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Let R be a commutative ring and R(M) be the lattice of radical submodules of
an R-module M . In this paper, we examine the properties of the mapping σ :
R(M) → R(R) defined by σ(N) = (N : M) and the mapping ρ : R(R) → R(M)
defined by ρ(I) = rad(IM), in particular considering when these are complete
homomorphisms of the lattices. It is shown that a finitely generated module M is
a multiplication module if and only if σ is a lattice homomorphism if and only if
σ is a complete lattice homomorphism. It is also proved that for modules over an
Artinian ring, finitely generated faithful multiplication modules and projective
modules, ρ is a complete lattice homomorphism.
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1. INTRODUCTION

A lattice L is called complete provided every non-empty subset S has a
least upper bound ∨S and a greatest lower bound ∧S. Given complete lattices
L and L′ we say that a mapping ϕ : L → L′ is a complete homomorphism
provided

ϕ(∨S) = ∨{ϕ(x) : x ∈ S} and ϕ(∧S) = ∧{ϕ(x) : x ∈ S},

for every non-empty subset S of L. A complete homomorphism which is a
bijection (respectively, injection, surjection) will be called a complete isomor-
phism (respectively, complete monomorphism, complete epimorphism).

Throughout this paper all rings are commutative with identity and all
modules are unital. Let R be a ring and M be any R-module. Let L(RM)
(or simply L(M) if no ambiguity can arise) denote the complete lattice of all
submodules of M with respect to the following definitions:

∧T = ∩
N∈T

N and ∨ T =
∑
N∈T

N
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for every non-empty collection T of submodules of M . As in [17], we consider
the mapping λ : L(RR) → L(RM) given by λ(I) = IM , and the mapping
µ : L(RM) → L(RR) given by µ(N) = (N : M), where (N : M) = {r ∈ R :
rM ⊆ N}. It is easily seen that

λ(∨S) = ∨{λ(I) : I ∈ S} and µ(∧T ) = ∧{µ(N) : N ∈ T }.

for every non-empty collection S of ideals of R and every non-empty collection
T of submodules of M . An R-module M is called a λ-module (resp. µ-
module), if λ (resp. µ) is a lattice homomorphism [17]. Also, M is called
λ-complete (resp. µ-complete) if the above mapping λ (resp. µ) is a complete
homomorphism [18]. P. F. Smith investigated the mappings λ and µ in [17]
and [18], and examined when these mappings are lattice or complete lattice
homomorphisms. In [12], the authors have considered the lattices of radical
ideals and radical submodules, and explore the properties of certain mappings
between these lattices. They have also studied the relationships between these
mappings and the mappings λ and µ. In this work, we turn our attention to
the case in which these mappings are complete homomorphisms.

Firstly, we refresh our memory about prime and radical submodules, and
fix some notation. Let R be a ring. A proper submodule N of an R-module
M is said to be a prime submodule of M if whenever rm ∈ N for r ∈ R and
m ∈ M , then either r ∈ (N : M) or m ∈ N . This notion of prime submodule
was first introduced and systematically studied in [3] and recently has received
a good deal of attention from several authors; see for example [5,6,10,13]. Let
N be a submodule of an R-module M . Then the radical of N is the intersection
of all prime submodules of M containing N and denoted by radM N (or simply
radN if no ambiguity can arise). If there is no prime submodule containing N,
we define radN = M ; in particular, radM = M [7]. A submodule N of M is
called a radical submodule if radN = N . For an ideal I of a ring R, we assume
throughout that

√
I denotes the radical of I.

