DUAL TOPOLOGY OF GENERALIZED MOTION GROUPS

AYMEN RAHALI

Communicated by Vasile Brînzănescu

Let K be a connected compact Lie group acting on a finite dimensional vector space (V, \langle, \rangle) . We consider the semidirect product $G = K \ltimes V$. There are a dense open subset Λ of the dual vector space V^* of V and a subgroup H of K such that for each $\ell \in \Lambda$ the stability group K_ℓ is conjugate to H. Let $\Lambda_H := \{\ell \in \Lambda; K_\ell = H\}$ and $\Lambda_{(H,K)} := \Lambda_H/K$ where ℓ and ℓ' in Λ_H are identified if they are on the same K-orbit in V^* . We define the subspace $(\hat{G})_{H,K}$ of the unitary dual \hat{G} of G by

$$(\widehat{G})_{H,K} := \{ Ind_{H \ltimes V}^{K \ltimes V}(\rho \otimes \chi_{\ell}); \ \rho \in \widehat{H}, \chi_{\ell} \in \widehat{V}, \ell \in \Lambda_{(H,K)} \}.$$

In this paper, we give a precise description of the set $(\hat{G})_{H,K}$ and we determine explicitly the topology of the space $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ which is formed by all the admissible coadjoint orbits $\mathcal{O}_{(\mu,\ell)}^G$, where μ is the highest weight of $\rho \in \hat{H}$ and $\ell \in \Lambda_{(H,K)}$. Also, we show that the topological spaces $(\hat{G})_{H,K}$ and $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ are homeomorphic.

AMS 2010 Subject Classification: 22D10, 22E27, 22E45.

Key words: Lie groups, semidirect product, representations, coadjoint orbits.

1. INTRODUCTION

Let G be a locally compact group. By the unitary dual \widehat{G} of G, we mean the set of all equivalence classes unitary representations of G equipped with the Fell topology (see [6]). One of the most elegant results in the theory of unitary representations is attached to the determination of the topology of \widehat{G} . Following the Kirillov mapping, it is well-known that for a simply connected nilpotent Lie group and more generally for an exponential solvable Lie group $G = exp(\mathfrak{g})$, its dual space \widehat{G} is homeomorphic to the coadjoint orbits \mathfrak{g}^*/G (see [14]). In the context of the semi direct product $G = K \ltimes N$ of compact connected Lie groups K acting on simply connected nilpotent Lie groups N, we have again a concrete geometric parametrization of \widehat{G} by the so-called admissible coadjoint orbits (see [15]). A part from this parametrization, we can ask: is the topology of \hat{G} related to the topology of the admissible coadjoint orbits?

In this direction, an affirmative answer to this question was given for the Euclidean motion groups (see [5]), and it was generalized to a class of Cartan motion groups in [3].

In the present work, we consider the semidirect product $G = K \ltimes V$ of compact connected Lie groups K acting on a finite dimensional vector space V. It is worth mentioning here that there are a dense open subset Λ of the dual vector space V^* of V and a subgroup H of K such that for each $\ell \in \Lambda$ the stability group K_{ℓ} is conjugate to H (for more details, see [11]). We can assume that Λ is invariant under the action of K and we define the subset Λ_H of Λ by

$$\Lambda_H := \{\ell \in \Lambda; \ K_\ell = H\}.$$

Let $\Lambda_{(H,K)} := \Lambda_H / K$ where ℓ and ℓ' in Λ_H are identified if they are on the same K-orbit in V^* . We define a certain subspace $(\widehat{G})_{H,K} \subset \widehat{G}$ that is generic in some sense as follows:

$$(\widehat{G})_{H,K} := \{ Ind_{H \ltimes V}^{K \ltimes V}(\rho \otimes \chi_{\ell}); \ \rho \in \widehat{H}, \chi_{\ell} \in \widehat{V}, \ell \in \Lambda_{(H,K)} \}.$$

For every admissible linear form ψ of the Lie algebra \mathfrak{g} of G, we can construct an irreducible unitary representation π_{ψ} by holomorphic induction and according to Lipsman (see [15]), every irreducible representation of G arises in this manner. Then we get a map from the set \mathfrak{g}^{\ddagger} of the admissible linear forms onto the dual space \widehat{G} of G. Note that π_{ψ} is equivalent to $\pi_{\psi'}$ if and only if ψ and ψ' are on the same G-orbit, finally we obtain a bijection between the space $\mathfrak{g}^{\ddagger}/G$ of admissible coadjoint orbits and the unitary dual \widehat{G} .

