AN INTERSECTION CONDITION FOR GRADED PRIME SUBMODULES IN Gr-MULTIPLICATION MODULES

KHALDOUN AL-ZOUBI* and FEDA'A QARQAZ

Communicated by Constantin Năstăsescu

Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we will investigate gr-multiplication modules over commutative graded rings which satisfy the condition (*). We say that a gr-multiplication module M over a commutative G-graded ring R satisfy the condition(*) if P is a graded prime submodule of M and if $\{N_{\alpha}\}_{{\alpha}\in\Delta}$ is a family of graded submodules of M, then P contains $\cap_{{\alpha}\in\Delta}N_{\alpha}$ only if P contains some N_{α} . Furthermore, we introduce several results concerning gr-multiplication R-modules.

AMS 2010 Subject Classification: 13A02, 16W50.

Key words: graded prime submodules, intersection condition, graded multiplication.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, all rings are commutative with identity and all modules are unitary. Graded prime ideals in a commutative graded ring have been introduced and studied in [3,19,20]. A proper graded ideal P of R is said to be a graded prime ideal of R if whenever r and s are homogeneous elements of R such that $rs \in P$, then either $r \in P$ or $s \in P$.

Graded prime submodules of graded modules over a graded commutative rings have been introduced and studied in [1,2,5,7,8,18]. A proper graded submodule N of a graded module M over G-graded ring R is said to be graded prime submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $rm \in N$, then either $r \in (N :_R M)$ or $m \in N$ (see [5]). Some graded modules have no graded prime submodules and call such modules G-primeless (see [7]). Also, graded multiplication modules (gr-multiplication modules) over a commutative graded rings have been introduced and studied in [4,6,9-11,13,14,21]. A graded R-module M over G-graded ring R is said to be graded multiplication module (gr-multiplication module) if for every graded submodule N of M there exists

^{*} Corresponding author.

a graded ideal I of R such that N = IM. It is clear that M is gr-multiplication R-module if and only if $N = (N :_R M)M$ for every graded submodule N of M (see [11]). Note that for a graded R-module M, the set of graded prime submodules is non-empty precisely when M is a gr-multiplication module.

In [3], Al-Zoubi and Qarqaz studied a graded ring R with the following property; (*) If P is a graded prime ideal of R and if $\{I_{\alpha}\}_{{\alpha}\in\Delta}$ is a family of graded ideals of R, then P contains $\cap_{{\alpha}\in\Delta}I_{\alpha}$ only if P contains some I_{α} .

In [7, Theorem 2.5] the authors proved the following property: If R is a G-graded ring, M a gr-multiplication module, K_1, K_2, \ldots, K_n a finite number of graded R-submodules of M, and P a graded prime submodule of M such that $\bigcap_{i=1}^n K_i \subseteq P$, then $K_j \subseteq P$ for some $j \in \{1, 2, \ldots, n\}$. Note that this property is not valid for every graded module. For example, let's take a graded module over a graded G-ring M as in [15, Example 2.4]. Then $(\mathbb{Z} \times 0) \cap (0 \times \mathbb{Z}) \subseteq (0 \times 0)$, but $(\mathbb{Z} \times 0) \nsubseteq (0 \times 0)$ and $(0 \times \mathbb{Z}) \nsubseteq (0 \times 0)$.

In this paper, we generalize this property to infinite intersection. After this, we introduce several results concerning gr-multiplication R-modules.

2. AN INTERSECTION CONDITION FOR GRADED PRIME SUBMODULES

Definition 2.1. Let R be a G-graded ring. A gr-multiplication R-module M is said to satisfy the condition (*) if P is a graded prime submodule of M and if $\{K_{\alpha}\}_{{\alpha}\in\Delta}$ is a family of graded submodules of M, then P contains $\cap_{{\alpha}\in\Delta}K_{\alpha}$ only if P contains some P_{α} .

The following lemma is known (see [5] and [18]).

Lemma 2.2. Let R be a G-graded ring and M a graded R-module. Then the following hold

- (i) If I and J are graded ideals of R, then I + J and $I \cap J$ are graded ideals.
- (ii) If K is a graded submodule of M, $r \in h(R)$, $x \in h(M)$ and I is a graded ideal of R, then Rx, IK and rK are graded submodules of M.
- (iii) If N and K are graded submodules of M, then N+K and $N\cap K$ are also graded submodules of M and $(N:_R M)=\{r\in R: rM\subseteq N\}$ is a graded ideal of R.
- (iv) Let $\{K_{\lambda}\}$ be a collection of graded submodules of M. Then $\sum_{\lambda} K_{\lambda}$ and $\bigcap_{\lambda} K_{\lambda}$ are graded submodules of M.