Let R be a ring and M be any R-module. The set of radical submodules
of M forms a complete lattice with respect to the following definitions:

∧T = ∩
N∈T

N and ∨ T = rad(
∑
N∈T

N)

for every non-empty collection T of radical submodules of M . We denote this
complete lattice by R(RM) (or simply R(M) if no ambiguity can arise), and in
the case that M = R byR(R). In generalR(RM) is not a (complete) sublattice
of L(RM) [12, p. 36]. In [12], we investigate the mapping ρ : R(R) → R(M)
which is defined by ρ(I) = rad(λ(I)) = rad(IM) for every ideal I of R and the
mapping σ : R(M) → R(R) which is defined by σ(N) = µ(N) = (N : M) for
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every submodule N of M . Although ρ is a lattice homomorphism by [12, p.
37], it is not necessarily a complete lattice homomorphism as the following
example shows.

Example 1.1. Let R = Z be the ring of integers, and M = Q be the field of
rational numbers. Let S = {pZ : p ∈ Ω} where Ω is the set of all prime integers
p. Then ρ(∧S) = ρ( ∩

p∈Ω
pZ) = ρ(0) = rad(0Q) = 0 and ∧ρ(S) = ∧{ρ(pZ) : p ∈

Ω} = ∩
p∈Ω

rad(pQ) = rad(Q) = Q. Thus Q is not ρ-complete.

For a ring R, an R-module M will be called ρ-complete in case the above
mapping ρ : R(R) → R(M) is a complete homomorphism. Unlike ρ, the
mapping σ need not be a lattice homomorphism and thus σ is not necessarily
a complete lattice homomorphism. For example, let V be a two-dimensional
vector space over a field F with the basis {e1, e2}. Then σ(Fe1) ∨ σ(Fe2) =√

(Fe1 : V ) + (Fe2 : V ) = 0 while σ(Fe1 ∨ Fe2) = (rad(Fe1 + Fe2) : V ) = F .
The module M is called σ-module in case the mapping σ : R(M) → R(R)
is a homomorphism [12], and σ-complete if σ : R(M) → R(R) is a complete
homomorphism [18].

In what follows, we continue the investigation in [12] of the mappings
ρ : R(R)→ R(M) and σ : R(M)→ R(R) and we will be mostly interested in
conditions under which these mappings are complete homomorphisms.

In Section 2, we investigate σ-complete modules. We show that if M
is a finitely generated R-module, then M is σ-complete if and only if M is
µ-complete if and only if M is a multiplication module (i.e., λ is a surjective
map) (Theorem 2.3).

In Section 3, we explore some properties of ρ-complete modules, and pro-
vide a considerable amount of examples of ρ-complete modules. For example,
we show that projective modules and finitely generated faithful multiplication
modules are ρ-complete (Theorem 3.4 and Theorem 3.7).

Section 4 is devoted to studying the relationships between ρ-complete
and λ-complete modules. We show that every module over an Artinian ring
is ρ-complete (Theorem 4.5). Moreover, if R is a Noetherian ring and every
R-module is ρ-complete, then R is Artinian (Theorem 4.10). Using this fact,
we conclude that if R is a Noetherian ring, then every R-module is ρ-complete
if and only if every R-module is λ-complete (Corollary 4.11).

2. σ-COMPLETE MODULES

In this section, we shall investigate σ-complete modules. We first note
the following simple fact.
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Lemma 2.1. Let R be a ring and M be an R-module. Then M is a σ-

complete module if and only if (rad(
∑
N∈T

N) : M) =
√ ∑
N∈T

(N : M) for every

non-empty collection T of radical submodules of M .

Proof. Let T be a non-empty subset of radical submodules of M . Then
σ(∧T ) = σ( ∩

N∈T
N) = ( ∩

N∈T
N : M) = ∩

N∈T
(N : M) = ∧σ(T ). Now, from

σ(∨T ) = σ(rad(
∑
N∈T

N)) = (rad(
∑
N∈T

N) : M)

and

∨σ(T ) = ∨
N∈T
{σ(N) : N ∈ S} =

√∑
N∈T

(N : M)

the result follows. �

As it is illustrated in [18, p. 18], a µ-module is not necessarily µ-complete.
Now, we show that these are equivalent for finitely generated modules.

Lemma 2.2. Let R be a ring and M be a finitely generated R-module.
Then M is a µ-module if and only if it is a µ-complete module.

