# CLASSIFICATION OF PAIR OF NILPOTENT LIE ALGEBRAS BY THEIR SCHUR MULTIPLIERS 

ELAHEH KHAMSEH and SOMAIEH ALIZADEH NIRI

Communicated by Vasile Brînzănescu

Let $L$ be a finite dimensional nilpotent Lie algebra and $N, K$ be ideals of L such that $L=N \oplus K$, with $\operatorname{dim} N=n$ and $\operatorname{dim} K=m$. We denote $t=$ $\frac{1}{2} n(n+2 m-1)-\operatorname{dim} M(L, N)$, where $M(L, N)$ is the Schur multiplier of a pair $(L, N)$. In the present paper, we characterize the pair $(L, N)$ for which $t=0,1, \ldots, 6$. Also we prove $\operatorname{dim} M(L, N) \leq \frac{1}{2}(n-1)(n-2)+1+(n-1) m$, when $N$ is a non-abelian ideal of $L$ and classify the pair $(L, N)$ for $s^{\prime}=0,1,2$, where $s^{\prime}=\frac{1}{2}(n-1)(n-2)+1+(n-1) m-\operatorname{dim} M(L, N)$..
AMS 2010 Subject Classification: 17B30, 17B60, 17B99.
Key words: pair of Lie algebra, Schur multiplier, nilpotent.

## 1. INTRODUCTION AND PRELIMINARIES

Let $L$ be a Lie algebra over a field $\Omega$ with characteristic different from 2 and a free presentation $0 \rightarrow R \rightarrow F \rightarrow L \rightarrow 0$, where $F$ is a free Lie algebra. Then the Schur multiplier of $L$, denoted by $M(L)$, is defined to be the factor Lie algebra $\frac{\left(R \cap F^{2}\right)}{[R, F]}$. Batten (1993) showed that if $L$ is finite dimensional, then its Schur multiplier is isomorphic to $H^{2}(L, F)$, the second cohomology of $L$. The classification of finite dimensional nilpotent Lie algebras has interested the works of several authors both in topology and in algebra, as we can note from $[1,6]$. Moneyhum [7] obtained the following upper bound for Schur multiplier of Lie algebras.

Let $L$ be a finite dimensional Lie algebra of dimension $n$, then

$$
\operatorname{dim} M(L) \leqslant \frac{1}{2} n(n-1)
$$

The above upper bound implies that $\operatorname{dim} M(L)=\frac{1}{2} n(n-1)-t(L)$, where $t(L)$ is non-negaive integer. The n-dimensional nilpotent Lie algebras were characterized for $t(L)=0,1, \ldots, 8$ as follows:

Theorem 1.1 ([3-5]). Let $L$ be a n-dimensional nilpotent Lie algebra. Then
(a) $t(L)=0$ if and only if $L$ be an abelian Lie algebra;
(b) $t(L)=1$ if and only if $L \cong H(1)$;
(c) $t(L)=2$ if and only if $L \cong H(1) \oplus A(1)$;
(d) $t(L)=3$ if and only if $L \cong H(1) \oplus A(2)$;
(e) $t(L)=4$ if and only if $L \cong H(1) \oplus A(3), L(3,4,1,4)$ or $L(4,5,2,4)$;
(f) $t(L)=5$ if and only if $L \cong H(1) \oplus A(4)$ or $H(2)$;
(g) $t(L)=6$ if and only if $L \cong L(3,4,1,4) \oplus A(1), L(4,5,1,6), H(2) \oplus$ $A(1), H(1) \oplus A(5)$ or $L(4,5,2,4)$;
(h) $t(L)=7$ if and only if $L \cong H(1) \oplus A(6), H(2) \oplus A(2), H(3), L(7,5,2,7)$, $L(7,5,1,7), L^{\prime}(7,5,1,7), L(7,6,2,7)$, or $L\left(7,6,2,7, \beta_{1}, \beta_{2}\right)$.
(i) $t(L)=8$ if and only if $L \cong H(1) \oplus A(7), H(2) \oplus A(3), H(3) \oplus A(1), L(3,4$, $1,4) \oplus A(2), L(4,5,1,6) \oplus A(1)$ or $L(4,5,2,4) \oplus A(2)$.

