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1. INTRODUCTION

A positive integer x is called balancing number if

1 + 2 + · · ·+ (x− 1) = (x+ 1) + · · ·+ (y − 1)

holds for some integer y ≥ x + 2. The problem of determining all balancing
numbers leads to the Pell equation y2 − 8x2 = 1, whose solutions in x can be
described by the recurrence Bn = 6Bn−1 − Bn−2 (n ≥ 2) with B0 = 0 and
B1 = 1 (see (e.g. [1, 2, 12]). Balancing numbers have been extensively studied
by many authors. Karaatli et. al. [11] expressed the positive integral solutions
of a Diophantine equation in terms of balancing numbers. Liptai [8] proved
that there is no Fibonacci balancing number except 1. In [13], the period
rank and order of the sequence of balancing numbers are studied. One of the
most general extensions of the defining equation of balancing numbers is the
Diophantine equation

1k + 2k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l,

where the exponents k and l are given positive integers. In [9] effective and
non-effective finiteness theorems for the above equation are proved. In [6] a
balancing problem of ordinary binomial coefficients is studied, and effective
and non-effective finiteness theorems are given.

The numbers Cn =
√

8B2
n + 1 is called the nth Lucas-balancing number

[12], and these numbers satisfy the recurrence relation Cn = 6Cn−1−Cn−2 with
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initial values C0 = 1, C1 = 3. The Binet forms for Bn and Cn are respectively

Bn =
αn − βn

4
√

2
, Cn =

αn + βn

2

where α = 3 + 2
√

2 and β = 3 − 2
√

2. The balancing and Lucas-balancing
numbers satisfy the identities

Bn−rBn+r = B2
n −B2

r , Cn−rCn+r = C2
n + C2

r − 1

for n ≥ r respectively. In particular, for n ≥ 1 we have

Bn−1Bn+1 = B2
n − 1 and Cn−1Cn+1 = C2

n + 8.

The identity
B1 +B3 + · · ·+B2n−1 = B2

n
gives

B2n−1 = B2
n −B2

n−1.

The proofs of the above identities are available in [14]. In the subsequent
sections, we shall use the above identities without further reference.

The intention of this paper is to develop certain interesting bounds for
reciprocal sums with terms involving balancing and Lucas-balancing numbers
in some combinations.

The reciprocal of partial infinite sums of reciprocal Fibonacci numbers has
been extensively studied by many authors (e.g., see [4, 5, 7, 10, 15]). In [3], the
following identities are shown for generalized Fibonacci numbers Gn, defined
by

Gn = aGn−1 +Gn−2 (n ≥ 2), G0 = 0, G1 = 1,

where a is a positive integer. If a = 1, then Gn’s are equal to the Fibonacci
numbers. Throughout this paper, integer part of a number is denoted by b·c.

Proposition 1.1.( ∞∑
k=n

1

Gk

)−1 =

{
Gn −Gn−1 if n is even and n ≥ 2;

Gn −Gn−1 − 1 if n is odd and n ≥ 1 .
(1)

( ∞∑
k=n

1

G2
k

)−1 =

{
aGn−1Gn − 1 if n is even and n ≥ 2;

aGn−1Gn if n is odd and n ≥ 1 .
(2)

( ∞∑
k=n

1

G2k

)−1 = G2n −G2n−2 − 1 (n ≥ 1)(3)

( ∞∑
k=n

1

G2k−1

)−1 = G2n−1 −G2n−3 (n ≥ 2)(4)
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k=n

1

G2k−1G2k+1

)−1 = G4n−1 −G4n−3 (n ≥ 1)(5)

( ∞∑
k=n

1

G2kG2k+2

)−1 = G4n+1 −G4n−1 − 1 (n ≥ 1)(6)

( ∞∑
k=n

1

G2
2k

)−1 = G4n−1 −G4n−3 − 1 (n ≥ 1)(7)

( ∞∑
k=n

1

G2
2k−1

)−1 = G4n−3 −G4n−5 (n ≥ 2)(8)

( ∞∑
k=n

1

G2k−1G2k

)−1 = G4n−2 −G4n−4 (n ≥ 1)(9)

In this paper, we shall show some analogous results for the sequences of
balancing and Luca-balancing numbers.