Proof. (⇐) Obviously every µ-complete module is µ-module. (⇒) Let
M = Rm1 + · · · + Rml be a µ-module and T be a collection of submodules
of M . Clearly

∑
N∈T

(N : M) ⊆ (
∑
N∈T

N : M). Now, let r ∈ (
∑
N∈T

N : M).

Then rmi = ni1 + · · · + niki (i = 1, · · · , l). Thus rM ⊆ N1 + · · · + Nt for
some submodules N1, . . . , Nt ∈ T , that is r ∈ (N1 + · · · + Nt : M) = (N1 :
M) + · · · + (Nt : M) ⊆

∑
N∈T

(N : M). Therefore
∑
N∈T

(N : M) = (
∑
N∈T

N : M)

and hence by [17, Lemma 2.1], M is µ-complete. �

Let M be a µ-complete R-module. Then, since R = (M : M) =
(
∑
m∈M

Rm : M) =
∑
m∈M

(Rm : M), by [16, Corollary 1 to Theorem 2], M is

a multiplication R-module. In particular, by [18, Theorem 2.2] or [16, by
Corollary 2(ii) to Theorem 2], M is a µ-complete R-module if and only if M is
a finitely generated multiplication R-module. This result can be extended to
the context of σ-complete modules as follows.

Theorem 2.3. Let R be a ring and M be a finitely generated R-module.
Then the following are equivalent:

(1) M is µ-module.

(2) M is σ-module.

(3) M is µ-complete module.

(4) M is σ-complete module.
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(5) M is a multiplication module.

Moreover, in this case σ and µ are monomorphisms.

Proof. (1)⇔ (2)⇔ (5) by [12, Theorem 2.11]. (1)⇔ (3) by Lemma 2.2.
(3) ⇒ (4) Let T be a non-empty collection of radical submodules of M . By

Lemma 2.1, it suffices to show that (rad(
∑
N∈T

N) : M) =
√ ∑
N∈T

(N : M). Since

M is finitely generated and µ-complete, we have
√ ∑
N∈T

(N :M)=
√

(
∑
N∈T

N :M)

= (rad(
∑
N∈T

N) : M). (4)⇒ (2) Clear.

The “Moreover” part is clear by [18, Theorem 2.2]. �

Remark 2.4. By [18, Theorem 2.2], every µ-complete module is finitely
generated. Thus (3) in Theorem 2.3 implies the other statements. In particular,
it implies that M is σ-complete. However, if M is not finitely generated, the
converse need not be true. For example, if R = Z, then the prüfer p-group
M = Z(p∞) is a σ-complete R-module, since M has no prime submodule. But
M is not µ-complete, by [18, p. 18].

Corollary 2.5. Let R be a ring and M be a finitely generated R-module.
Then the following statements are equivalent:

(1) (
∑
N∈T

N : M) =
∑
N∈T

(N : M) for every non-empty collection T of submo-

dules of M .

(2) (rad(
∑
N∈T

N) : M) =
√ ∑
N∈T

(N : M) for evey non-empty collection T of

radical submodules of M .

Proof. By Theorem 2.3, (3)⇔ (4). �

It is worthwhile mentioning that Theorem 2.3 presents the following re-
sults for σ-complete modules analogous to the case for σ-modules found in [12].

Let R be a ring, M an R-module and S a multiplicatively closed subset
of R. In the following, RS is the ring of fractions of R and MS the RS-module
of fractions of M with respect to S. Also, if P is a prime ideal of R, we put
S = R \ P and write RP and MP instead of RS and MS , respectively.

Corollary 2.6. Let R be a ring and M be a finitely generated µ-module
(σ-module) over R. Also, let S be a multiplicatively closed subset of R. Then
MS is a µ-complete module (σ-complete module) over RS.