Here $H(n)$ denotes the Heisenberg algebra of dimension $2 n+1, A(n)$ is an n-dimensional abelian Lie algebra and $L(a, b, c, d)$ will denote the algebra discovered during $t(L)=a$ case in [5], where $b=\operatorname{dim} L, c=\operatorname{dim} Z(L)$ and $d=t(L)$, the Lie brackets of them are described at the end of next section.

Niroomand et al. [8] proved the better upper bound for non-abelian nilpotent Lie algebras as follows:

Theorem 1.2 ([8]). Let $L$ be a nilpotent Lie algebra of $\operatorname{dim}(L)=n$ and $\operatorname{dim}\left(L^{2}\right)=m(m \geq 1)$. Then

$$
\operatorname{dim} M(L) \leq \frac{1}{2}(n+m-2)(n-m-1)+1
$$

Moreover, if $m=1$, then the equality holds if and only if $L \cong H(1) \oplus A$, where $A$ is an abelian Lie algebra of $\operatorname{dim}(A)=n-3$.

The above upper bound implies that

$$
\operatorname{dim} M(L)=\frac{1}{2}(n-1)(n-2)+1-s(L)
$$

where $s(L) \geq 0$. Niroomand et al. in $[8,9]$ classified the structure of L when $s(L)=0,1,2$ as follows:

THEOREM 1.3. Let $L$ be a non-abelian n-dimensional nilpotent Lie algebra. Then
(i) $s(L)=0$ if and only if $L \cong H(1) \oplus A(n-3)$;
(ii) $s(L)=1$ if and only if $L \cong L(4,5,2,4)$;
(iii) $s(L)=2$ if and only if $L \cong L(3,4,1,4), L(4,5,2,4) \oplus A(1), H(m) \oplus A(n-$ $2 m-1)(m \geq 2)$.

Let $(L, N)$ be a pair of Lie algebras, where $N$ is an ideal in L. In 2011 Saeedi et al. [10] defined the Schur multiplier of the pair $(L, N)$ to be the abelian Lie algebra $M(L, N)$ appearing in the following natural exact sequence of Lie algebras

$$
\begin{aligned}
H_{3}(L) & \rightarrow H_{3}\left(\frac{L}{N}\right)
\end{aligned} \rightarrow M(L, N) \rightarrow M(L)
$$

where $M(-)$ and $H_{3}(-)$ denote the Schur multiplier and the third homology of a Lie algebra, respectively. In this case, for each free presentation $0 \rightarrow R \rightarrow$ $F \rightarrow L \rightarrow 0$ of $\mathrm{L}, M(L, N)$ is isomorphic to the factor Lie algebra $\frac{R \cap[S, F]}{[R, F]}$, where S is an ideal of F such that $\frac{S}{R} \simeq N$. In particular, if $N=L$, then the Schur multiplier of $(L, N)$ will be $M(L)=\frac{\left(R \cap F^{2}\right)}{[R, F]}$ (see $\left.[3,11,12]\right)$. In this paper, we use the above results and the following lemmas to classify the pair of nilpotent Lie algebras by their Schur multipliers.

Lemma 1.4 ([3]). Let $L$ be a finite algebra and $N$, $K$ be ideals of $L$ such that $L=N \oplus K$. Then

$$
\operatorname{dim} M(L, N)=\operatorname{dim}(N)+\operatorname{dim}\left(N^{a b} \otimes K^{a b}\right)
$$

where $N^{a b}=\frac{N}{[N, N]}$ and $K^{a b}=\frac{K}{[K, K]}$.
Lemma 1.5 ([8]). Let $L$ be an n-dimensional Lie algebra and $\operatorname{dim} L^{2}=1$. Then for some $m \geq 1$

$$
L \cong H(m) \oplus A(n-2 m-1)
$$

We can use the Schur multiplier for classifying the pairs of nilpotent Lie algebras. In fact Saeedi et al. [10], obtained the following upper bound for Schur multiplier pair of nilpotent Lie algebras.

