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Let G be a group with identity e. Let R be a G-graded commutative ring andM
a graded R-module. In this paper, we will investigate gr-multiplication modules
over commutative graded rings which satisfy the condition (∗). We say that a
gr-multiplication module M over a commutative G-graded ring R satisfy the
condition(∗) if P is a graded prime submodule of M and if {Nα}α∈∆ is a family
of graded submodules of M , then P contains ∩α∈∆Nα only if P contains some
Nα. Furthermore, we introduce several results concerning gr-multiplication R-
modules.
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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, all rings are commutative with identity and all
modules are unitary. Graded prime ideals in a commutative graded ring have
been introduced and studied in [3,19,20]. A proper graded ideal P of R is said
to be a graded prime ideal of R if whenever r and s are homogeneous elements
of R such that rs ∈ P , then either r ∈ P or s ∈ P.

Graded prime submodules of graded modules over a graded commutative
rings have been introduced and studied in [1, 2, 5, 7, 8, 18]. A proper graded
submodule N of a graded module M over G-graded ring R is said to be graded
prime submodule if whenever r ∈ h(R) and m ∈ h(M) with rm ∈ N , then
either r ∈ (N :R M) or m ∈ N (see [5]). Some graded modules have no graded
prime submodules and call such modules G-primeless (see [7]). Also, graded
multiplication modules (gr-multiplication modules) over a commutative graded
rings have been introduced and studied in [4, 6, 9–11, 13, 14, 21]. A graded R-
module M over G-graded ring R is said to be graded multiplication module
(gr-multiplication module) if for every graded submodule N of M there exists
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a graded ideal I of R such that N = IM. It is clear that M is gr-multiplication
R-module if and only if N = (N :R M)M for every graded submodule N of
M (see [11]). Note that for a graded R-module M , the set of graded prime
submodules is non-empty precisely when M is a gr-multiplication module.

In [3], Al-Zoubi and Qarqaz studied a graded ring R with the following
property; (∗) If P is a graded prime ideal of R and if {Iα}α∈∆ is a family of
graded ideals of R, then P contains ∩α∈∆Iα only if P contains some Iα.

In [7, Theorem 2.5] the authors proved the following property: If R is a G-
graded ring, M a gr-multiplication module, K1,K2, . . . ,Kn a finite number of
graded R-submodules of M, and P a graded prime submodule of M such that
∩ni=1Ki ⊆ P, then Kj ⊆ P for some j ∈ {1, 2, . . . , n}. Note that this property
is not valid for every graded module. For example, let’s take a graded module
over a graded G-ring M as in [15, Example 2.4]. Then (Z×0)∩(0×Z) ⊆ (0×0),
but (Z× 0) * (0× 0) and (0× Z) * (0× 0).

In this paper, we generalize this property to infinite intersection. After
this, we introduce several results concerning gr-multiplication R-modules.

2. AN INTERSECTION CONDITION
FOR GRADED PRIME SUBMODULES

Definition 2.1. Let R be a G-graded ring. A gr-multiplication R-module
M is said to satisfy the condition (∗) if P is a graded prime submodule of
M and if {Kα}α∈∆ is a family of graded submodules of M , then P contains
∩α∈∆Kα only if P contains some Pα.

The following lemma is known (see [5] and [18]).

Lemma 2.2. Let R be a G-graded ring and M a graded R-module. Then
the following hold

(i) If I and J are graded ideals of R, then I +J and I ∩J are graded ideals.

(ii) If K is a graded submodule of M , r ∈ h(R), x ∈ h(M) and I is a graded
ideal of R, then Rx, IK and rK are graded submodules of M .

(iii) If N and K are graded submodules of M , then N + K and N ∩ K are
also graded submodules of M and (N :R M) = {r ∈ R : rM ⊆ N} is a
graded ideal of R.

(iv) Let {Kλ} be a collection of graded submodules of M . Then
∑
λ

Kλ and

∩λKλ are graded submodules of M .