Proof. By Theorem 2.3 and [12, Lemma 2.18]. �

Corollary 2.7. Let R be a ring and M be a finitely generated R-module.
Then the following are equivalent.
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(1) M is a σ-complete R-module;

(2) MP is a σ-complete RP -module for all prime ideals P of R;

(3) Mm is a σ-complete Rm-module for all maximal ideals m of R.

Proof. By Theorem 2.3 and [12, Theorem 2.19]. �

Proposition 2.8. Every homomorphic image of a σ-complete module is
a σ-complete module.

Proof. Similar to the proof of [12, Proposition 2.20]. �

Corollary 2.9. Let R be a ring. Then every cyclic R-module M is
σ-complete. The converse is true when M is finitely generated and R is local.

Proof. Since R is a σ-complete module over R, it is clear that every cyclic
R-module is a σ-complete module by Proposition 2.8. The second part is
obtained by Theorem 2.3 and [12, Corollary 2.21]. �

Although every cyclic R-module is σ-complete, there is no ring for which
every finitely generated module is σ-complete. For example, by [12, Corol-
lary 2.13], the R-module R⊕R is not a σ-module and so is not σ-complete.

3. ρ-COMPLETE MODULES

Given a ring R, in this section we shall consider the mapping ρ from the
complete lattice R(R) of radical ideals of R to the complete lattice R(M) of
radical submodules of M defined by ρ(I) = rad(IM). Recall that a module M
is a ρ-complete in case the mapping ρ is a complete homomorphism. In [12,
p. 37], it is shown that every R-module is a ρ-module, i.e., ρ is a lattice
homomorphism. However, as Example 1.1 shows, there is a module which is
not ρ-complete. First we begin with some properties of radical of submodules
which are used in the rest of paper.

Lemma 3.1 (See [7], Proposition 2 and [8], Corollary 1 to Proposition 1).
Let R be a ring and M an R-module. Let N and L be submodules of M and
T be any collection of submodules of M . Then

(1) N ⊆ radN ;

(2) rad(radN) = radN ;

(3) rad(N ∩ L) ⊆ radN ∩ radL;

(4) rad(N + L) = rad(radN + radL);

(5) rad(IM) = rad(
√
IM), for every ideal I of R;

(6)
√

(N : M) ⊆ (radN : M);

(7) rad(
∑
N∈T

N) = rad(
∑
N∈T

radN);
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(8) rad( ∩
N∈T

N) ⊆ ∩
N∈T

rad(N),= rad( ∩
N∈T

rad(N)).

Now, we prove an elementary result characterizing ρ-complete modules.

Lemma 3.2. Let R be a ring and M be an R-module. Then M is a
ρ-complete module if and only if rad(( ∩

I∈S
I)M) = ∩

I∈S
rad(IM) for every non-

empty collection S of radical ideals of R.

Proof. Let S be a collection of radical ideals of R. Then, by Lemma 3.1,

we have ρ(∨S) = ρ(
√∑
I∈S

I) = rad(
√∑
I∈S

IM) = rad((
∑
I∈S

I)M) = rad(
∑
I∈S

IM)

and ∨ρ(S) = ∨{ρ(I) : I ∈ S} = ∨{rad(IM) : I ∈ S} = rad(
∑
I∈S

rad(IM)) =

rad(
∑
I∈S

IM). Hence ρ(∨S) = ∨ρ(S). Now, since

ρ(∧S) = ρ( ∩
I∈S

I) = rad(( ∩
I∈S

I)M)

and

∧ρ(S) = ∧{rad(IM) : I ∈ S} = ∩
I∈S

rad(IM),

the assertion follows. �

Lemma 3.3. Let R be any ring. Then

(1) Every direct summand of a ρ-complete module is ρ-complete.

(2) Every direct sum of ρ-complete modules is also ρ-complete.