Theorem 1.6 ([10]). Let $(L, N)$ be a pair of finite dimensional nilpotent Lie algebras and $K$ be the complement of $N$ in L. Assume $N$ and $K$ are of dimension $n$ and $m$ respectively. Then

$$
\operatorname{dim} M(L, N)+\operatorname{dim}[L, N] \leq \frac{1}{2} n(n+2 m-1)
$$

The above result implies that there exists a non-negative integer $t(L, N)$ such that $\operatorname{dim} M(L, N)=\frac{1}{2} n(n+2 m-1)-t(L, N)$. Arabyani et al. [2],
charactrized all the pairs $(L, N)$, with $t=t(L, N)=0,1,2,3,4$ under some conditions. In the present paper, we classify all the pairs $(L, N)$, when $L=$ $N \oplus K$ and $t \leq 6$.

Theorem 1.7. Let $L$ be a finite finite dimensional nilpotent Lie algebras and $N, K$ be ideals of $L$ such that $L=N \oplus K$. Let $\operatorname{dim} N=n, \operatorname{dim} K=m$. and $\operatorname{dim} N^{2}=d \geq 1$. Then $\operatorname{dim} M(L, N) \leq \frac{1}{2}(n+d-2)(n-d-1)+1+(n-d) m$.

Proof. We can obtain the result from Theorem 1.2 and Lemma 1.4.
We can see

$$
\frac{1}{2}(n+d-2)(n-d-1)+1+(n-d) m \leq \frac{1}{2}(n-1)(n-2)+1+(n-1) m
$$

This upper bound is better than the one obtained in Theorem 1.6. We take $s^{\prime}=s(L, N)=\frac{1}{2}(n-1)(n-2)+1+(n-1) m-\operatorname{dim} M(L, N)$, and then characterize the pairs $(L, N)$ for $s^{\prime}=0,1,2$.

## 2. MAIN RESULTS

In this section, first we characterize all finite dimensional pairs of nilpotent Lie algebras with $t=0,1,2, \ldots, 6$ and then determine the structure of all finite dimensional pairs $(L, N)$ with $s^{\prime}=0,1,2$.

Theorem 2.1. Let $L$ be a finite dimensional nilpotent Lie algebra and $N$, $K$ be ideals of $L$ such that $L=N \oplus K$. Let $\operatorname{dim} N=n$, $\operatorname{dim} K=m$ and $\operatorname{dim} M(L, N)=\frac{1}{2} n(n+2 m-1)-t$, where $t \geq 0$. Then:
(a) If $N$ is an abelian Lie algebra, then $(L, N) \cong\left(A(n) \oplus K_{r}, A(n)\right)$, where $r \geq 1$ and $t=n r$ and $K_{r}$ is a $m$-dimensinal Lie algebra with $\operatorname{dim}\left(K_{r}^{\prime}\right)=r$.
(b) If $N$ is a non-abelian Lie algebra, then:
(i) $t=1$ if and only if $(L, N) \cong(H(1), H(1))$.
(ii) $t=2$ if and only if $(L, N) \cong(H(1) \oplus A(1), H(1))$ or $(H(1) \oplus A(1), H(1) \oplus$ $A(1))$.
(iii) $t=3$ if and only if $(L, N)$ be isomorphic with one of the following pairs of Lie algebras:
$(H(1) \oplus A(2), H(1) \oplus A(2)),(H(1) \oplus A(2), H(1))$ or $(H(1) \oplus A(2), H(1) \oplus$ $A(1))$.
(iv) $t=4$ if and only if $(L, N)$ be isomorphic with one of the following pairs of Lie algebras:
$(H(1) \oplus A(3), H(1) \oplus A(2)),(H(1) \oplus A(3), H(1) \oplus A(1)),(H(1) \oplus A(3), H(1))$, $(H(1) \oplus A(3), H(1) \oplus A(3)),(L(3,4,1,4), L(3,4,1,4)) \quad$ or $(L(4,5,2,4)$, $L(4,5,2,4))$.
(v) $t=5$ if and only if $(L, N)$ be isomorphic with one of the following pairs of Lie algebras:
$(H(1) \oplus A(4), H(1) \oplus A(4)),(H(1) \oplus A(4), H(1) \oplus A(3)),(H(1) \oplus A(4)$, $H(1) \oplus A(2)),(H(1) \oplus A(4), H(1)),(H(1) \oplus A(4), H(1) \oplus A(1))$ or $(H(2)$, $H(2))$.
(vi) $t=6$ if and only if $(L, N)$ be isomorphic with one of the following pairs of Lie algebras:
$(H(1) \oplus A(5), H(1) \oplus A(5)),(H(1) \oplus A(5), H(1) \oplus A(4)),(H(1) \oplus A(5)$, $H(1) \oplus A(3)),(H(1) \oplus A(5), H(1) \oplus A(2)),(H(1) \oplus A(5), H(1) \oplus A(1))$, $(H(2) \oplus A(1), H(2) \oplus A(1)),(H(1) \oplus A(5), H(1)),(H(2) \oplus A(1), H(2))$, $(L(4,5,2,4) \oplus A(1), L(4,5,2,4) \oplus A(1))$ or $(L(3,4,1,4) \oplus A(1), L(3,4,1,4)$ $\oplus A(1))$.