Proposition 1.2.( ∞∑
k=n

1

Bk

)−1 = Bn −Bn−1 − 1 (n ≥ 1)(1)

( ∞∑
k=n

1

B2
k

)−1 = B2
n −B2

n−1 − 1 = B2n−1 − 1 (n ≥ 1)(2)

( ∞∑
k=n

1

BkBk+1

)−1 = BnBn+1 −Bn−1Bn − 1 (n ≥ 1)(3)

( ∞∑
k=n

1

Ck

)−1 = Cn − Cn−1 (n ≥ 2)(4)

( ∞∑
k=n

1

C2
k

)−1 = C2
n − C2

n−1 (n ≥ 1)(5)

( ∞∑
k=n

1

CkCk+1

)−1 = CnCn+1 − Cn−1Cn + 1 (n ≥ 1)(6)
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2. RECIPROCAL SUMS INVOLVING BALANCING NUMBERS

In this section, we establish bounds for several reciprocal sums involving
balancing numbers. By using the bounds, we obtain the results in Proposi-
tion 1.2 (1), (2) and (3).

The following theorem gives sharp bounds for reciprocal sums of balancing
numbers.

Theorem 2.1. For any positive integer n,

1

Bn −Bn−1
<

∞∑
k=n

1

Bk
<

1

Bn −Bn−1 − 1
.

Proof. For any positive integer n,

1

Bn −Bn−1
− 1

Bn
=

Bn−1

Bn
2 −BnBn−1

=
Bn−1

Bn−1(Bn+1 −Bn) + 1
<

1

Bn+1 −Bn
.

Thus,
1

Bn −Bn−1
<

1

Bn
+

1

Bn+1 −Bn
.

Repeating the above steps, we can show that

1

Bn+1 −Bn
<

1

Bn+1
+

1

Bn+2 −Bn+1
.

Combining the above two inequalities, we get

1

Bn −Bn−1
<

1

Bn
+

1

Bn+1
+

1

Bn+2 −Bn+1
.

Continuing in this manner, one can arrive at the inequality

(2.1)
1

Bn −Bn−1
<
∞∑
k=n

1

Bk
.

On the other hand,

1

Bn −Bn−1 − 1
− 1

Bn
=

Bn−1 + 1

Bn
2 −BnBn−1 −Bn

=
Bn−1 + 1

Bn−1(Bn+1 −Bn)−Bn + 1

>
Bn−1

Bn−1(Bn+1 −Bn)−Bn

>
Bn−1

Bn−1(Bn+1 −Bn)−Bn−1
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=
1

Bn+1 −Bn − 1
,

which gives
1

Bn −Bn−1 − 1
>

1

Bn
+

1

Bn+1 −Bn − 1
.

Continuing in a similar fashion, we finally obtain

(2.2)
1

Bn −Bn−1 − 1
>
∞∑
k=n

1

Bk
.

Combining (2.1) and (2.2), we get the desired inequality as stated in the
theorem. �

The following theorem provides sharp bounds for the reciprocal sum of
squares of balancing numbers.

Theorem 2.2. For any positive integer n,

1

B2n−1
<
∞∑
k=n

1

B2
k

<
1

B2n−1 − 1
.

Proof. Since
Bn

Bn−1
− Bn+1

Bn
=

1

BnBn−1
> 0,

for each n > 1, we have Bn
Bn−1

> Bn+1

Bn
. Thus, for each n > 1,

1

B2n−1
− 1

B2
n

=
1

B2
n −B2

n−1
− 1

B2
n

=
B2

n−1
B2

n(B2
n −B2

n−1)

=
1

B2
n( B2

n

B2
n−1
− 1)

<
1

B2
n(

B2
n+1

B2
n
− 1)

=
1

B2
n+1 −B2

n

=
1

B2n+1
,

which yields
1

B2n−1
<

1

B2
n

+
1

B2n+1
.
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This inequality is also valid for n = 1. Recursive iteration of the last inequality
gives

(2.3)
1

B2n−1
<

∞∑
k=n

1

B2
k

.

On the other hand,

1

B2n−1 − 1
− 1

B2
n

=
1

B2
n −B2

n−1 − 1
− 1

B2
n

=
B2

n−1 + 1

B2
n(B2

n −B2
n−1 − 1)

.

For n ≥ 1,

(B2n+1 − 1)(B2
n−1 + 1)−B2

n(B2
n −B2

n−1 − 1)

= (B2
n+1 −B2

n − 1)(B2
n−1 + 1)−B2

n(B2
n −B2

n−1 − 1)

= B2
n+1B

2
n−1 +B2

n+1 −B4
n −B2

n−1 − 1

= (B2
n − 1)2 + (6Bn −Bn−1)

2 −B4
n −B2

n−1 − 1

= 34B2
n − 12BnBn−1 > 0.