Proof. (1) Let K be a direct summand of a ρ-complete module M . Let
S be any non-empty collection of radical ideals of R. Then, using [21, Lemma
2.1], we have

radM (( ∩
I∈S

I)M) = radM (( ∩
I∈S

I)K⊕( ∩
I∈S

I)L) = radK(( ∩
I∈S

I)K)⊕radL(( ∩
I∈S

I)L)

and

∩
I∈S

radM (IM) = ∩
I∈S

radM (IK ⊕ IL) = ∩
I∈S

(radK(IK)⊕ radL(IL))

= ( ∩
I∈S

radK(IK))⊕ ( ∩
I∈S

radL(IL)).

Since M is ρ-complete, we have radM (( ∩
I∈S

I)M) = ∩
I∈S

radM (IM) and thus

radK(( ∩
I∈S

I)K) ⊕ radL(( ∩
I∈S

I)L) = ( ∩
I∈S

radK(IK)) ⊕ ( ∩
I∈S

radL(IL)). Hence

radK(( ∩
I∈S

I)K) = ∩
I∈S

radK(IK) which shows that K is ρ-complete by

Lemma 3.2.

(2) Let T be any collection of ρ-complete modules and M = ⊕
N∈T

N . Let S

be a non-empty collection of radical ideals of R. Again, using [21, Lemma 2.1],
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we have

radM (( ∩
I∈S

I)M) = radM (( ∩
I∈S

I)( ⊕
N∈T

N)) = radM ( ⊕
N∈T

( ∩
I∈S

I)N)

= ⊕
N∈T

radM (( ∩
I∈S

I)N) = ⊕
N∈T

( ∩
I∈S

radM IN)

= ∩
I∈S

( ⊕
N∈T

radM IN) = ∩
I∈S

radM ( ⊕
N∈T

IN)

= ∩
I∈S

(radM I( ⊕
N∈T

N)) = ∩
I∈S

(radM IN).

Now Lemma 3.2 completes the proof. �

Theorem 3.4. Let R be a ring. Then every projective R-module is ρ-
complete.

Proof. Let S be a non-empty collection of radical ideals of R. Then

∩
I∈S

I ⊆ rad( ∩
I∈S

I) ⊆ ∩
I∈S

rad(I) = ∩
I∈S

I.

Hence rad( ∩
I∈S

I) = ∩
I∈S

rad(I). Thus R is ρ-complete, and so by Lemma 3.3

(2) every free R-module is ρ-complete. Now, since every projective module is
a direct summand of a free module, Lemma 3.3 (1) gives the result. �

Corollary 3.5. Let R be a ring. Then the following statements are
equivalent:

(1) Every R-module is ρ-complete.

(2) Every homomorphic image of a ρ-complete module is ρ-complete.

Proof. (1)⇒ (2) Clear. (2)⇒ (1) Let M be an R-module. There exist a
free R-module F and a submodule K of F such that M ∼= F/K. By Theorem
3.4, F is ρ-complete and so is M by (2). �

Theorem 3.6. Let R be a ring and M be a finitely generated flat R-
module. Then M is a ρ-complete R-module in each of the following cases:

(1) R is a Noetherian ring.

(2) M is a faithful λ-complete R-module.

Proof. (1) is a direct result of Theorem 3.4 and [15, Corollary 3.57]. (2) Let
S be a collection of radical ideals of R. Since M is a finitely generated faithful
flat λ-complete R-module, by combining [14, p.51] and [9, Theorem 2.2 and
Theorem 5.5 (2)], we have rad(IM) =

√
IM for all ideals I of R. Again, since

M is λ-complete, we have rad(( ∩
I∈S

I)M) = rad( ∩
I∈S

(IM)) ⊆ ∩
I∈S

rad(IM) =

∩
I∈S

√
IM = ∩

I∈S
(IM). It follows that rad(( ∩

I∈S
I)M) = ∩

I∈S
rad(IM), as requi-

red. �



9 Complete homomorphisms between the lattices of radical submodules 195

Theorem 3.7. For a ring R, every finitely generated faithful multiplica-
tion R-module is ρ-complete.