Proof. Let $\operatorname{dim} M(N)=\frac{1}{2} n(n-1)-l$ where $l$ is a non-negative integer. By using Lemma 1.4, we have $\frac{1}{2} n(n+2 m-1)-t=\frac{1}{2} n(n-1)-l+\operatorname{dim}\left(N^{a b} \otimes K^{a b}\right)$. Therefore

$$
\begin{equation*}
m n=(t-l)+\operatorname{dim}\left(N^{a b}\right) \operatorname{dim}\left(K^{a b}\right) . \tag{1}
\end{equation*}
$$

Also $\operatorname{dim}\left(K^{a b}\right) \leq m$ and $\operatorname{dim}\left(N^{a b}\right)=n-\operatorname{dim} N^{\prime}$, Hence

$$
\begin{equation*}
m \cdot \operatorname{dim}\left(N^{\prime}\right) \leq t-l \tag{2}
\end{equation*}
$$

This implies that $t \geq l$.
(a) Let $N$ be an abelian Lie algebra, then $l=0$ and by using (1), we have

$$
m n=(t-l)+n\left(\operatorname{dim}(K)-\operatorname{dim}\left(K^{\prime}\right)\right)=(t-l)+n\left(m-\operatorname{dim}\left(K^{\prime}\right)\right) .
$$