Recall that a graded R-module M over a G-graded ring R is said to be graded torsion free (gr-torsion free) R-module whenever $a \in h(R)$ and $m \in M$

with am = 0 implies that either m = 0 or a = 0 (see [5]). A graded R-module M is said to be a graded simple (gr-simple) if (0) and M are its only graded submodules (see [16]).

Theorem 2.3. Let R be a G-graded ring and M a gr-multiplication gr-torsion free R-module. If M satisfies the condition (*), then M is gr-simple module.

Proof. Suppose that M satisfies the condition (*) and let P be the intersection of all non-zero graded submodules K_{α} of M. Since (0) is a graded prime submodule and M satisfies the condition (*), $P \neq (0)$. Now let $0 \neq t_h \in P \cap h(M)$. Since P is the smallest non-zero graded submodule of M and $Rt_h \subseteq P$, $Rt_h = P$. Let $0 \neq r_g \in h(R)$, then $Rr_gt_h \subseteq Rt_h$. So $Rt_h = P = Rr_gt_h$. Then there exists an $s_{\lambda} \in h(R)$ such that $t_h = s_{\lambda}r_gt_h$. Since M is a gr-torsion free, r_g is unit in R. Thus R is a graded field and hence M is a gr-simple module. \square

Lemma 2.4. Let R be a G-graded ring and M, M' be two graded R-modules and $\varphi: M \to M'$ be a graded epimorphism. Let N' be a graded submodule of M'. Then P' is a graded prime submodule of M' if and only if $\varphi^{-1}(P')$ is a graded prime submodule of M.

Proof. (⇒) Assume that P' is a graded prime submodule of M' and let $r \in h(R)$ and $m \in h(M)$ such that $rm \in \varphi^{-1}(P')$ and $m \notin \varphi^{-1}(P')$. Then $\varphi(rm) = r\varphi(m) \in P'$. Since P' is a graded prime submodule of M' and $\varphi(m) \notin P'$, we get $r \in (P':_R M')$, i.e., $rM' \subseteq P'$ and so $r\varphi^{-1}(M') = rM \subseteq \varphi^{-1}(P')$, i.e., $r \in (\varphi^{-1}(P'):_R M)$. Thus $\varphi^{-1}(P')$ is a graded prime submodule of M. (⇐)Assume that $\varphi^{-1}(P')$ is a graded prime submodule of M and let $s \in h(R)$ and $m' \in h(M')$ such that $sm' \in P'$ and $m' \notin P'$. Since φ is an epimorphism, there exists $m \in h(M)$ such that $\varphi(m) = m'$. Thus $s\varphi(m) = \varphi(sm) \in P'$. Hence $sm \in \varphi^{-1}(P')$. Since $\varphi^{-1}(P')$ is a graded prime submodule of M and $m \notin \varphi^{-1}(P')$, we get $s \in (\varphi^{-1}(P'):_R M)$, i.e., $sM \subseteq \varphi^{-1}(P')$ and hence $\varphi(sM) = s\varphi(M) = sM' \subseteq P'$, i.e., $s \in (P':_R M')$. Therefore P' is a graded prime submodule of M'. □

Theorem 2.5. Let R be a G-graded ring, M a gr-multiplication R-module, M' a graded R-module and $\varphi: M \to M'$ be a graded epimorphism. If M satisfies the condition (*), then M' satisfies the condition (*).

Proof. Assume that M satisfies the condition (*). By [18, Theorem 2], M' is gr-multiplication R-module. Now let P' be a graded prime submodule of M' and let $\{K'_{\alpha}\}_{{\alpha}\in\Delta}$ be a family of graded submodules of M' such that $\bigcap_{{\alpha}\in\Delta}K'_{\alpha}\subseteq P'$. Since φ is an epimorphism of graded modules $\varphi^{-1}(\bigcap_{{\alpha}\in\Delta}K'_{\alpha})\subseteq \varphi^{-1}(P')$. Hence $\bigcap_{{\alpha}\in\Delta}\varphi^{-1}(K'_{\alpha})\subseteq \varphi^{-1}(P')$. By Lemma 2.4, $\varphi^{-1}(P')$ is a graded prime

submodule of M. Since M satisfies the condition (*), there exists $\beta \in \Delta$ such that $\varphi^{-1}(K'_{\beta}) \subseteq \varphi^{-1}(P')$ and so $K'_{\beta} \subseteq P'$. Therefore M' satisfies the condition (*). \square

LEMMA 2.6. Let R be a G-graded ring and M a graded R-module. If K_1 , K_2, \ldots, K_n are graded submodules of M, then $(\cap_{i=1}^n K_i :_R M) = \cap_{i=1}^n (K_i :_R M)$.