Proof. Let M be a finitely generated faithful multiplication R-module
and I be a radical ideal of R. Since M is finitely generated faithful, (IM :
M) = I by [4, Theorem 3.1 (ii)], and since M is multiplication, rad(IM) =√
IM : MM =

√
IM = IM by [4, Theorem 2.12]. Now, let S be a non-empty

collection of radical ideals of R. Then by [4, Theorem 1.6], we have

( ∩
I∈S

I)M ⊆ rad(( ∩
I∈S

I)M) ⊆ ∩
I∈S

rad(IM) = ∩
I∈S

IM = ( ∩
I∈S

I)M.

Thus rad(( ∩
I∈S

I)M) = ∩
I∈S

rad(IM), and so M is ρ-complete. �

Lemma 3.8. Let R be a ring and I be an ideal of R. Then the R-module
R/I is ρ-complete if and only if

√
∩
J∈S

J + I = ∩
J∈S

√
(J + I), for every non-

empty collection S of radical ideals of R.

Proof. Let S be a non-empty collection of ideals of R. Then

ρ(∧S) = ρ( ∩
J∈S

J) = rad(( ∩
J∈S

J)
R

I
) = rad(

∩
J∈S

J + I

I
) =

√
∩
J∈S

J + I

I

and

∧ρ(S) = ∧{rad(J
R

I
) : J ∈ S} = ∩

J∈S
rad(J

R

I
) = ∩

J∈S
rad(

J + I

I
)

= ∩
J∈S

rad(J + I)

I
=
∩
J∈S

√
J + I

I
.

Now, Lemma 3.2 gives the result. �

Let R be a ring and M be an R-module. We say that a submodule
N of M has a radical supplement K in case K is a radical submodule of M
minimal between the radical submodules of M with respect to the property
that M = N +K.

Theorem 3.9. Let R be a ring and M be a simple R-module. Then
annRM has a radical supplement in R if and only if M is a ρ-complete module.

Proof. Since M is a simple R-module, M is isomorphic to R/m as an
R-module for some maximal ideal m of R. It is clear that m = annRM . (⇒)
Let I be a radical supplement of m and S be a non-empty subset of radical
ideals of R. By Lemma 3.8, it suffices to show that

√
m + ∩

J∈S
J = ∩

J∈S

√
m + J .

If J ⊆ m for some J ∈ S, then there is nothing to prove. Let J * m, for all
J ∈ S. Then m+I = R = m+J which implies that m+(I∩J) = R. Hence I =
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I ∩ J ⊆ J , for each J ∈ S, since I is a radical supplement of m. It follows that
R = m + I ⊆ m + ∩

J∈S
J ⊆ ∩

J∈S

√
m + J = R. Thus

√
m + ∩

J∈S
J = ∩

J∈S

√
m + J .

(⇐) Suppose that M is ρ-complete. Let S denote the set of all radical
ideals J of R such that R = m + J . Then, by Lemma 3.8, we have R =
∩
J∈S

√
m + J =

√
m + ∩

J∈S
J and hence R = m + ∩

J∈S
J . This shows that ∩

J∈S
J is

a radical supplement of m in R. �

Corollary 3.10. Let R be a semi-perfect ring and M be a semi-simple
R-module. Then M is a ρ-complete R-module.

Proof. Since M is semi-simple, M is a direct sum of simple modules Mi

(i ∈ I). By [20, Theorem 42.6], annRMi has a supplement J in RR. It follows
that

√
J is a radical supplement of annRMi in RR. In fact, if J ′ is a radical

ideal of R such that J ′ ⊆
√
J and annRMi+J

′ = R, then annRMi+J∩J ′ = R
and hence J ⊆ J ∩ J ′ ⊆ J ′. Taking radical gives that J ′ =

√
J . Therefore

by Theorem 3.9, Mi is a ρ-complete module. Hence, by Lemma 3.3(2), M is
ρ-complete. �

It is clear that, if M is a multiplication R-module, then the mapping
ρ will be an epimorphism. (In fact, for any submodule N ∈ R(M), IN =
(N : M) belongs to R(R) and we have ρ(IN ) = rad(INM) = N). If M is
also finitely generated faithful, then by Theorem 3.7, ρ will be a complete
epimorphism. However, ρ need not be a monomorphism. For example, let I
be a proper radical ideal of R which is generated by idempotent elements such
that annR(I) = 0. Then I is a finitely generated faithful multiplication R-
module and the mapping ρ : R(R) → R(I) is a complete epimorphism which
is not monomorphism, because ρ(R) = RI = I = I2 = ρ(I).