So $n \operatorname{dim}\left(K^{\prime}\right)=t-l=t$. If $N$ is abelian then $(L, N) \cong\left(A(n) \oplus K_{r}, A(n)\right)$, where $K_{r}$ is a m-dimension Lie algebra and $\operatorname{dim}\left(K_{r}^{\prime}\right)=r, t=n r$.
(b) Let $N$ be a non-abelian Lie algebra, in this case for different values of $t$, the pairs $(L, N)$ are determined.
(i) Now assume that $t=1$, then since $N$ is non-abelian hence $l \neq 0$, and by using (2), $l=1$ and $m \cdot \operatorname{dim} N^{\prime}=0$. But $\operatorname{dim} N^{\prime} \neq 0$, so $m=0$. By Theorem 1.1, $N \cong H(1)$ and hence $(L, N) \cong(H(1), H(1))$.
(ii) Assume that $t=2$, then the different values of $(l, m)$ that satisfy in (2) will be $(2,0),(1,1)$ and $(1,0)$. If $(l, m)=(1,0)$ then $(L, N) \cong(H(1), H(1))$, which is a contradiction in case $t=1$. Suppose that $(l, m)=(1,1)$ then using Theorem 1.1, $N \cong H(1)$ we have $(L, N) \cong(H(1) \oplus A(1), H(1))$. In case $(l, m)=$ $(2,0), K=0$ and using Theorem 1.1, $(L, N) \cong(H(1) \oplus A(1), H(1) \oplus A(1))$.
(iii) Assume that $t=3$, then $l=1,2,3$. If $l=1$, then by using Theorem1.1,
$N \cong H(1)$. Hence $n=3, \operatorname{dim}\left(N^{\prime}\right)=1$. By (2), we have $m \leq 2$. If $m=0$, then $K=0$ so (1) implies that $t=l$ which is a contradiction. If $m=1$ then $3=2+(3-1)(1-0)$ which is a contradiction. In the case $m=2$, we have $6=2+(3-1)\left(2-\operatorname{dim}\left(K^{\prime}\right)\right)$, hence $\operatorname{dim}\left(K^{\prime}\right)=0$ and $K$ is a 2-dimension abelian Lie algebra, so $(L, N) \cong(H(1) \oplus A(2), H(1))$. Suppose that $l=2$, then similar to the previous case we obtain $N \cong H(1) \oplus A(1), m=1$ and hence $(L, N) \cong(H(1) \oplus A(2), H(1) \oplus A(1))$. Assume that $l=3$, then $m=0$ and $(L, N) \cong(H(1) \oplus A(2), H(1) \oplus A(2))$.
(iv) Assume that $t=4$. If $l=1$ then by Theorem $1.1 N \cong H(1)$, similar to the previous case $m=0$ and $(L, N) \cong(H(1), H(1))$, which is a contradiction in case $t=1$. If $m=1$ or 2 , then we can use (1) and obtain a contradiction. If $m=3$ then $\operatorname{dim}\left(K^{\prime}\right)=0$, so $K$ is an abelian Lie algebra and $(L, N) \cong(H(1) \oplus A(3), H(1))$. Assume that $l=2$, then by Theorem 1.1, $N \cong H(1) \oplus A(1)$ and $\operatorname{dim} N^{\prime}=1$. By using (2), the only acceptable value $m=2$ and $\operatorname{dim} K^{\prime}=0$, so $(L, N) \cong(H(1) \oplus A(3), H(1) \oplus A(1))$. If $l=3$ then $(L, N) \cong(H(1) \oplus A(3), H(1) \oplus A(2))$. Suppose that $l=4$, then by Theorem 1.1, $N \cong H(1) \oplus A(3), L(3,4,1,4)$ or $L(4,5,2,4)$, by using (2), $K=0$ and $(L, N) \cong(L(4,5,2,4), L(4,5,2,4)),(H(1) \oplus A(3), H(1) \oplus A(3))$, or $(L(3,4,1,4), L(3,4,1,4))$.
(v) Assume that $t=5$, then $l=1,2,3,4,5$. If $l=1$ then $N \cong H(1)$. In this case the only acceptable value $m=4, \operatorname{dim}\left(K^{\prime}\right)=0$, hence $(L, N) \cong$ $(H(1) \oplus A(4), H(1))$. The similar argument implies that if $l=2$ then $(L, N) \cong$ $(H(1) \oplus A(4), H(1) \oplus A(1))$. If $l=3$ then $(L, N) \cong(H(1) \oplus A(4), H(1) \oplus A(2))$. If $l=4$ then $(L, N) \cong(H(1) \oplus A(4), H(1) \oplus A(3))$. If $l=5$ then $N \cong H(1) \oplus A(4)$ or $H(2)$ and in both cases $m=0$ and $(L, N) \cong(H(1) \oplus A(4), H(1) \oplus A(4))$ or (H(2), H(2)).
(vi) Assume that $t=6$. If $l=1$ and $m=0,1,2,4$, we obtain a contradiction. Suppose that $m=3$ and $\operatorname{dim}\left(K^{\prime}\right)=1$, then Lemma 1.5 implies that $K \cong H(1)$, hence $(L, N) \cong(H(1) \oplus H(1), H(1))$. If $m=5$ then $\operatorname{dim} K^{\prime}=0$ and $(L, N) \cong$ $(H(1) \oplus A(5), H(1) \oplus A(5))$. For different values $m, l$ with similar calculation we can obtain $(L, N) \cong(H(1) \oplus A(5), H(1) \oplus A(1)),(H(1) \oplus A(5), H(1) \oplus$ $A(2)),(H(2) \oplus A(1), H(2)), H(1) \oplus A(5), H(1) \oplus A(3)),(H(1) \oplus A(5), H(1) \oplus$ $A(4)),(H(2) \oplus A(1), H(2) \oplus A(1)),(L(3,4,1,4) \oplus A(1), L(3,4,1,4) \oplus A(1))$, $L(4,5,2,4) \oplus A(1), L(4,5,2,4) \oplus A(1)),(H(1) \oplus A(5), H(1) \oplus A(5))$.