Proof. The proof is straightforward. \Box

Recall that a graded R-module M over a G-graded ring R is said to be gr-Noetherian (resp. gr-Artinian) if M satisfies the ascending (resp. descending) chain condition for graded submodules (see [17]).

Theorem 2.7. Let R be a G-graded ring and M a gr-multiplication R-module. If M is a gr-Artinian module, then M satisfies the condition (*).

Proof. Let P be a graded prime submodule of M and let $\{K_{\alpha}\}_{\alpha\in\Delta}$ be a family of graded submodules of M such that $\cap_{\alpha\in\Delta}K_{\alpha}\subseteq P$. Since M is gr-Artinian, we get $\cap_{\alpha\in\Delta}K_{\alpha}=\cap_{i=1}^nK_{\alpha_i}$ for some finite subset $\{\alpha_1,\ldots,\alpha_n\}$ of Δ , where $n\in\mathbb{Z}^+$. Then $(\cap_{\alpha\in\Delta}K_{\alpha}:_RM)=(\cap_{i=1}^nK_{\alpha_i}:_RM)\subseteq (P:_RM)$. By Lemma 2.6, $(\cap_{i=1}^nK_{\alpha_i}:_RM)=\cap_{i=1}^n(K_{\alpha_i}:_RM)\subseteq (P:_RM)$. Since P is graded prime submodule of M, by [5, Proposition 2.7], $(P:_RM)$ is a graded prime ideal of R. By [19, Proposition 1.4], we conclude that $(K_{\alpha_s}:_RM)\subseteq (P:_RM)$ for some $s\in\mathbb{Z}^+$. Since M is a gr-multiplication module, $K_{\alpha_s}=(K_{\alpha_s}:_RM)M\subseteq (P:_RM)M=P$. Therefore M satisfies the condition (*). \square

Recall that a graded R-module M over a G-graded ring R is said to be graded finitely generated (finitely gr-generated) if there exist $x_{g1}, x_{g2}, ..., x_{gn} \in h(M)$ such that $M = Rx_{g1} + \cdots + Rx_{gn}$ (see [16]).

Theorem 2.8. Let R be a G-graded ring and M a finitely gr-generated faithful gr-multiplication R-module. Then M satisfies the condition (*) if and only if R satisfies the condition (*).

Proof. (\Rightarrow) Assume that M satisfies the condition (*). Let I be a graded prime ideal of R and let $\{J_{\alpha}\}_{{\alpha}\in\Delta}$ be a family of graded ideals of R such that $\cap_{{\alpha}\in\Delta}J_{\alpha}\subseteq I$. Hence $\cap_{{\alpha}\in\Delta}J_{\alpha}M\subseteq IM$. By [18, Corollary 3], IM is a graded prime submodule of M. By using [18, Theorem 8(i)], we have $(\cap_{{\alpha}\in\Delta}J_{\alpha})M=\cap_{{\alpha}\in\Delta}(J_{\alpha}M)\subseteq IM$. Since M satisfies the condition (*), we get $J_{\beta}M\subseteq IM$ for some $\beta\in\Delta$. By [6, Lemma 3.9], $J_{\beta}\subseteq I$. Therefore R satisfies the condition (*).