Thus, we have
1

B2n−1 − 1
>

1

B2
n

+
1

B2n+1 − 1
.

Iterating recursively, we get

(2.4)
1

B2n−1 − 1
>
∞∑
k=n

1

B2
k

.

Combining inequalities (2.3) and (2.4), we get what has been claimed. �

The reciprocal sum of products of two consecutive balancing numbers has
analogous bounds. The following theorem is important in this regard.

Theorem 2.3. For any positive integer n,

1

BnBn+1 −Bn−1Bn
<

∞∑
k=n

1

BkBk+1
<

1

BnBn+1 −Bn−1Bn − 1
.

Proof. Using the fact Bn−1

Bn
< Bn

Bn+1
n ≥ 1, we have

1

BnBn+1 −Bn−1Bn
− 1

BnBn+1
=
Bn−1
Bn

(
1

B2
n+1 −Bn−1Bn+1

)
<

Bn

Bn+1

(
1

BnBn+2 −B2
n + 2

)
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<
1

Bn+1Bn+2 −BnBn+1
.

Thus,
1

BnBn+1 −Bn−1Bn
<

1

BnBn+1
+

1

Bn+1Bn+2 −BnBn+1
.

Iterating recursively, we get

(2.5)
∞∑
k=n

1

BkBk+1
>

1

BnBn+1 −Bn−1Bn
.

On the other hand,

1

BnBn+1 −Bn−1Bn − 1
− 1

BnBn+1
=

Bn−1Bn + 1

BnBn+1(BnBn+1 −Bn−1Bn − 1)

=

[
BnBn+1

(
BnBn+1

Bn−1Bn + 1
− 1

)]−1
.

Since

Bn+1Bn+2

BnBn+1 + 1
− BnBn+1

Bn−1Bn + 1

=
(B2

n − 1)(B2
n+1 − 1) +Bn+1Bn+2 −B2

nB
2
n+1 −BnBn+1

(Bn−1Bn + 1)(BnBn+1 + 1)

=
5B2

n+1 − 2BnBn+1 −B2
n + 1

(Bn−1Bn + 1)(BnBn+1 + 1)
> 0,

we have

1

BnBn+1 −Bn−1Bn − 1
− 1

BnBn+1
>

[
BnBn+1

(
Bn+1Bn+2

BnBn+1 + 1
− 1

)]−1
=

BnBn+1 + 1

BnBn+1(Bn+2Bn+1 −BnBn+1 − 1)

>
1

Bn+2Bn+1 −BnBn+1 − 1
.

The last inequality can be rearranged as

1

BnBn+1 −Bn−1Bn − 1
>

1

BnBn+1
+

1

Bn+2Bn+1 −BnBn+1 − 1
.

Repeated iteration gives

(2.6)

∞∑
k=n

1

BkBk+1
<

1

BnBn+1 −Bn−1Bn − 1
.
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Combining the inequalities (2.5) and (2.6) together, we get

1

BnBn+1 −Bn−1Bn
<

∞∑
k=n

1

BkBk+1
<

1

BnBn+1 −Bn−1Bn − 1
.

This ends the proof. �

The following theorem can be proved in a similar fashion. However, the
bounds are not as sharp as those in the previous theorems.

Theorem 2.4. For positive integers n and r ≥ 3,

1

Br
n −Br

n−1
<
∞∑
k=n

1

Br
k

<
1

Br
n − (Bn−1 − 1)r

.

3. RECIPROCAL SUMS INVOLVING LUCAS-BALANCING NUMBERS

In this section, we shall establish certain bounds for the reciprocal sums
involving Lucas-balancing numbers. By using these bounds, we obtain the
results in Proposition 1.2 (4), (5) and (6).

The following theorem provides sharp bounds for reciprocal sums of the
Lucas-balancing numbers.

Theorem 3.1. For any positive integer n ≥ 2,

1

Cn − Cn−1 + 1
<

∞∑
k=n

1

Ck
<

1

Cn − Cn−1
.

Proof. For any positive integer n ≥ 2,

1

Cn − Cn−1
− 1

Cn
=

Cn−1

Cn
2 − CnCn−1

=
Cn−1

Cn−1(Cn+1 − Cn)− 8
>

1

Cn+1 − Cn
.

Thus,
1

Cn − Cn−1
>

1

Cn
+

1

Cn+1 − Cn
.

Repeating the above steps, we can obtain

1

Cn+1 − Cn
>

1

Cn+1
+

1

Cn+2 − Cn+1
.