In this paper, we show that the subspace $(\widehat{G})_{H,K}$ is homeomorphic to the subspace $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ of $\mathfrak{g}^{\ddagger}/G$ which is formed by all the admissible coadjoint orbits $\mathcal{O}_{(\mu,\ell)}^G$, where μ is the highest weight of $\rho \in \widehat{H}$ and $\ell \in \Lambda_{(H,K)}$.

Here we give a short description of the contents of the paper. In Section 2, we recall some results about the construction of the induced symplectic manifold (Marsden-Weinstein reduction). Section 3, serves to fix notations and an important fact worth mentioning here is that every coadjoint orbit of G is always obtained by symplectic induction. Section 4 is devoted to the description via Mackey's little group theory of the unitary dual \hat{G} , mostly in order to give a concrete parametrization for our space $(\hat{G})_{H,K}$ by Mackey parameters. In Section 5, we study the convergence in $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ in terms of Mackey parameters. In the last section, the convergence in the space $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ is studied and our results of this work are derived in Theorem 6.2.

2. SYMPLECTIC INDUCTION

Along this paper, we denote by Ad_L and Ad_L^* , respectively, the adjoint and coadjoint representations for such Lie group L. Let S be a closed Lie subgroup of a connected Lie group L and let (M, ω) be a symplectic manifold. We assume that S acts smoothly on M by symplectomorphisms and M equipped with an equivariant momentum map $J_M : M \longrightarrow \mathfrak{s}^*$, where \mathfrak{s} denotes the Lie algebra of S. Using symplectic induction one can construct in a canonical way a symplectic manifold (M_{ind}, ω_{ind}) on which L acts in a Hamiltonian way with an equivariant momentum map $J_{ind} : M_{ind} \longrightarrow \mathfrak{l}^*$ where \mathfrak{l} is the Lie algebra of L.

For the construction of the Hamiltonian spaces $(M_{ind}, \omega_{ind}, L, J_{ind})$, one proceeds as follows. It is well-known that the subgroup S acts on L by the left multiplication. We denote by φ_{T^*L} the canonical lift of this action to the symplectic manifold T^*L , equipped with its canonical symplectic form $d\nu_L$ and by identifying \mathfrak{l}^* with the left-invariant 1-forms on L, we get the natural isomorphism $T^*L \cong L \times \mathfrak{l}^*$. Then the action of S on T^*L is given by

$$\varphi_{T^*L}(h)(g,f) = (gh^{-1}, Ad_S^*(h)f).$$

Let φ_M be the action of S on M, so S acts on $\widetilde{M} = M \times T^*L$ by the action $\varphi_{\widetilde{M}}$ defined by

(2.1)
$$\varphi_{\widetilde{M}}(h)(m,g,f) = \left(\varphi_M(h)(m), gh^{-1}, Ad_S^*(h)f\right),$$

for all $h \in S$, $(m, g, f) \in M \times T^*L$. This action is symplectic for the symplectic form $\widetilde{\omega} = \omega + d\nu_L$, and it is a proper action because S is closed. Furthermore, this action admits an equivariant momentum map $J_{\widetilde{M}} = J_M + J_{T^*L}$. By observing that the element $0 \in \mathfrak{s}^*$ is a regular value for $J_{\widetilde{M}}$, then the quotient $M_{ind} = J_{\widetilde{M}}^{-1}(0)/S$ is a symplectic manifold (Marsden-Weinstein reduction). We call M_{ind} induced symplectic manifold and some times we denote it by $Ind_S^L M$.