4. ρ-COMPLETE AND λ-COMPLETE MODULES

In this section, we investigate rings R such that every R-module is ρ-
complete, and study conditions for which ρ-completeness and λ-completeness
are equivalent.

Lemma 4.1. Let R be a ring. Then R is a zero-dimensional ring if and
only if

√
∩
λ∈Λ

Iλ = ∩
λ∈Λ

√
Iλ, for every family {Iλ}λ∈Λ of ideals of R.

Proof. By [2, Theorem 1.3 and Theorem 2.4]. �

Theorem 4.2. Let R be a zero-dimensional ring and M be an R-module
such that L(M) = R(M). Then M is λ-complete if and only if M is ρ-
complete.
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Proof. (⇒) Let S be a non-empty subset of R(R). Then

rad(( ∩
I∈S

I)M) = ( ∩
I∈S

I)M = ∩
I∈S

IM = ∩
I∈S

rad(IM).

Thus, by Lemma 3.2, M is a ρ-complete R-module.
(⇐) Let S be a non-empty subset of R(R). Then, by Lemma 4.1 and

hypothesis, we have

( ∩
I∈S

I)M = rad(( ∩
I∈S

I)M) = rad((
√
∩
I∈S

I)M) = rad(( ∩
I∈S

√
I)M)

= ∩
I∈S

rad(
√
IM) = ∩

I∈S
rad(IM) = ∩

I∈S
IM.

Hence, by [18, Lemma 3.1], M is a λ-complete R-module. �

Lemma 4.3. Let R be a ring, M be an R-module and N be a proper
submodule of M such that radMm(Nm) = Nm for all maximal ideals m of R.
Then radM (N) = N .

Proof. Straightforward. �

Theorem 4.4. Let R be an Artinian ring and M an R-module such that
annRM ∈ R(R). Then L(M) = R(M).

Proof. Let us denote the ring R/ annR(M) by R . Clearly dimR = 0 and
since annRM ∈ R(R), we have Nil(R) = 0. Thus by [1, Exercise 11, p. 44],
R is absolutely flat and hence every principal ideal of R is idempotent, by [1,
Exercise 27, p. 35]. According to the Lemma 4.3, without loss of generality,
we can assume that R is a local ring with the unique maximal ideal m. Let
N be a proper submodule of M , r ∈ m and m ∈ M . Then RrRm = Rr2Rm.
Thus rm = r1r

2m, for some r1 ∈ R and hence rm = 0, since 1− r1r is a unit
in R. So we have mM = 0 ⊆ N . This gives that m = (N : M) and hence N is
a prime submodule of M , that is every proper submodule of M is radical. �

Theorem 4.5. Let R be an Artinian ring. Then every R-module is ρ-
complete.

Proof. Let M be an R-module. Let S be any non-empty collection of
radical ideals of R. Because R is Artinian, there exists a finite subset S ′ of S
such that ∩

I∈S
I = ∩

I∈S′
I. Thus by [8, Corollary 2 to Proposition 1], we have

∩
I∈S

rad(IM) ⊆ ∩
I∈S′

rad(IM)=rad(( ∩
I∈S′

I)M) = rad(( ∩
I∈S

I)M) ⊆ ∩
I∈S

rad(IM).

Hence ∩
I∈S

rad(IM) = rad(( ∩
I∈S

I)M), and so by Lemma 3.2, M is ρ-

complete. �

Corollary 4.6. Let R be an Artinian ring and M be an R module such
that annRM ∈ R(R). Then M is λ-complete.