Recall that a graded R-module M over a G-graded ring R is said to be
graded torsion free (gr-torsion free) R-module whenever a ∈ h(R) and m ∈M
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with am = 0 implies that either m = 0 or a = 0 (see [5]). A graded R-module
M is said to be a graded simple (gr-simple) if (0) and M are its only graded
submodules (see [16]).

Theorem 2.3. Let R be a G-graded ring and M a gr-multiplication gr-
torsion free R-module. If M satisfies the condition (∗), then M is gr-simple
module.

Proof. Suppose that M satisfies the condition (∗) and let P be the in-
tersection of all non-zero graded submodules Kα of M . Since (0) is a gra-
ded prime submodule and M satisfies the condition (∗), P 6= (0). Now let
0 6= th ∈ P ∩ h(M). Since P is the smallest non-zero graded submodule of
M and Rth ⊆ P, Rth = P. Let 0 6= rg ∈ h(R), then Rrgth ⊆ Rth. So
Rth = P = Rrgth. Then there exists an sλ ∈ h(R) such that th = sλrgth.
Since M is a gr-torsion free, rg is unit in R. Thus R is a graded field and
hence M is a gr-simple module. �

Lemma 2.4. Let R be a G-graded ring and M, M ′ be two graded R-
modules and ϕ : M → M ′ be a graded epimorphism. Let N ′ be a graded
submodule of M ′. Then P ′ is a graded prime submodule of M ′ if and only if
ϕ−1(P ′) is a graded prime submodule of M .

Proof. (⇒) Assume that P ′ is a graded prime submodule of M ′ and let
r ∈ h(R) and m ∈ h(M) such that rm ∈ ϕ−1(P ′) and m /∈ ϕ−1(P ′). Then
ϕ(rm) = rϕ(m) ∈ P ′. Since P ′ is a graded prime submodule of M ′ and ϕ(m) /∈
P ′, we get r ∈ (P ′ :R M ′), i.e., rM ′ ⊆ P ′ and so rϕ−1(M ′) = rM ⊆ ϕ−1(P ′),
i.e., r ∈ (ϕ−1(P ′) :R M). Thus ϕ−1(P ′) is a graded prime submodule of M .
(⇐)Assume that ϕ−1(P ′) is a graded prime submodule of M and let s ∈ h(R)
and m′ ∈ h(M ′) such that sm′ ∈ P ′ and m′ /∈ P ′. Since ϕ is an epimorphism,
there exists m ∈ h(M) such that ϕ(m) = m′. Thus sϕ(m) = ϕ(sm) ∈ P ′.
Hence sm ∈ ϕ−1(P ′). Since ϕ−1(P ′) is a graded prime submodule of M and
m /∈ ϕ−1(P ′), we get s ∈ (ϕ−1(P ′) :R M), i.e., sM ⊆ ϕ−1(P ′) and hence
ϕ(sM) = sϕ(M) = sM ′ ⊆ P ′, i.e., s ∈ (P ′ :R M ′). Therefore P ′ is a graded
prime submodule of M ′. �

Theorem 2.5. Let R be a G-graded ring, M a gr-multiplication R-module,
M ′ a graded R-module and ϕ : M → M ′ be a graded epimorphism. If M sa-
tisfies the condition (∗), then M ′ satisfies the condition (∗).

Proof. Assume that M satisfies the condition (∗). By [18, Theorem 2], M ′

is gr-multiplication R-module. Now let P ′ be a graded prime submodule of M ′

and let {K ′α}α∈∆ be a family of graded submodules of M ′ such that ∩α∈∆K
′
α ⊆

P ′. Since ϕ is an epimorphism of graded modules ϕ−1(∩α∈∆K
′
α) ⊆ ϕ−1(P ′).