In order to obtain a Hamiltonian action of L on M_{ind} we remark that the group L acts naturally on itself on the left, the canonical lift of this action to T^*L is Hamiltonian and we let also L act trivially on M, then we obtain a Hamiltonian action of L on \widetilde{M} with equivariant momentum map $\widetilde{J}: \widetilde{M} \longrightarrow \mathfrak{l}^*$ defined by

$$\tilde{J}(m,g,f) = Ad_L^*(g)f.$$

The S-action on M commutes with the action of L on M, hence we obtain a symplectic action of L on M_{ind} . The fact that \tilde{J} is invariant under the S-action, it descends as an equivariant momentum map for the L-action on M_{ind} denoted by J_{ind} . This finishes the production of the induced symplectic

manifold, and it was pointed out in [2], that M_{ind} is a fibre bundle over $T^*(L/S)$ with typical fibre M.

3. GENERALIZED MOTION GROUPS AND SYMPLECTIC INDUCTION

Let K be a connected compact Lie group acting unitary on a finite dimensional vector space (V, \langle, \rangle) . We write k.v and A.v (resp. $k.\ell$ and $A.\ell$) for the result of applying elements $k \in K$ and $A \in \mathfrak{k} := Lie(K)$ to $v \in V$ (resp. to $\ell \in V^*$).

Now, one can form the semidirect product $G := K \times V$ which is the socalled generalized motion group. As a set $G = K \times V$ and the multiplication in this group is given by

$$(k, v)(h, u) = (kh, v + k.u), \, \forall (k, v), (h, u) \in G.$$

The Lie algebra of G is $\mathfrak{g} = \mathfrak{k} \oplus V$ (as a vector space) and the Lie algebra structure is given by the bracket

$$[(A, a), (B, b)] = ([A, B], A.b - B.a), \, \forall (A, a), (B, b) \in \mathfrak{g}.$$

Under the identification of the dual \mathfrak{g}^* of \mathfrak{g} with $\mathfrak{t}^* \oplus V^*$, we can express the duality between \mathfrak{g} and \mathfrak{g}^* as $F(A, a) = f(A) + \ell(a)$, for all $F = (f, \ell), (A, a) \in \mathfrak{g}$. The adjoint and coadjoint representations of G are given respectively, by the following relations

$$\begin{aligned} Ad_G(k,v)(A,a) &= (Ad_K(k)A, k.a - Ad_K(k)A.v), \forall (k,v) \in G, (A,a) \in \mathfrak{g}, \\ Ad_G^*(k,v)(f,\ell) &= (Ad_K^*(k)f + k.\ell \odot v, k.\ell), \forall (k,v) \in G, (f,\ell) \in \mathfrak{g}^*, \end{aligned}$$

where $\ell \odot v$ is the element of \mathfrak{k}^* defined by

$$\ell \odot v(A) = \ell(A.v) = -(A.\ell)(v), \forall A \in \mathfrak{k}, \ell \in V^*, v \in V.$$

Therefore, the coadjoint orbit of G passing through $(f, \ell) \in \mathfrak{g}^*$ is given by

(3.1)
$$\mathcal{O}_{(f,\ell)}^G = \left\{ \left(Ad_K^*(k)f + k.\ell \odot v, k.\ell \right), k \in K, v \in V \right\}.$$

For $\ell \in V^*$, we define $K_{\ell} := \{k \in K; k.\ell = \ell\}$ the isotropy subgroup of ℓ in K and the Lie algebra of K_{ℓ} is given by the vector space $\mathfrak{k}_{\ell} = \{A \in \mathfrak{k}; A.\ell = 0\}$. Hence, if we define the linear map $\psi_{\ell} : \mathfrak{k} \ni A \longmapsto -A.\ell \in V^*$, we obtain the equality $\mathfrak{k}_{\ell} = Ker(\psi_{\ell})$.