 (\Leftarrow) Assume that R satisfies the condition (*). Let P be a graded prime submodule of M and let $\{K_{\alpha}\}_{{\alpha}\in\Delta}$ be a family of graded submodules of M such that $\cap_{{\alpha}\in\Delta}K_{\alpha}\subseteq P$. Since M is gr-multiplication R-module by [18, Corollary

3], there exist graded ideals J_{α} and graded prime ideal I such that $K_{\alpha} = J_{\alpha}M$ and P = IM. By [18, Theorem 8(i)], $\bigcap_{\alpha \in \Delta} K_{\alpha} = \bigcap_{\alpha \in \Delta} (J_{\alpha}M) = (\bigcap_{\alpha \in \Delta} J_{\alpha})M \subseteq P = IM$. By [6, Lemma 3.9], $\bigcap_{\alpha \in \Delta} J_{\alpha} \subseteq I$. Since R satisfies the condition (*), $J_{\beta} \subseteq I$ for some $\beta \in \Delta$. Hence $K_{\beta} = J_{\beta}M \subseteq IM = P$. Therefore M satisfies the condition (*). \square

THEOREM 2.9. Let R be a G-graded ring, M a gr-multiplication R-module and $S \subseteq h(R)$ a multiplicative closed subset of R. If M satisfies the condition (*), then $S^{-1}M$ satisfies the condition (*) as an $S^{-1}R$ -module.

Proof. Since M is gr-multiplication module, by [11, Proposition 5.8], $S^{-1}M$ is gr-multiplication as an $S^{-1}R$. Now let P be a graded prime submodule of $S^{-1}M$ and let $\{K_{\alpha}\}_{\alpha\in\Delta}$ be a family of graded submodules of $S^{-1}M$ such that $\cap_{\alpha\in\Delta}K_{\alpha}\subseteq P$. Hence $(\cap_{\alpha\in\Delta}K_{\alpha})\cap M\subseteq P\cap M$ and so $\cap_{\alpha\in\Delta}(K_{\alpha}\cap M)\subseteq P\cap M$. Since $P\cap M$ is graded prime submodule of M and M satisfies the condition (*), we conclude that there exists $\beta\in\Delta$ such that $K_{\beta}\cap M\subseteq P\cap M$. Hence $S^{-1}(K_{\beta}\cap M)\subseteq S^{-1}(P\cap M)$ and so $K_{\beta}\subseteq P$. Therefore $S^{-1}M$ satisfies the condition (*). \square

3. gr-MULTIPLICATION MODULES

In this section, we obtain some results on gr-multiplication modules.

Theorem 3.1. Let R be a G-graded ring. Then a graded R-module M is a gr-multiplication R-module if and only if for all graded submodules N and K of M with $Ann_R(M/N) = Ann_R(M/K)$, we have N = K.

Proof. Assume that M is a gr-multiplication R-module and N and K are two graded submodules of M such that $Ann_R(M/N) = Ann_R(M/K)$. Since M is gr-multiplication, we get $N = Ann_R(M/N)M = Ann_R(M/K)M = K$. Conversely, let L be a graded submodule of M. Since $Ann_R(M/L) = Ann_R(M/(L:_R M)M)$, we get $L = (L:_R M)M$. Therefore M is gr-multiplication modules. \square

THEOREM 3.2. Let R be a G-graded ring. Then a graded R-module M is a gr-multiplication R-module if and only if for any $m_g \in h(M)$ and graded submodule N of M, $(Rm_g:_R M) \subseteq (N:_R M)$ implies that $m_g \in N$.

Proof. (\Rightarrow) Assume that $(Rm_g:_R M) \subseteq (N:_R M)$ for some $m_g \in h(M)$ and graded submodule N of M. Since M is a gr-multiplication R-module, $Rm_g = (Rm_g:_R M)M \subseteq (N:_R M)M = N$. Thus $m_g \in N$.

 (\Leftarrow) Let $x_g \in h(M)$. Then $(Rx_g :_R M)M$ is a graded submodule of the gr-cyclic module Rx_g . Since Rx_g is a gr-multiplication module, $(Rx_g :_R M)M$

 $M)M = ((Rx_g :_R M)M : Rx_g)Rx_g$. Hence $(Rx_g :_R M) \subseteq (((Rx_g :_R M)M :_R Rx_g)Rx_g :_R M)$ and so, by hypothesis, $x_g \in ((Rx_g :_R M)M :_R Rx_g)Rx_g \subseteq (Rx_g :_R M)M$. Hence $Rx_g = (Rx_g :_R M)M$. It follows that M is gr-multiplication module by [14, Proposition 2.3]. \square

THEOREM 3.3. Let R be a G-graded ring and M a graded R-module. If for every non-zero graded submodule N of M, we have that M/N is a gr-multiplication module and $(N:_R M) \neq Ann_R(M)$, then M is gr-multiplication module.