Hence ∩α∈∆ϕ
−1(K ′α) ⊆ ϕ−1(P ′). By Lemma 2.4, ϕ−1(P ′) is a graded prime
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submodule of M . Since M satisfies the condition (∗), there exists β ∈ ∆ such
that ϕ−1(K ′β) ⊆ ϕ−1(P ′) and so K ′β ⊆ P ′. Therefore M ′ satisfies the condition
(∗). �

Lemma 2.6. Let R be a G-graded ring and M a graded R-module. If K1,
K2, . . . ,Kn are graded submodules of M , then (∩ni=1Ki :R M) = ∩ni=1(Ki :R
M).

Proof. The proof is straightforward. �

Recall that a graded R-module M over a G-graded ring R is said to be gr-
Noetherian (resp. gr-Artinian) if M satisfies the ascending (resp. descending)
chain condition for graded submodules (see [17]).

Theorem 2.7. Let R be a G-graded ring and M a gr-multiplication R-
module. If M is a gr-Artinian module, then M satisfies the condition (∗).

Proof. Let P be a graded prime submodule of M and let {Kα}α∈∆ be
a family of graded submodules of M such that ∩α∈∆Kα ⊆ P. Since M is
gr-Artinian, we get ∩α∈∆Kα = ∩ni=1Kαi for some finite subset {α1, . . . , αn} of
∆, where n ∈ Z+. Then ( ∩α∈∆Kα :R M) = (∩ni=1Kαi :R M) ⊆ (P :R M).
By Lemma 2.6, (∩ni=1Kαi :R M) = ∩ni=1(Kαi :R M) ⊆ (P :R M). Since P is
graded prime submodule of M, by [5, Proposition 2.7], (P :R M) is a graded
prime ideal of R. By [19, Proposition 1.4], we conclude that (Kαs :R M) ⊆
(P :R M) for some s ∈ Z+. Since M is a gr-multiplication module, Kαs =
(Kαs :R M)M ⊆ (P :R M)M = P. Therefore M satisfies the condition (∗). �

Recall that a graded R-module M over a G-graded ring R is said to be
graded finitely generated (finitely gr-generated) if there exist xg1, xg2, ..., xgn ∈
h(M) such that M = Rxg1+···+Rxgn (see [16]).

Theorem 2.8. Let R be a G-graded ring and M a finitely gr-generated
faithful gr-multiplication R-module. Then M satisfies the condition (∗) if and
only if R satisfies the condition (∗).

Proof. (⇒) Assume that M satisfies the condition (∗). Let I be a graded
prime ideal of R and let {Jα}α∈∆ be a family of graded ideals of R such that
∩α∈∆Jα ⊆ I. Hence ∩α∈∆JαM ⊆ IM . By [18, Corollary 3], IM is a graded
prime submodule of M . By using [18, Theorem 8(i)], we have (∩α∈∆Jα)M =
∩α∈∆(JαM) ⊆ IM. Since M satisfies the condition (∗), we get JβM ⊆ IM for
some β ∈ ∆. By [6, Lemma 3.9], Jβ ⊆ I. Therefore R satisfies the condition
(∗).

(⇐) Assume that R satisfies the condition (∗). Let P be a graded prime
submodule of M and let {Kα}α∈∆ be a family of graded submodules of M such
that ∩α∈∆Kα ⊆ P. Since M is gr-multiplication R-module by [18, Corollary
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3], there exist graded ideals Jα and graded prime ideal I such that Kα = JαM
and P = IM. By [18, Theorem 8(i)], ∩α∈∆Kα = ∩α∈∆(JαM) = (∩α∈∆Jα)M ⊆
P = IM. By [6, Lemma 3.9], ∩α∈∆Jα ⊆ I. Since R satisfies the condition (∗),
Jβ ⊆ I for some β ∈ ∆. Hence Kβ = JβM ⊆ IM = P. Therefore M satisfies
the condition (∗). �

Theorem 2.9. Let R be a G-graded ring, M a gr-multiplication R-module
and S ⊆ h(R) a multiplicative closed subset of R. If M satisfies the condition
(∗), then S−1M satisfies the condition (∗) as an S−1R-module.