Let $\imath_{\ell}: \mathfrak{k}_{\ell} \hookrightarrow \mathfrak{k}$ be the injection map, then $\imath_{\ell}^*: \mathfrak{k}^* \longrightarrow \mathfrak{k}_{\ell}^*$ is the projection map and we have

(3.2)
$$\mathfrak{k}_{\ell}^{\circ} = Ker(i_{\ell}^{*})$$

where $\mathfrak{k}_{\ell}^{\circ}$ is the annihilator of \mathfrak{k}_{ℓ} (for more details see [2]).

It is well-known that the coadjoint orbit $\mathcal{O}_{(f,\ell)}^G$ of G is symplectomorphic to a subbundle of a modified cotangent bundle, obtained by symplectic induction from a point. In this context, the following result give a more general property of the coadjoint orbit $\mathcal{O}_{(f,\ell)}^G$ and was discussed by Baguis in [2].

LEMMA 3.1. The coadjoint orbit $\mathcal{O}_{(f,\ell)}^G$ is always obtained by symplectic induction from the coadjoint orbit $\mathcal{O}_{\nu}^{G_{\ell}}$ of G_{ℓ} passing through $\nu = (i_{\ell}^*(f), \ell) \in \mathfrak{g}_{\ell}^*$, where $G_{\ell} = K_{\ell} \ltimes V$ and \mathfrak{g}_{ℓ} is the Lie algebra of G_{ℓ} .

Using the convention of Section 1 and notations of the previous Lemma, we can write

$$\mathcal{O}_{(f,\ell)}^G = Ind_{G_\ell}^G(\mathcal{O}_\nu^{G_\ell}).$$

Note that the coadjoint orbit $\mathcal{O}_{\nu}^{G_{\ell}}$ is canonically isomorphic to the coadjoint orbit $\mathcal{O}_{i_{\ell}^*(f)}^{K_{\ell}}$ of K_{ℓ} passing through $i_{\ell}^*(f)$. Let us choose the symplectic manifold M as $M = \mathcal{O}_{\nu}^{G_{\ell}}$. By applying the symplectic induction from M with the groups L and H as L = G and $H = G_{\ell}$, we obtain that

$$\mathcal{O}_{(f,\ell)}^G = M_{ind} = J_{\widetilde{M}}^{-1}(0)/G_\ell,$$

where $J_{\widetilde{M}}: \widetilde{M} = M \times T^*G \longrightarrow \mathfrak{g}_{\ell}^*$ is the momentum map of \widetilde{M} and the zero level set $J_{\widetilde{M}}^{-1}(0)$ is given by $J_{\widetilde{M}}^{-1}(0) = \left\{ \left(\left(Ad_K^*(k)(\imath_{\ell}^*(f)), \ell \right), g, \left(Ad_K^*(k)f + \ell \odot v, \ell \right) \right), \ k \in K_{\ell}, g \in G, v \in V \right\}$ (see [2]).

4. DUAL SPACES OF GENERALIZED MOTION GROUPS

We start with recalling briefly the description of the unitary dual of G via Mackey's little group theory. For every non-zero linear form ℓ on V, we denote by χ_{ℓ} the unitary character of the vector Lie group V given by $\chi_{\ell} = e^{i\ell}$. Let ρ be an irreducible unitary representation of K_{ℓ} on some Hilbert space \mathcal{H}_{ρ} . The map

$$\rho \otimes \chi_{\ell} : (k, v) \longmapsto e^{i\ell(v)}\rho(k)$$

is a representation of the Lie group $K_{\ell} \ltimes V$ such that one induces in order to get a unitary representation of G. We denote by $\mathcal{H}_{(\rho,\ell)} := L^2(K, \mathcal{H}_{\rho})^{\rho}$ the subspace of $L^2(K, \mathcal{H}_{\rho})$ consisting of all the maps ξ which satisfy the covariance condition