Combining the above two inequalities, we get

1

Cn − Cn−1
>

1

Cn
+

1

Cn+1
+

1

Cn+2 − Cn+1
.
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Continuing in this manner, one can arrive at the inequality

(3.1)
1

Cn − Cn−1
>
∞∑
k=n

1

Ck
.

On the other hand, since

1

Cn − Cn−1 + 1
− 1

Cn
=

Cn−1 − 1

C2
n − CnCn−1 + Cn

=
Cn−1 − 1

Cn−1(Cn+1 − Cn) + Cn − 8

<
Cn−1

Cn−1(Cn+1 − Cn) + Cn−1

=
1

Cn+1 − Cn + 1
,

we have
1

Cn − Cn−1 + 1
<

1

Cn
+

1

Cn+1 − Cn + 1
.

Continuing in the same way, one can obtain

(3.2)
1

Cn − Cn−1 + 1
<
∞∑
k=n

1

Ck
.

Combining inequalities (3.1) and (3.2), we get the desired inequality as stated
in the theorem. �

The following theorem provides sharp bounds for the reciprocal sum of
squares of Lucas-balancing numbers.

Theorem 3.2. For any positive integer n,

1

C2
n − C2

n−1 + 1
<

∞∑
k=n

1

C2
k

<
1

C2
n − C2

n−1

Proof. For each n ≥ 1

Cn

Cn−1
− Cn+1

Cn
=

−8

Cn−1Cn
< 0,

we have Cn
Cn−1

< Cn+1

Cn
. Thus for each n ≥ 1,

1

C2
n − C2

n−1
− 1

C2
n

=
C2
n−1

C2
n(C2

n − C2
n−1)

=
1

C2
n

(
C2

n

C2
n−1
− 1

)
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>
1

C2
n

(
C2

n+1

C2
n
− 1

)
=

1

C2
n+1 − C2

n

.

The above inequality yields

1

C2
n − C2

n−1
>

1

C2
n

+
1

C2
n+1 − C2

n

and iterating recursively, we get

(3.3)
1

C2
n − C2

n−1
>
∞∑
k=n

1

C2
k

.

On the other hand, for n ≥ 1,

1

C2
n − C2

n−1 + 1
− 1

C2
n

=
C2
n−1 − 1

C2
n(C2

n − C2
n−1 + 1)

= C−2n

(
C2
n

C2
n−1 − 1

− 1

)−1
.

If we set xn = C2
n

C2
n−1−1

, then

xn+1 − xn =
C2
n+1

C2
n − 1

− C2
n

C2
n−1 − 1

=
17C2

n − C2
n+1 + 64

(C2
n − 1)(C2

n−1 − 1)
< 0.

Hence,

C−2n

(
C2
n

C2
n−1 − 1

− 1

)−1
< C−2n

(
C2
n+1

C2
n − 1

− 1

)−1
=

C2
n − 1

C2
n(C2

n+1 − C2
n + 1)

<
1

C2
n+1 − C2

n + 1
.

Thus, we have
1

C2
n − C2

n−1 + 1
<

1

C2
n

+
1

C2
n+1 − C2

n + 1
.

Iterating recursively, we get

(3.4)
1

Cn
2 − Cn−1

2 + 1
<

∞∑
k=n

1

Ck
2 .

Combining inequalities (3.3) and (3.4), we get what has been claimed. �

The reciprocal sum of products of two consecutive Lucas-balancing num-
bers has analogous bounds. The following theorem is important in this regard.
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Theorem 3.3. For any positive integer n,

1

CnCn+1 − Cn−1Cn + 2
<
∞∑
k=n

1

CkCk+1
<

1

CnCn+1 − Cn−1Cn + 1
.

Proof. Since for each positive integer n,

(Cn−1Cn − 1)(Cn+1Cn+2 − CnCn+1 + 1)− CnCn+1(CnCn+1 − Cn−1Cn + 1)

= Cn−1CnCn+1Cn+2 − C2
nC

2
n+1 − Cn+1Cn+2 + Cn−1Cn − 1

= (C2
n + 8)(C2

n+1 + 8)− C2
nC

2
n+1 − Cn+1(6Cn+1 − Cn) + Cn−1Cn − 1

= 2C2
n+1 + 8C2

n + CnCn+1 + Cn−1Cn + 63 > 0,

we have
1

CnCn+1 − Cn−1Cn + 1
− 1

CnCn+1
=

Cn−1Cn − 1

CnCn+1(CnCn+1 − Cn−1Cn + 1)

>
1

Cn+1Cn+2 − CnCn+1 + 1
.