Proof. Since M is gr-multiplication module, by [11, Proposition 5.8],
S−1M is gr-multiplication as an S−1R. Now let P be a graded prime sub-
module of S−1M and let {Kα}α∈∆ be a family of graded submodules of
S−1M such that ∩α∈∆Kα ⊆ P. Hence (∩α∈∆Kα) ∩ M ⊆ P ∩ M and so
∩α∈∆(Kα ∩ M) ⊆ P ∩ M. Since P ∩ M is graded prime submodule of M
and M satisfies the condition (∗), we conclude that there exists β ∈ ∆ such
that Kβ ∩M ⊆ P ∩M. Hence S−1(Kβ ∩M) ⊆ S−1(P ∩M) and so Kβ ⊆ P.
Therefore S−1M satisfies the condition (∗). �

3. gr-MULTIPLICATION MODULES

In this section, we obtain some results on gr-multiplication modules.

Theorem 3.1. Let R be a G-graded ring. Then a graded R-module M is
a gr-multiplication R-module if and only if for all graded submodules N and
K of M with AnnR(M/N) = AnnR(M/K), we have N = K.

Proof. Assume that M is a gr-multiplication R-module and N and K
are two graded submodules of M such that AnnR(M/N) = AnnR(M/K).
Since M is gr-multiplication, we get N = AnnR(M/N)M = AnnR(M/K)M =
K. Conversely, let L be a graded submodule of M . Since AnnR(M/L) =
AnnR(M/(L :R M)M), we get L = (L :R M)M. Therefore M is gr-multipli-
cation modules. �

Theorem 3.2. Let R be a G-graded ring. Then a graded R-module M
is a gr-multiplication R-module if and only if for any mg ∈ h(M) and graded
submodule N of M , (Rmg :R M) ⊆ (N :R M) implies that mg ∈ N.

Proof. (⇒) Assume that (Rmg :R M) ⊆ (N :R M) for some mg ∈ h(M)
and graded submodule N of M. Since M is a gr-multiplication R-module,
Rmg = (Rmg :R M)M ⊆ (N :R M)M = N. Thus mg ∈ N.

(⇐) Let xg ∈ h(M). Then (Rxg :R M)M is a graded submodule of the
gr-cyclic module Rxg. Since Rxg is a gr-multiplication module, (Rxg :R
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M)M = ((Rxg :R M)M : Rxg)Rxg. Hence (Rxg :R M) ⊆ (((Rxg :R M)M :R
Rxg)Rxg :R M) and so, by hypothesis, xg ∈ ((Rxg :R M)M :R Rxg)Rxg ⊆
(Rxg :R M)M. Hence Rxg = (Rxg :R M)M. It follows that M is gr-multipli-
cation module by [14, Proposition 2.3]. �

Theorem 3.3. Let R be a G-graded ring and M a graded R-module. If
for every non-zero graded submodule N of M , we have that M/N is a gr-
multiplication module and (N :R M) 6= AnnR(M), then M is gr-multiplication
module.

Proof. Let N be a nonzero graded submodule of M . Set J = (N :R M).
If JM = 0, then J = AnnR(M), which is a contradiction. So JM 6= 0. Hence
by the assumption, N/JM = (N/JM :R M/JM)(M/JM) = 0. Thus M is
gr-multiplication module. �

Theorem 3.4. Let R be a G- graded ring and M be a gr-semisimple R-
module. If M is gr-multiplication module, then for each graded endomorphism
ϕ of M , we have M = ker(ϕ)

⊕
Im(ϕ).

Proof. Let M be a gr-multiplication R-module and ϕ be a graded endo-
morphism of M. Since M is gr-semisimple and Im(ϕ) is a graded submodule
of M , there exists a graded submodule N of M , such that M = Im(ϕ)

⊕
N.