$$\xi(kh) = \rho(h^{-1})\xi(k), \forall k \in K, h \in K_{\ell}.$$

The induced representation

$$\pi_{(\rho,\ell)} := Ind_{K_{\ell} \ltimes V}^{K \ltimes V}(\rho \otimes \chi_{\ell})$$

is defined on $\mathcal{H}_{(\rho,\ell)}$ by

$$\pi_{(\rho,\ell)}(k,v)\xi(h) = e^{i\ell(h^{-1}.v)}\xi(k^{-1}h)$$

where $(k, v) \in G, h \in K$ and $\xi \in \mathcal{H}_{(\rho,\ell)}$. By Mackey's theory we can say that the induced representation $\pi_{(\rho,\ell)}$ is irreducible and every infinite dimensional irreducible unitary representation of G is equivalent to one of $\pi_{(\rho,\ell)}$. Moreover, tow representations $\pi_{(\rho,\ell)}$ and $\pi_{(\rho',\ell')}$ are equivalent if and only if ℓ and ℓ' are contained in the same K-orbit and the representation ρ and ρ' are equivalent under the identification of the conjugate subgroups K_{ℓ} and $K_{\ell'}$. All irreducible representations of G which are not trivial on the normal subgroup V, are obtained by this manner. On the other hand, we denote also by τ the extension of every unitary irreducible representation τ of K on G, simply defined by $\tau(k, v) = \tau(k)$ for $k \in K$ and $v \in V$. There exists a so-called principal stability subgroup for the action of K on V^* , *i.e.*, there are a dense open subset Λ of V^* and a subgroup H of K such that for each $\ell \in \Lambda$ the stability group K_{ℓ} is conjugate to H (see [11]). We can assume that Λ is invariant under the action of K and we define the subset Λ_H of Λ by

$$\Lambda_H := \{\ell \in \Lambda; \ K_\ell = H\}.$$

Let $\Lambda_{(H,K)} := \Lambda_H/K$ where ℓ and ℓ' in Λ_H are identified if they are on the same K-orbit in V^* . Below we give a certain subspace $(\widehat{G})_{H,K} \subset \widehat{G}$ which is so-called generic in some sense:

$$(\widehat{G})_{H,K} := \{ Ind_{H \ltimes V}^{K \ltimes V}(\rho \otimes \chi_{\ell}); \ \rho \in \widehat{H}, \chi_{\ell} \in \widehat{V}, \ell \in \Lambda_{(H,K)} \}.$$

Applying Mackey's analysis, we obtain the bijection

$$(\widehat{G})_{H,K} \simeq \widehat{H} \times \Lambda_{(H,K)}.$$

In the remainder of this paper, we shall assume that G is exponential, *i.e.*, K_{ℓ} is connected for all $\ell \in V^*$. Let ρ_{μ} be an irreducible representation of K_{ℓ} with highest weight μ . For simplicity, we shall write $\pi_{(\mu,\ell)}$ instead of $\pi_{(\rho_{\mu},\ell)}$ and $\mathcal{H}_{(\mu,\ell)}$ instead of $\mathcal{H}_{(\rho_{\mu},\ell)}$.

5. CONVERGENCE OF IRREDUCIBLE REPRESENTATIONS OF G

Let N be an abelian group, and assume that a compact Lie group K acts on the left on N by automorphisms. As sets, the semidirect product $K \ltimes N$ is the Cartesian product $K \times N$ and the group multiplication is given by

$$(k_1, x_1) \cdot (k_2, x_2) = (k_1 k_2, x_1 + k_1 x_2).$$

Let χ be a unitary character of N, and let K_{χ} be the stabilizer of χ under the action of K on \hat{N} defined by

$$(k \cdot \chi)(x) = \chi(k^{-1}x).$$

If ρ is an element of $\widehat{K_{\chi}}$, then the triple $(\chi, (K_{\chi}, \rho))$ is called a cataloguing triple. From the notations of [1], we denote by $\pi(\chi, K_{\chi}, \rho)$ the induced representation $Ind_{K_{\chi} \ltimes N}^{K \ltimes N}(\rho \otimes \chi)$. Referring to [1, p. 187], we have

PROPOSITION 1. The mapping $(\chi, (K_{\chi}, \rho)) \longrightarrow \pi(\chi, K_{\chi}, \rho)$ is onto $\widehat{K \ltimes N}$.