Theorem 2.2. Let $L$ be a finite dimensional nilpotent Lie algebra and $N$, $K$ be ideals of $L$. Assume that $\operatorname{dim} N=n, \operatorname{dim} K=m, \operatorname{dim} N^{2} \geq 1$ and $\operatorname{dim} M(L, N)=\frac{1}{2}(n-1)(n-2)+1+(n-1) m-s^{\prime}$. Then
(i) $s^{\prime}=0$ if and only if $(L, N) \cong(H(1) \oplus A(n+m-3), H(1) \oplus A(n-3))$.
(ii) $s^{\prime}=1$ if and only if $(L, N) \cong(L(4,5,2,4), L(4,5,2,4))$.
(iii) $s^{\prime}=2$ if and only if $(L, N)$ is isomorphic with one of the following pairs of Lie algebras:
$(H(1) \oplus H(k) \oplus A(m-2 k-1), H(1)),(L(4,5,2,4) \oplus A(1), L(4,5,2,4))$, $(H(k) \oplus A(m+n-2 k-1), H(k) \oplus A(n-2 k-1)),(L(3,4,1,4), L(3,4,1,4))$ or $(L(4,5,2,4) \oplus A(1),(L(4,5,2,4) \oplus A(1))$.

Proof. Let $\operatorname{dim} M(N)=\frac{1}{2}(n-1)(n-2)+1-s(L)$, by Lemma 1.4 we have $\frac{1}{2}(n-1)(n-2)+1+(n-1) m-s^{\prime}=\frac{1}{2}(n-1)(n-2)+1-s+\operatorname{dim} N^{a b} . K^{a b}$, hence

$$
\begin{equation*}
n m-m=\left(s^{\prime}-s\right)+\operatorname{dim} N^{a b} \cdot \operatorname{dim} K^{a b} \tag{3}
\end{equation*}
$$

Since $\operatorname{dim} K^{a b} \leq m$ and $\operatorname{dim} N^{a b}=n-\operatorname{dim} N^{2}$, hence

$$
n m-m \leq\left(s^{\prime}-s\right)+\left(n-\operatorname{dim} N^{2}\right) m \Rightarrow m\left(-1+\operatorname{dim} N^{2}\right) \leq s^{\prime}-s
$$

Since $\operatorname{dim} N^{2} \geq 1$, therefore $s^{\prime} \geq s$.
(i) Assume that $s^{\prime}=0$, then $s=0$ and by Theorem 1.2 , we have $N \cong H(1) \oplus$ $A(n-3)$. Also by using (3), we have

$$
n m-m=(n-1)\left(m-\operatorname{dim} K^{2}\right) \Rightarrow \operatorname{dim} K^{2}=0
$$

