayley graphs of small diameter. A bipar-
tite graph is a graph whose vertices can be divided into two disjoint sets such
that no two vertices within the same set are adjacent. A Cayley graph C(G,X)
is specified by a group G and an identity-free generating set X for this group such
that X = X−1. The vertices of C(G,X) are the elements of G and there is an
edge between two vertices u and v if and only if there is a generator a ∈ X such
that v = ua. We present the largest known constructions of bipartite Cayley
graphs of diameters 4, 5 and 6 for an infinite set of degrees.
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1. INTRODUCTION

We consider undirected graphs without loops and multiple edges. The
diameter of a graph is the greatest of the distances between all pairs of vertices
in a graph. The degree of a vertex v is the number of edges incident to v.
The degree-diameter problem is to determine or bound the largest possible
number of vertices (the largest order) in graphs of given maximum degree and
diameter.

Suppose that one wants to set up a network in which each node has just
a limited number of direct connections to other nodes, and one requires that
any two nodes can communicate by a route of limited length. What is the
maximum number of nodes one can have under the two constraints? It is
clear that this question can be translated into the language of graph theory.
The problem is to find the largest possible number of vertices in a graph of
given maximum degree and diameter. Vertices of a graph represent nodes of a
network, while edges represent connections.

Various modifications and a number of subproblems of the main problem
have been studied for decades. Hypergraph version of the degree-diameter
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problem was studied in [4], directed Cayley graphs were considered in [8] and
Cayley graphs of diameter 2 were investigated by Abas [1, 2] and Žd́ımalová
[7]. Cayley graphs are useful, because constructions of Cayley graphs yield
symmetric networks and it is easier to set up such a network and check its
properties.

We study the problem for bipartite Cayley graphs. A bipartite graph
is a graph whose vertices can be divided into two disjoint sets such that no
two vertices within the same set are adjacent. A Cayley graph C(G,X) is
given by a group G and an identity-free generating set X for this group, where
X = X−1. The vertices of C(G,X) are the elements of G and there is an edge
between two vertices u and v in C(G,X) if and only if there is a generator
a ∈ X such that v = ua.

Let BCd,k be the largest number of vertices in a bipartite Cayley graph
of degree d and diameter k. Biggs [3] showed that the number of vertices in
a bipartite graph of degree d ≥ 3 and diameter k cannot exceed the bipartite

Moore bound 2(d−1)k−2
d−2 , hence we have BCd,k ≤ 2(d−1)k−2

d−2 . Improvements of
this bound were given by Pineda-Villavicencio [5], who showed that BCd,k ≤
2(d−1)k−2

d−2 − 4 for any d ≥ 3 and k ≥ 5 with k 6= 6. For bipartite Cayley graphs
of degree 2 or diameter 2 we have exact values of BCd,k. For any d, k ≥ 2 we
have BCd,2 = 2d and BC2,k = 2k.

The largest known bipartite Cayley graphs for large degree d and diameter
k were given in [6], where it is proved that for any d ≥ 6 we have BCd,k ≥
2(k − 1)(d−43 )k−1 if k ≥ 4 is even, and BCd,k ≥ (k − 1)(d−23 )k−1 if k ≥ 7 such

that k ≡ 3 (mod 4). In this paper we improve the bound 2(k − 1)(d−43 )k−1 for
k = 4 and 6, and we also present a construction of bipartite Cayley graphs of
diameter 5 and degree d ≥ 8, where d is a multiple of 4.

2. RESULTS

We construct the largest known bipartite Cayley graphs of diameter 4, 5
and 6. Let H be a group of order m ≥ 2 with identity element e. Let Hk−1 be
the product H ×H × · · · ×H, where H appears k − 1 times, and let α be the
automorphism of Hk−1 such that

α(x1, x2, . . . , xk−1) = (xk−1, x1, x2, . . . , xk−2).

We denote the cyclic group of order p by Zp. We study the semidirect products
G = Hk−1 o Zp, where p is a multiple of k − 1, with multiplication given by

(1) (x, y)(x′, y′) = (xαy(x′), y + y′),
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where αy is the composition of α with itself y times, x, x′ ∈ Hk−1 and y, y′ ∈
Zp. Elements of G will be written in the form (x1, x2, . . . , xk−1; y), where
x1, x2, . . . , xk−1 ∈ H and y ∈ Zp. Semidirect products of this type were used
in [6].

We consider generating sets X, which consist of classes of elements of the
form (x1, x2, . . . , xk−1; y), where xi, 1 ≤ i ≤ k − 1, is either e or g for any
g ∈ H. In [6] bipartite Cayley graphs were found by use of G = Hk−1 o Zp,
where p = k−1 or 2(k−1), and generators with at most one non-identity entry
among the first k−1 coordinates. In this paper, we also use generators with two
non-identity entries among the first k − 1 coordinates; increasing this number
did not yield better graphs. Note that in order to construct large bipartite
Cayley graphs, our limitation is that we can use only the groups Hk−1 o Zp,
where p is even, and generators which have an odd last coordinate.