Let $\mathcal{A}(K)$ be the set of all pairs (K', ρ') , where K' is a closed subgroup of K and ρ' is an irreducible representation of K'. We equip $\mathcal{A}(K)$ with the Fell topology (see [6]). Therefore, every element in $\widehat{K \ltimes N}$ can be catalogued by elements in the topological space $\widehat{N} \times \mathcal{A}(K)$. The following result of Baggett (see [1, Theorem 6.2-A]) provides a precise and neat description of the topology of $\widehat{K \ltimes N}$.

THEOREM 5.1. Let Y be a subset of $K \ltimes N$ and π an element of $K \ltimes N$. Then π is weakly contained in Y if and only if there exist: a cataloguing triple $(\chi, (K_{\chi}, \rho))$ for π , an element (K', ρ') of $\mathcal{A}(K)$, and a net $\{(\chi_n, (K_{\chi_n}, \rho_n))\}$ of cataloguing triples such that:

- (i) for each n, the irreducible unitary representation $\pi(\chi_n, K_{\chi_n}, \rho_n)$ of $K \ltimes N$ is an element of Y;
- (ii) the net $\{(\chi_n, (K_{\chi_n}, \rho_n))\}$ converges to $(\chi, (K', \rho'));$
- (iii) K_{χ} contains K', and the induced representation $Ind_{K'}^{K_{\chi}}(\rho')$ contains ρ .

Let us now return to the context and notations of Section 4. To an irreducible representation ρ_{μ} of H with highest weight μ and a linear form $\ell \in \Lambda_{(H,K)}$, we associate the representation $\pi_{(\mu,\ell)}$ of G and its corresponding cataloguing triple $(\chi_{\ell}, (H, \rho_{\mu}))$. By a direct application of Theorem 5.1 it gives us the following result.

PROPOSITION 2. Let $(\pi_{(\mu^n,\ell_n)})_n$ be a sequence of elements in $(\widehat{G})_{H,K}$. Then $(\pi_{(\mu^n,\ell_n)})_n$ converges to $\pi_{(\mu,\ell)}$ in $(\widehat{G})_{H,K}$ if and only if $(\ell_n)_n$ tends to ℓ as $n \longrightarrow +\infty$ and $\mu^n = \mu$ for n large enough.

Remark 5.2. By Proposition 2, we easily see that $(\widehat{G})_{H,K}$ has a Hausdorff topology.

6. CONVERGENCE OF ADMISSIBLE COADJOINT ORBITS OF G

We shall freely use the notations of the previous sections. Let $\mathfrak{t}_{\mathfrak{k}}$ be a Cartan subalgebra of \mathfrak{k} , and let $\mathfrak{t}_{\mathfrak{h}} \subset \mathfrak{t}_{\mathfrak{k}}$ be a Cartan subalgebra of $\mathfrak{h} := Lie(H)$.

Now, we fix a linear form ℓ in $\Lambda_{(H,K)}$ and we consider an irreducible representation ρ_{μ} of H with highest weight μ . Then the stabilizer G_{ψ} of $\psi = (\mu, \ell)$ in G is given by

$$G_{\psi} = \left\{ (k, v) \in G; \ (Ad_{K}^{*}(k)\mu + k.\ell \odot v, k.\ell) = (\mu, \ell) \right\}$$