Hence $K$ is a $m$-dimensional abelian Lie algebra and $(L, N) \cong(H(1) \oplus A(m+$ $n-3), H(1) \oplus A(n-3))$.
(ii) If $s^{\prime}=0$, then $s=0$ or 1 . Let $s=0$, by Theorem $1.2, N \cong H(1) \oplus A(n-3)$, hence by using $3, n=2$, which is a contradiction. Assume that $s=1$, then by Theorem 1.2 and (3), $m=0$ and $(L, N) \cong(L(4,5,2,4), L(4,5,2,4))$.
(iii) Assume that $s^{\prime}=2$, then $s=0,1$ or 2 . Let $s=1$, then $N \cong H(1) \oplus A(n-3)$ and $\operatorname{dim} N^{2}=1$, by using (3), we have $n=3$ and $\operatorname{dim} K^{2}=1$. By Lemma 1.5, there exists $K \geq 1$ such that $K \cong H(K) \oplus A(m-2 k-1)$ and so $(L, N) \cong$ $(H(1) \oplus H(k) \oplus A(m-2 k-1), H(1))$. If $s=1$ then $N \cong L(4,5,2,4)$, by using (3), we have $m=1$, therefore $(L, N) \cong(L(4,5,2,4) \oplus A(1), L(4,5,2,4))$. Assume that $s=2$, then by Theorem 1.3, $N \cong L(3,4,1,4)$ or $L(4,5,2,4) \oplus A(1)$ and $\operatorname{dim} N^{2}=2$ or $H(k) \oplus A(n-2 k-1)(k \geq 2)$ and $\operatorname{dim} N^{2}=1$. If $\operatorname{dim} N^{2}=1$ then by using (3), $\operatorname{dim} K^{2}=0$ hence $(L, N) \cong(H(k) \oplus A(m+n-2 k-$ 1), $H(k) \oplus A(n-2 k-1)$ ). If $\operatorname{dim} N^{2}=2$ then $m=0,(L, N) \cong(L(4,5,2,4) \oplus$ $A(1), L(4,5,2,4) \oplus A(1))$ or $(L(3,4,1,4), L(3,4,1,4))$.

In the following table, we describe the nilpotent Lie algebras that we refer in Theorem 1.1 using $[4,5]$.

TABLE 1

| t(L) | $\operatorname{dim}$ L | Non Zero Multiplication | Nilpotent Lie algebra |
| :---: | :---: | :---: | :---: |
| 0 |  |  | Abelian |
| 1 | 3 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1)$ |
| 2 | 4 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1) \oplus A(1)$ |
| 3 | 5 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1) \oplus A(2)$ |
| 4 | 4 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4}$ | $L(3,4,1,4)$ |
| 4 | 5 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{4}\right]=x_{5}$ | $L(4,5,2,4)$ |
| 4 | 6 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1) \oplus A(3)$ |
| 5 | 5 | $\left[x_{1}, x_{2}\right]=x_{5},\left[x_{3}, x_{4}\right]=x_{5}$ | $H(2)$ |
| 5 | 7 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1) \oplus A(4)$ |
| 6 | 5 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{5}$ | $L(3,4,1,4) \oplus A(1)$ |
| 6 | 5 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{2}, x_{4}\right]=x_{5}$ | $L(4,5,1,6)$ |
| 6 | 6 | $\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{5},\left[x_{3}, x_{4}\right]=x_{5}$ | $H(2) \oplus A(1)$ |
| 6 | 6 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{4}\right]=x_{6}$ | $L(4,5,2,4) \oplus A(1)$ |
| 6 | 8 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1) \oplus A(5)$ |
| 7 | 5 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$ | $L(7,5,2,7)$ |
| 7 | 5 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$ | $L(7,5,1,7)$ |
| 7 | 5 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$ | $L^{\prime}(7,5,1,7)$ |
| 7 | 6 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{4}\right]=x_{6},\left[x_{2}, x_{5}\right]=x_{6}$ | $L(5,6,2,7)$ |
| 7 | 6 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{4}, x_{5}\right]=x_{6}$ | $L^{\prime}(5,6,2,7)$ |
| 7 | 6 | $\left[x_{1}, x_{2}\right]=x_{5},\left[x_{3}, x_{4}\right]=x_{6}$ | $L(7,6,2,7)$ |
| 7 | 6 | $\begin{gathered} {\left[x_{1}, x_{2}\right]=x_{5}+\beta_{1} x_{6},\left[x_{3}, x_{4}\right]=x_{5}} \\ {\left[x_{1}, x_{4}\right]=x_{6},\left[x_{3}, x_{2}\right]=\beta_{2} x_{6}} \end{gathered}$ | $L\left(7,6,2,7, \beta_{1}, \beta_{2}\right)$ |
| 7 | 7 | $\left[x_{1}, x_{2}\right]=x_{5},\left[x_{3}, x_{4}\right]=x_{5}$ | $H(2) \oplus A(2)$ |
| 7 | 7 | $\left[x_{1}, x_{2}\right]=x_{7},\left[x_{3}, x_{4}\right]=x_{7},\left[x_{5}, x_{6}\right]=x_{7}$ | $H(3)$ |
| 8 | 6 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{6}$ | $L(3,4,1,4) \oplus A(2)$ |
| 8 | 6 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{6}$ | $L(4,5,1,6) \oplus A(1)$ |
| 8 | 7 | $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{4}\right]=x_{7}$ | $L(4,5,2,4) \oplus A(2)$ |
| 8 | 8 | $\left[x_{1}, x_{2}\right]=x_{5},\left[x_{3}, x_{4}\right]=x_{5}$ | $H(2) \oplus A(3)$ |
| 8 | 8 | $\left[x_{1}, x_{2}\right]=x_{7},\left[x_{3}, x_{4}\right]=x_{7},\left[x_{5}, x_{6}\right]=x_{7}$ | $H(3) \oplus A(1)$ |
| 8 | 10 | $\left[x_{1}, x_{2}\right]=x_{3}$ | $H(1) \oplus A(7)$ |