Proof. Let N be a nonzero graded submodule of M. Set $J=(N:_R M)$. If JM=0, then $J=Ann_R(M)$, which is a contradiction. So $JM\neq 0$. Hence by the assumption, $N/JM=(N/JM:_R M/JM)(M/JM)=0$. Thus M is gr-multiplication module. \square

THEOREM 3.4. Let R be a G- graded ring and M be a gr-semisimple Rmodule. If M is gr-multiplication module, then for each graded endomorphism φ of M, we have $M = ker(\varphi) \bigoplus Im(\varphi)$.

Proof. Let M be a gr-multiplication R-module and φ be a graded endomorphism of M. Since M is gr-semisimple and $Im(\varphi)$ is a graded submodule of M, there exists a graded submodule N of M, such that $M = Im(\varphi) \bigoplus N$. Hence $M/ker(\varphi) \cong Im(\varphi) \cong M/N$. By Theorem 3.1, $ker(\varphi) = N$. \square

THEOREM 3.5. Let R be a G-graded ring and M a graded R-module. If M is a gr-multiplication module, then for each graded endomorphism φ of M, we have $ker(\varphi) = (0:_M Ann_R(M/Im(\varphi)))$.

Proof. Since M is gr-multiplication module and $Im(\varphi)$ is a graded submodule of M, we have $Im(\varphi) = (Im(\varphi):_R M)M$. Then $M/(ker(\varphi)) \cong (Im(\varphi):_R M)M$. Since $Ann_R((Im(\varphi):_R M)M) = Ann_R(M/(0:_M (Im(\varphi):_R M)))$, we conclude that $Ann_R(M/ker(\varphi)) = Ann_R(M/(0:_M (Im(\varphi):_R M)))$. Since M is gr-multiplication module, $ker(\varphi) = (0:_M Ann_R(M/Im(\varphi)))$. \square

Let R be a G-graded ring and M be a graded R-module. A graded zero divisor on M is an element $r \in h(R)$ for which there exists $m \in h(M)$ such that $m \neq 0$ but r = 0. The set of all graded zero-divisors on M is denoted by G- $zdv_R(M)$. A graded module M over a G-graded ring R is said to be gr-domain if G- $zdv_R(M) = 0$ (see [4]).

Theorem 3.6. Let R be a G-graded ring and M a graded R-module. If M is gr-multiplication gr-domain such that M has a gr-minimal submodule, then M is gr-simple module.

Proof. Let N be a minimal graded submodule of M. Then $(N :_R M)N = 0$ or $(N :_R M)N = N$. If $(N :_R M)N = 0$, then $(N :_R M) = 0$ because M is

gr-domain. Since M is gr-multiplication module, $N=(N:_R M)M=0$, which is a contradiction. Hence $(N:_R M)N=N$. There exists $0\neq m_g\in h(M)$, such that $N=Rm_g$. Hence $(Rm_g:_R M)Rm_g=Rm_g$. Thus $m_g=t_hm_g$ for some $t_h\in (Rm_g:_R M)\cap h(R)$. Since M is gr-domain, $t_h=1$. Hence $(N:_R M)=R$ and so N=M. \square

THEOREM 3.7. Let R be a G-graded ring and M a graded R-module. If M is gr-semisimple module such that $(N :_R M) \neq Ann_R(M)$ for every gr-minimal submodule N of M, then M is gr-multiplication module.

Proof. Let N be a graded submodule of M. Since N is a gr-semisimple module, there exists a collection $\{K_{\alpha}\}_{{\alpha}\in I}$ of gr-minimal submodules of M such that $N=\sum_{{\alpha}\in I}K_{\alpha}$. Since K_{α} is gr-minimal and $(K_{\alpha}:_RM)\neq Ann_R(M)$ for each ${\alpha}\in I$, we have $K_{\alpha}=(K_{\alpha}:_RM)M$. Hence $N=\sum_{{\alpha}\in I}K_{\alpha}=(\sum_{{\alpha}\in I}(K_{\alpha}:_RM))M$. Thus R is gr-multiplication module. \square

THEOREM 3.8. Let R be a G-graded ring and M a graded R-module. If M is a finitely gr-generated gr-multiplication R-module such that for each graded ideal I of R and for each collection $\{K_{\alpha}\}_{\alpha\in\Delta}$ of graded submodules of M, we have $(\sum_{\alpha\in\Delta}K_{\alpha}:_{M}I)=\sum_{\alpha\in\Delta}(K_{\alpha}:_{M}I)$, then M is a gr-Noetherian R-module.