= $\left\{ (k, v) \in G; \ k \in H, Ad_{K}^{*}(k)\mu + \ell \odot v = \mu \right\}$
= $\left\{ (k, v) \in G; \ k \in H, Ad_{K}^{*}(k)\mu = \mu \right\}$

since $i^*(\ell \odot v) = 0$ (see [2]) where $i^* : \mathfrak{k}^* \longrightarrow \mathfrak{h}^*$ is the projection map. Thus, we have $G_{\psi} = K_{\psi} \ltimes V_{\psi}$, then ψ is aligned (see [15]). A linear form $\psi \in \mathfrak{g}^*$ is called admissible if there exists a unitary character χ of the identity component of G_{ψ} such that $d\chi = i\psi_{|\mathfrak{g}_{\psi}}$. According to Lipsman (see [15]), the representation of G obtained by holomorphic induction from (μ, ℓ) is equivalent to the representation $\pi_{(\mu,\ell)}$. We denote by $\mathfrak{g}^{\ddagger} \subset \mathfrak{g}^*$ the set of all admissible linear forms on \mathfrak{g} . The quotient space $\mathfrak{g}^{\ddagger}/G$ is called the space of admissible coadjoint orbits of G. Let $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ the subspace of $\mathfrak{g}^{\ddagger}/G$, that is the subspace formed by all the coadjoint orbits $\mathcal{O}_{(\mu,\ell)}^G$.

Let T_K and T_H be maximal tori respectively in K and H such that $T_H \subset T_K$. Their corresponding Lie algebras are denoted by $\mathfrak{t}_{\mathfrak{k}}$ and $\mathfrak{t}_{\mathfrak{h}}$. We denote by W_K and W_H the Weyl groups of K and H associated respectively to the tori T_K and T_H . Notice that every element $\lambda \in P_K$ takes pure imaginary values on $\mathfrak{t}_{\mathfrak{k}}$, where P_K is the integral weight lattice of T_K . Hence such an element $\lambda \in P_K$ can be considered as an element of $(i\mathfrak{t}_{\mathfrak{k}})^*$. Let C_K^+ be a positive Weyl chamber in $(i\mathfrak{t}_{\mathfrak{k}})^*$, and we define the set P_K^+ of dominant integral weights of T_K by $P_K^+ := P_K \cap C_K^+$. For $\lambda \in P_K^+$, denote by \mathcal{O}_λ^K the K-coadjoint orbit passing through the vector $-i\lambda$. It was proved by Kostant in [13], that the projection of \mathcal{O}_λ^K on $\mathfrak{t}_{\mathfrak{k}}^*$ is a convex polytope with vertices $-i(w.\lambda)$ for $w \in W_K$, and that is the convex hull of $-i(W_K.\lambda)$. For the same manner, we fix a positive Weyl chamber C_H^+ in $\mathfrak{t}_{\mathfrak{h}}^*$ and we define the set P_H^+ of dominant integral weights of T_H .

It is well-known that \widehat{K} (resp. \widehat{H}) is in bijective correspondence with P_K^+ (resp. P_H^+), and hence

$$(\mathfrak{g}^{\ddagger}/G)_{H,K} \simeq P_H^+ \times \Lambda_{(H,K)}.$$

Before the study of convergence in the quotient space \mathfrak{g}^*/G , we need the following lemma (see [14, p. 135]).

LEMMA 6.1. Let G be a unimodular Lie group with Lie algebra \mathfrak{g} and let \mathfrak{g}^* be the vector dual space of \mathfrak{g} . We denote \mathfrak{g}^*/G the space of coadjoint orbits and by $p_G : \mathfrak{g}^* \longrightarrow \mathfrak{g}^*/G$ the canonical projection. We equip this space with

the quotient topology, i.e., a subset V in \mathfrak{g}^*/G is open if and only if $p_G^{-1}(V)$ is open in \mathfrak{g}^* . Therefore, a sequence $(\mathcal{O}_k^G)_k$ of elements in \mathfrak{g}^*/G converges to the orbit \mathcal{O}^G in \mathfrak{g}^*/G if and only if for any $l \in \mathcal{O}^G$, there exist $l_k \in \mathcal{O}_k^G$, $k \in \mathbb{N}$, such that $l = \lim_{k \to +\infty} l_k$.

Now we are ready to prove the following result.