Acknowledgments. I would like to thank the Islamic Azad University of Shahr-eQods for supporting this work.

## REFERENCES

[1] J.M. Ancochea-Bermudez and O.R. Campoamor-Stursberg, On Lie algebras whose nilradical is ( $n-p$ )-filiform. Comm. Algebra 29 (2001), 427-450.
[2] H. Arabyani, F. Saeedi, M.R.R. Moghaddam and E. Khamseh, On characterizing of nilpotent Lie algebras pair by their Schur multipliers. Comm. Algebra 42 (2014), 54745483.
[3] P. Batten, K. Moneyhum and E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers. Comm. Algebra 24 (1996), 4319-4330.
[4] P. Hardy and E. Stitsinger, On characterizing nilpotent Lie algebras by their Schur multipliers, $t(L)=3,4,5,6$. Comm. Algebra 26 (1998), 11, 3527-3539.
[5] P. Hardy, On characterizing nilpotent Lie algebras by their Schur multipliers (III). Comm. Algebra 33 (2005), 11, 4205-4210.
[6] M. Goze and Yu. Khakimyanov, Nilpotent Lie Algebras. Klumer, Dordrecht, 1996.
[7] K. Moneyhum, Isoclinism in Lie algebras. Algebra, Groups and Geometries 11 (1994), 9-22.
[8] P. Niroomand, On dimension of Schur multiplier of nilpotent Lie algebra. CEJOR Cent. Eur. J. Oper. Res. 9 (2011), 1, 57-64.
[9] P. Niroomand and F. Russo, A note on the Schur multiplier of a nilpotent Lie algebra. Comm. Algebra 39 (2011), 1293-1297.
[10] F. Saeedi, A.R. Salemkar and B. Edalatzadeh, The commutator subalgebra and Schur multiplier of a pair of nilpotent Lie algebras. J. Lie Theory 21 (2011), 491-498.
[11] A.R. Salemkar, V. Alamian and H. Mohammadzadeh, Some properties of the Schur multiplier and covers of Lie algebras. Comm. Algebra 36 (2008), 697-707.
[12] A.R. Salemkar, B. Edalatzadeh and H. Mohammadzadeh, On covers of perfect Lie algebra. Algebra Colloq. 18 (2011), 39, 419-427.

Received 24 March 2016

> Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
> elahehkhamseh@gmail.com
> elahehkhamseh@qodsiau.ac.ir
> Department of Mathematics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
> salizadeniri@gmail.com