Proof. Let $K_1 \subseteq K_2 \subseteq K_3 \subseteq \cdots$ be an ascending chain of graded submodules of M. Set $I = (\sum_{i \in I}^{\infty} K_i :_R M)$. By assumption, $(\sum_{i \in I}^{\infty} K_i :_M I) = \sum_{i \in I}^{\infty} (K_i :_M I)$. Hence $\sum_{i \in I}^{\infty} (K_i :_M I) = M$. Since M is a finitely gr-generated R-module, there exists a positive integer j such that $(K_j :_M I) = M$. Hence $IM \subseteq K_j$. Since M is a gr-multiplication module, we get $\sum_{i \in I}^{\infty} K_i \subseteq K_j$. Hence $\sum_{i \in I}^{\infty} K_i = K_j$. Therefore M is a gr-Noetherian R-module. \square

Acknowledgements. The authors wish to thank sincerely the referees for their valuable comments and suggestions.

REFERENCES

- K. Al-Zoubi and R. Abu-Dawwas, On graded quasi-prime submodules. Kyungpook Math. J. 55 (2015), 2, 259–266.
- [2] K. Al-Zoubi, M. Jaradat and R. Abu-Dawwa, On graded classical prime and graded prime submodules. Bull. Iranian Math. Soc. 41 (2015), 1, 217–225.
- [3] K. Al-Zoubi and F. Qarqaz, An intersection condition for graded prime ideals. Boll. Unione Mat. Ital. (In press)

- [4] H. Ansari-Toroghy and F. Farshadifar, Graded comultiplication modules. Chiang Mai J. Sci. 38 (2011), 3, 311–320.
- [5] S.E. Atani, On graded prime submodules. Chiang Mai. J. Sci. 33 (2006), 1, 3–7.
- [6] S.E. Atani and R.E. Atani, Graded multiplication modules and the graded ideal $\theta_g(M)$. Turkish J. Math. **33** (2009), 1–9.
- [7] S.E Atani and F. Farzalipour, Notes on the graded prime submodules. Int. Math. Forum 1 38 (2006), 1871–1880.
- [8] S.E. Atani and F. Farzalipour, On graded secondary modules. Turkish J. Math. 31 (2007), 371–378.
- [9] S.E. Atani and F.E.K. Saraei, Graded modules which satisfy the Gr-Radical formula. Thai J. Math. 8 (2010), 1, 161–170.
- [10] J. Escoriza and B. Torrecillas, Multiplication rings and graded rings. Comm. Algebra 27 (1999), 12, 6213–6232.
- [11] J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories. Comm. Algebra 26 (1998), 6, 1867–1883.
- [12] R. Hazrat, Graded Rings and Graded Grothendieck Groups. Cambridge Univ. Press, Cambridge, 2016.
- [13] P. Ghiasvand and F. Farzalipour, On graded weak multiplication modules. Tamkang J. Math. 43 (2012), 171–177.
- [14] P. Ghiasvand and F. Farzalipour, Some properties of graded multiplication modules. Far East J. Math. Sci. 34 (2009), 341–352.
- [15] S.C. Lee and R. Varmazyar, Semiprime submodules of graded multiplication modules. J. Korean Math. Soc. 49 (2012), 435–447.
- [16] C. Nastasescu and V.F. Oystaeyen, Graded Ring Theory. North-Holland Mathematical Library 28, North-Holland, Amsterdam, 1982.
- [17] C. Nastasescu and V.F. Oystaeyen, Methods of Graded Rings. Lecture Notes in Math. 1836, Berlin-Heidelberg: Springer-Verlag, 2004.
- [18] K.H Oral, U. Tekir and A.G. Agargun, On graded prime and primary submodules. Turkish J. Math. 35 (2011), 159–167.
- [19] M. Refai and K. Al-Zoubi, On graded primary ideals. Turkish J. Math. 28 (2004), 217–229.
- [20] R.N. Uregen, U. Tekir and K.H. Oral, On the union of graded prime ideals. Open Phys. 14 (2016), 114–118.
- [21] N. Zamani, Finitely generated graded multiplication modules. Glasg. Math. J. 53 (2011), 3, 693-705.

Received 14 July 2016

Jordan University of Science and Technology
Department of Mathematics and Statistics
P.O. Box 3030
Irbid 22110
Jordan
kfzoubi@just.edu.jo

Jordan University of Science and Technology
Department of Mathematics and Statistics
P.O. Box 3030
Irbid 22110
Jordan