Let us present our results.

Theorem 2.1. Let d ≥ 8 be a multiple of 4. Then BCd,4 ≥ 3d3

8 .

Proof. We use the group G with multiplication (1) defined above. Let
G = H3 o Z24, ag = (g, e, e; 1), āg′ = (e, e, g′;−1), bh = (h, e, e; 5) and b̄h′ =
(e, h′, e;−5). Let

X = {ag, āg′ , bh, b̄h′ | for any g, g′, h, h′ ∈ H}

be the generating set for G. We have a−1g = āg−1 and b−1h = b̄h−1 , hence
X = X−1. The Cayley graph C(G,X) is of degree d = |X| = 4m where

m ≥ 2, and order |G| = 24m3 = 24(d4)3 = 3d3

8 .

We show that the diameter of C(G,X) is at most 4, which is equivalent
to showing that each element of G can be expressed as a product of at most 4
elements of X. For any x1, x2, x3 ∈ H we have

(x1, x2, x3; 1) = bx1ax3 b̄x2 = (x1, e, e; 5)(x3, e, e; 1)(e, x2, e;−5),

(x1, x2, x3; 3) = ax1ax2ax3 = (x1, e, e; 1)(x2, e, e; 1)(x3, e, e; 1),

(x1, x2, x3; 5) = ax1bx2 āx3 = (x1, e, e; 1)(x2, e, e; 5)(e, e, x3;−1),

(x1, x2, x3; 7) = ax1ax2bx3 = (x1, e, e; 1)(x2, e, e; 1)(x3, e, e; 5),

(x1, x2, x3; 9) = b̄x2 b̄x3 b̄x1 = (e, x2, e;−5)(e, x3, e;−5)(e, x1, e;−5),

(x1, x2, x3; 11) = bx1bx3ax2 = (x1, e, e; 5)(x3, e, e; 5)(x2, e, e; 1).

It is easy to see that if (x1, x2, x3; y) = abc, where a, b, c ∈ X, then

(x−1y (mod 3)+1, x
−1
y+1 (mod 3)+1, x

−1
y+2 (mod 3)+1,−y) = c−1b−1a−1,

hence we can obtain the elements of G with the last coordinate y, where y is
odd and −11 ≤ y ≤ −1, as a product of at most 3 elements of X too. Any
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element (x1, x2, x3; y + 1), where y is odd, can be expressed as

(x1, x2, x3; y + 1) = (x1, x2, x3; y)ae,

which means that the diameter of C(G,X) is at most 4. Note that if xi 6= e,
i = 1, 2, 3, then (x1, x2, x3; y) cannot be obtained as a product of less than 3
elements of X and (x1, x2, x3; y + 1) cannot be obtained as a product of less
than 4 elements of X. Thus the diameter of C(G,X) is exactly 4.

It can be seen that the graph C(G,X) is bipartite, because the last coor-
dinate of any element in the generating set X is odd, which means that no
two different vertices (x1, x2, x3; y) and (x′1, x

′
2, x
′
3; y
′) of C(G,X) are adjacent

if either both y, y′ are even or both y, y′ are odd. Hence we obtain the bound
BCd,4 ≥ 3d3

8 . �

Theorem 2.2. Let d ≥ 8 be a multiple of 4. Then BCd,5 ≥ d4

8 .

Proof. Let G = H4 o Z32 and X = {ag, āg′ , bh, b̄h′ | g, g′, h, h′ ∈ H},
where ag = (g, e, e, e; 1), āg′ = (e, e, e, g′;−1), bh = (e, e, h, h; 5) and b̄h′ =
(e, h′, h′, e;−5). We have a−1g = āg−1 and b−1h = b̄h−1 , therefore X = X−1.
The Cayley graph C(G,X) is of degree d = |X| = 4m, m ≥ 2, and order

|G| = 32m4 = d4

8 . Since the last coordinate of every element in X is odd, the
graph C(G,X) is bipartite.

We show that all elements (x1, x2, x3, x4; y) of G, where y is even, can be
expressed as a product of 4 elements of X. We have

(x1, x2, x3, x4; 0) = ax1x3x
−1
4
bx4x

−1
3
āx2 b̄x3 ,

(x1, x2, x3, x4; 2) = bx4ax2x
−1
1
ax−1

4 x3
b̄x1 ,

(x1, x2, x3, x4; 4) = ax1ax2ax3ax4 ,

(x1, x2, x3, x4; 6) = āx4bx3ax1ax−1
3 x2

,

(x1, x2, x3, x4; 8) = bx3bx−1
3 x4

āx2 āx−1
4 x3x1

,

(x1, x2, x3, x4; 10) = ax1x
−1
2 x−1

4
bx4bx2 āx3 ,

(x1, x2, x3, x4; 12) = ax1x
−1
4
bx4ax3x

−1
2
bx2 ,

(x1, x2, x3, x4; 14) = āx4x
−1
1 x−1

3 x2
bx2bx−1

2 x3
bx1 ,

(x1, x2, x3, x4; 16) = bx3bx1x
−1
2
bx2ax2x

−1
1 x−1

3 x4
.