Thus,

1

CnCn+1 − Cn−1Cn + 1
>

1

CnCn+1
+

1

Cn+1Cn+2 − CnCn+1 + 1
.

Iterating recursively, we get

(3.5)
∞∑
k=n

1

CkCk+1
<

1

CnCn+1 − Cn−1Cn + 1
.

On the other hand,

1

CnCn+1 − Cn−1Cn + 2
− 1

CnCn+1
=

Cn−1Cn − 2

CnCn+1(CnCn+1 − Cn−1Cn + 2)

=

[
CnCn+1

(
CnCn+1

Cn−1Cn − 2
− 1

)]−1
.

Since

Cn+1Cn+2

CnCn+1 − 2
− CnCn+1

Cn−1Cn − 2

=
(C2

n + 8)(C2
n+1 + 8)− 2Cn+1Cn+2 − C2

nC
2
n+1 + 2CnCn+1

(Cn−1Cn − 2)(CnCn+1 − 2)

=
−4C2

n+1 + 4CnCn+1 + 8C2
n + 64

(Cn−1Cn − 2)(CnCn+1 − 2)
< 0,

we obtain

1

CnCn+1 − Cn−1Cn + 2
− 1

CnCn+1
<

[
CnCn+1

(
Cn+1Cn+2

CnCn+1 − 2
− 1

)]−1
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=
CnCn+1 − 2

CnCn+1(Cn+2Cn+1 − CnCn+1 + 2)

<
1

Cn+2Cn+1 − CnCn+1 + 2
.

The last inequality can be rearranged as

1

CnCn+1 − Cn−1Cn + 2
<

1

CnCn+1
+

1

Cn+2Cn+1 − CnCn+1 + 2
,

which on repeated iteration gives

(3.6)
∞∑
k=n

1

CkCk+1
>

1

CnCn+1 − Cn−1Cn + 2
.

Inequalities (3.5) and (3.6) combined together gives

1

CnCn+1 − Cn−1Cn + 2
<

∞∑
k=n

1

CkCk+1
<

1

CnCn+1 − Cn−1Cn + 1
.

This ends the proof. �

The following theorem can be proved in a similar fashion. However, the
bounds are not so sharp as compared to those in the previous theorems.

Theorem 3.4. For positive integers n and r ≥ 3

1

Cr
n − (Cn−1 − 1)r

<

∞∑
k=n

1

Cr
k

<
1

Cr
n − Cr

n−1
.

4. ADDITIONAL RESULTS

Using the techniques of last two sections, one can establish the following
results for balancing and Lucas-balancing numbers.

Proposition 4.1.

(1)

( ∞∑
k=n

1

B2k

)−1 = B2n −B2n−2 − 1 (n ≥ 1)

(2)

( ∞∑
k=n

1

B2k−1

)−1 = B2n−1 −B2n−3 − 1 (n ≥ 2)

(3)

( ∞∑
k=n

1

B2k−1B2k+1

)−1 = B2
2n −B2

2n−2 − 2 (n ≥ 1)
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(4)

( ∞∑
k=n

1

B2kB2k+2

)−1 = B2
2n+1 −B2

2n−1 − 2 (n ≥ 1)

(5)

( ∞∑
k=n

1

B2
2k

)−1 = B2
2n −B2

2n−2 − 1 (n ≥ 1)

(6)

( ∞∑
k=n

1

B2
2k−1

)−1 = B2
2n−1 −B2

2n−3 − 1 (n ≥ 2)

Proposition 4.2.

(1)

( ∞∑
k=n

1

C2k

)−1 = C2n − C2n−2 (n ≥ 1)

(2)

( ∞∑
k=n

1

C2k−1

)−1 = C2n−1 − C2n−3 (n ≥ 2)

(3)

( ∞∑
k=n

1

C2k−1C2k+1

)−1 = C2
2n − C2

2n−2 + 8 (n ≥ 1)

(4)

( ∞∑
k=n

1

C2kC2k+2

)−1 = C2
2n+1 − C2

2n−1 + 8 (n ≥ 1)

(5)

( ∞∑
k=n

1

C2
2k

)−1 = C2
2n − C2

2n−2 (n ≥ 1)

(6)

( ∞∑
k=n

1

C2
2k−1

)−1 = C2
2n−1 − C2

2n−3 (n ≥ 2)

However, it seems difficult to get results involving higher power from
Theorem 2.4 and Theorem 3.4.
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