Hence M/ker(ϕ) ∼= Im(ϕ) ∼= M/N. By Theorem 3.1, ker(ϕ) = N. �

Theorem 3.5. Let R be a G-graded ring and M a graded R-module. If
M is a gr-multiplication module, then for each graded endomorphism ϕ of M ,
we have ker(ϕ) = (0 :M AnnR(M/Im(ϕ))).

Proof. Since M is gr-multiplication module and Im(ϕ) is a graded submo-
dule of M , we have Im(ϕ) = (Im(ϕ) :R M)M . Then M/(ker(ϕ)) ∼= (Im(ϕ) :R
M)M. Since AnnR((Im(ϕ) :R M)M) = AnnR(M/(0 :M (Im(ϕ) :R M))), we
conclude that AnnR(M/ker(ϕ)) = AnnR(M/(0 :M (Im(ϕ) :R M))). Since M
is gr-multiplication module, ker(ϕ) = (0 :M AnnR(M/Im(ϕ))). �

Let R be a G-graded ring and M be a graded R-module. A graded zero
divisor on M is an element r ∈ h(R) for which there exists m ∈ h(M) such
that m 6= 0 but r m = 0. The set of all graded zero-divisors on M is denoted
by G-zdvR(M). A graded module M over a G-graded ring R is said to be
gr-domain if G-zdvR(M) = 0 (see [4]).

Theorem 3.6. Let R be a G-graded ring and M a graded R-module. If
M is gr-multiplication gr-domain such that M has a gr-minimal submodule,
then M is gr-simple module.

Proof. Let N be a minimal graded submodule of M . Then (N :R M)N =
0 or (N :R M)N = N. If (N :R M)N = 0, then (N :R M) = 0 because M is
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gr-domain. Since M is gr-multiplication module, N = (N :R M)M = 0, which
is a contradiction. Hence (N :R M)N = N . There exists 0 6= mg ∈ h(M), such
that N = Rmg. Hence (Rmg :R M)Rmg = Rmg. Thus mg = thmg for some
th ∈ (Rmg :R M) ∩ h(R). Since M is gr-domain, th = 1. Hence (N :R M) = R
and so N = M. �

Theorem 3.7. Let R be a G-graded ring and M a graded R-module. If
M is gr-semisimple module such that (N :R M) 6= AnnR(M) for every gr-
minimal submodule N of M , then M is gr-multiplication module.

Proof. Let N be a graded submodule of M . Since N is a gr-semisimple
module, there exists a collection {Kα}α∈I of gr-minimal submodules of M such
that N =

∑
α∈I

Kα. Since Kα is gr-minimal and (Kα :R M) 6= AnnR(M) for each

α ∈ I, we have Kα = (Kα :R M)M. Hence N =
∑
α∈I

Kα = (
∑
α∈I

(Kα :R M))M.

Thus R is gr-multiplication module. �

Theorem 3.8. Let R be a G-graded ring and M a graded R-module. If M
is a finitely gr-generated gr-multiplication R-module such that for each graded
ideal I of R and for each collection {Kα}α∈∆ of graded submodules of M , we
have (

∑
α∈∆

Kα :M I) =
∑
α∈∆

(Kα :M I), then M is a gr-Noetherian R-module.

Proof. Let K1 ⊆ K2 ⊆ K3 ⊆ · · · be an ascending chain of graded submo-

dules of M . Set I = (
∞∑
i∈1

Ki :R M). By assumption, (
∞∑
i∈1

Ki :M I) =
∞∑
i∈1

(Ki :M

I). Hence
∞∑
i∈1

(Ki :M I) = M. Since M is a finitely gr-generated R-module,

there exists a positive integer j such that (Kj :M I) = M. Hence IM ⊆ Kj .

Since M is a gr-multiplication module, we get
∞∑
i∈1

Ki ⊆ Kj . Hence
∞∑
i∈1

Ki = Kj .

Therefore M is a gr-Noetherian R-module. �
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