Elements of G with the last coordinate y, where y ∈ {18, 20, . . . , 30}, can be
obtained by use of inverses of the above generators, and (x1, x2, x3, x4; y+1) =
(x1, x2, x3, x4; y)ae, therefore the diameter of C(G,X) is at most 5. It is easy
to check that elements of G with the last coordinate 13 cannot be obtained as
a product of at most 4 elements of X, hence the diameter of C(G,X) cannot

be less than 5. It follows that BCd,5 ≥ d4

8 . �
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Theorem 2.3. Let d ≥ 8 be a multiple of 4. Then BCd,6 ≥ 25d5

512 .

Proof. Let G = H5oZ50 and X = {ag, āg′ , bh, b̄h′ | for any g, g′, h, h′ ∈ H}
where ag = (g, e, e, e, e; 1), āg′ = (e, e, e, e, g′;−1), bh = (h, e, h, e, e; 9) and
b̄h′ = (e, h′, e;h′, e;−9). The Cayley graph C(G,X) is a bipartite graph of

degree d = 4m where m ≥ 2, and order |G| = 50m5 = 25d5

512 .

Let us express any element (x1, x2, x3, x4, x5; y), where y ∈ {1, 3, . . . , 25},
as a product of 5 elements of X. It can be checked that

(x1, x2, x3, x4, x5; 1) = bx3 āx4 b̄x2ax−1
2 x5

ax−1
3 x1

,

(x1, x2, x3, x4, x5; 3) = ax1 b̄x5x
−1
2
ax2x

−1
5 x3

ax4bx2 ,

(x1, x2, x3, x4, x5; 5) = ax1ax2ax3ax4ax5 ,

(x1, x2, x3, x4, x5; 7) = ax1bx2 āx5 āx−1
2 x4

āx3 ,

(x1, x2, x3, x4, x5; 9) = b̄x4ax−1
4 x2

bx5 āx1x
−1
3 x5

bx−1
5 x3

,

(x1, x2, x3, x4, x5; 11) = b̄x4x
−1
1
ax1x

−1
4 x2

ax3x
−1
5
bx1bx5 ,

(x1, x2, x3, x4, x5; 13) = ax1ax2x
−1
5
ax3ax4bx5 ,

(x1, x2, x3, x4, x5; 15) = b̄x4x
−1
1
b̄x3 b̄x1 b̄x1x

−1
4 x2

ax−1
2 x4x

−1
1 x−1

3 x5
,

(x1, x2, x3, x4, x5; 17) = ax1bx4 āx5x
−1
2 x4

bx4
−1x2

āx3 ,

(x1, x2, x3, x4, x5; 19) = āx5x
−1
2
bx2bx1ax3ax−1

1 x4
,

(x1, x2, x3, x4, x5; 21) = bx3bx2ax4ax−1
2 x5

ax−1
3 x1

,

(x1, x2, x3, x4, x5; 23) = āx5 b̄x3 b̄x4x
−1
1 x3

ax−1
3 x1x

−1
4 x2

b̄x−1
3 x1

,

(x1, x2, x3, x4, x5; 25) = bx3bx5bx4 āx−1
5 x2

āx−1
4 x−1

3 x1
.

We can express the elements of G which have the last coordinate −y with
the help of inverses of the generators which were used to express (x1, x2, x3, x4,
x5; y). Since (x1, x2, x3, x4, x5; y + 1) = (x1, x2, x3, x4, x5; y)ae, the diameter of
C(G,X) is at most 6. Moreover, no element ofG with the last coordinate 22 can
be expressed as a product of at most 4 elements of X, and no element with an
even last coordinate can be obtained as a product of 5 elements of X, therefore
the diameter of C(G,X) cannot be less than 6. Hence BCd,6 ≥ 25d5

512 . �

We can modify construction given in Theorem 2.3 to obtain bipartite
Cayley graphs for every d ≥ 8. Clearly the group G = H5 o Z50 contains
an element, say v, such that the last coordinate of v is odd, where v is not
an involution and v /∈ X. On the other hand, G also contains the involution
u = (e, e, e, e, e; 25). Let us consider new generating sets for G; X1 = X ∪ {u},
X2 = X ∪{v, v−1} and X3 = X ∪{u, v, v−1}. Then the Cayley graph C(G,Xi)
is a bipartite graph of diameter at most 6, degree d = |Xi| = 4m + i where
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m ≥ 2, and order |G| = 50m5 = 25(d−i)5
512 for i = 1, 2, 3. Hence we get the

following corollary:

Corollary 2.4. Let d ≥ 8 be any integer. Then BCd,6 ≥ 25(d−3)5
512 .

Finally, let us note that constructions presented in Theorems 2.1 and 2.2
cannot be modified to obtain Cayley graphs for every d ≥ 8, because the groups
H3oZ24 and H4oZ32 do not contain involutions with an odd last coordinate.
All involutions of Hk−1 o Zp have the last coordinate either 0 or p

2 .
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