198 J.B. Harehdashti and H.F. Moghimi 12

Proof. By Theorem 4.2, Theorem 4.4 and Theorem 4.5. �

Theorem 4.7. Let R be a Boolean ring and M be an R-module. Then
M is λ-complete if and only if M is ρ-complete.

Proof. Every principal ideal of R is idempotent. The rest of the proof is
similar to the proof of Theorem 4.4. �

Lemma 4.8. Let R be a ring and I be an ideal of R. If every R-module
is a ρ-complete module, then every R/I-module is a ρ-complete R-module.

Proof. Let M be an R/I-module and S be a non-empty subset of R(R/I).
Every element of S has the form J/I for some radical ideal J of R. Let
S ′ = {J ∈ R(R) : J/I ∈ S} and consider M as an R module in the usual way.
Then we have

rad(( ∩
K∈S

K)M) = rad(( ∩
J∈S′

J/I)M) = rad((( ∩
J∈S′

J)/I)M) = rad(( ∩
J∈S′

J)M)

= ∩
J∈S′

rad(JM) = ∩
J∈S′

rad((J/I)M)

= ∩
K∈S

rad(KM).

Thus M is ρ-complete. �

Lemma 4.9. Let R be a domain with field of fractions F . Then the follo-
wing are equivalent.

(1) R is a field.

(2) Every R-module is λ-complete.

(3) Every R-module is ρ-complete.

(4) The R-module F is ρ-complete.

Proof. (1), (2) and (4) are equivalent by [18, Lemma 4.11].
(1)⇒ (3) Since every proper submodule of a module over a field is prime, the
result is clear.
(3)⇒ (4) Clear. �

Theorem 4.10. Let R be a Noetherian ring for which every R-module is
ρ-complete. Then R is Artinian.

Proof. Suppose that every R-module is ρ-complete. Let P be a prime
ideal of R. By Lemma 4.8, every R/P -module is ρ-complete and hence the
domain R/P is a field by Lemma 4.9. Thus every prime ideal of R is maximal.
By [1, Theorem 8.5], the ring R is Artinian. �

Corollary 4.11. Let R be a Noetherian ring. Then every R-module is
ρ-complete if and only if every R-module is λ-complete.
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Proof. By Theorem 4.10 and [18, Theorem 4.12]. �

Theorem 4.12. Let R be a ring and M be an R-module. Then ρ is a
complete isomorphism if and only if the mapping σ is a complete isomorphism.
Moreover, in this case, if 0 ∈ R(R), then M is a faithful R-module.

Proof. By [12, Corollary 3.4] ρ is a bijection if and only if so is σ. So we
have the result by [18, Lemma 1.1]. For the “moreover” part, assume that ρ is a
complete isomorphism, and A = annR(M). Therefore ρ(

√
A) = rad(

√
AM) =

rad(AM) = rad(0) = ρ(0). Now, since ρ is injective, we have
√
A = 0 and

hence A = 0, i.e., M is faithful. �

Corollary 4.13. Let R be a ring and M be a finitely generated R-
module. If the mapping λ : L(R) → L(M) is a complete isomorphism, then
the mapping ρ : R(R)→ R(M) is a complete isomorphism. Moreover, if R is
a domain, then M is a ρ-complete R-module.

Proof. Since λ is a complete isomorphism, by [18, Proposition 1.4], µ is
also a complete isomorphism. So σ is injective, since σ is the restriction of µ to
the set of radical submodules of M . If I ∈ R(R), then there exists a submodule
N of M such that µ(N) = I. Thus σ(radN) = µ(radN) = (radN : M) =√

(N : M) =
√
I = I, i.e., σ is surjective. Hence by [18, Lemma 1.1], σ is a

complete isomorphism and so is ρ by Theorem 4.12. For “Moreover” part, by
Theorem 4.12, M is faithful, and since λ is surjective M is a multiplication
module. Now, by Theorem 3.7, M is ρ-complete. �
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