PROPOSITION 3. Let $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ be a sequence of $(\mathfrak{g}^{\ddagger}/G)_{H,K}$. Then $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ converges to $\mathcal{O}_{(\mu,\ell)}^G$ in $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ if and only if $(\ell_n)_n$ tends to ℓ as $n \longrightarrow +\infty$ and $\mu^n = \mu$ for n large enough.

Proof. Let at first recall from Lemma 3.1 that the coadjoint orbit $\mathcal{O}_{(\mu,\ell)}^G$ is always obtained by symplectic induction from the coadjoint orbit $M = \mathcal{O}_{(\mu,\ell)}^{H \ltimes V}$ of $H \ltimes V$ passing through $(\mu, \ell) \in \mathfrak{h}^* \oplus V^*$, *i.e.*,

$$\mathcal{O}^{G}_{(\mu,\ell)} = M_{ind} = J^{-1}_{\widetilde{M}}(0)/(H \ltimes V),$$

where $J_{\widetilde{M}}: \widetilde{M} = M \times T^*G \longrightarrow \mathfrak{h} \ltimes V := Lie(H \ltimes V)$ is the momentum map of \widetilde{M} and the zero level set $J_{\widetilde{M}}^{-1}(0)$ is given by

$$J_{\widetilde{M}}^{-1}(0) = \Big\{ \Big((Ad_K^*(k)\mu, \ell), g, (Ad_K^*(k)\mu + \ell \odot v, \ell) \Big), \ k \in H, g \in G, v \in V \Big\}.$$

So if the sequence of admissible coadjoint orbit $(\mathcal{O}_{(\mu^n,\ell_n)}^G)_n$ converges to $\mathcal{O}_{(\mu,\ell)}^G$ in $(\mathfrak{g}^{\ddagger}/G)_{H,K}$, then by Lemma 6.1 and the relation (2.1) there exist sequences $(k_n)_n, (h_n)_n \subset H$, $(v_n)_n, (w_n)_n \subset V$, and $(g_n)_n \subset G$ such that the sequence $(F_n)_n$ defined by

$$F_n = \varphi_{\widetilde{M}}(k_n, v_n) \big((Ad_K^*(h_n)\mu^n, \ell_n), g_n, (Ad_K^*(h_n)\mu^n + \ell_n \odot w_n, \ell_n) \big) \\ = \Big(Ad_K^*(k_nh_n)\mu^n + i^*(\ell_n \odot v_n), \ell_n \big), g_n(k_n, v_n)^{-1}, (Ad_K^*(k_nh_n)\mu^n + Ad_K^*(k_n)\ell_n \odot w_n + \ell_n \odot v_n, \ell_n) \Big)$$

converges to $((\mu, \ell), e_G, (\mu, \ell))$. In particular, we have

(6.1)
$$\left(Ad_K^*(k_nh_n)\mu^n + i^*(\ell_n \odot v_n), \ell_n\right) \longrightarrow (\mu, \ell)$$

as $n \to +\infty$. It is clear that $(\ell_n)_n$ tends to ℓ as $n \to +\infty$. By observing that $i^*(\ell_n \odot v_n) = 0$ and by compactness of H we may assume that the sequence $(k_n h_n)_n$ converges to $h_0 \in H$. From the relation (6.1) we get

$$\mu^n = Ad_K^*(h_0^{-1})\mu$$

for *n* large enough. Furthermore, we know that there exists *s* in the Weyl group W_H such that

$$Ad_K^*(h_0^{-1})\mu = s.\mu$$

(see [10]). Hence $\mu^n = s.\mu$ for *n* large enough. Since the weights μ^n and μ are contained in the set iC_H^+ and since every W_H -orbit in \mathfrak{h}^* intersects the closure $\overline{iC_H^+}$ in exactly one point (see [4, p. 203]), it follows that $\mu^n = \mu$ for *n* large enough.

Conversely, let us assume that $(\ell_n)_n$ converges to ℓ and $\mu^n = \mu$ for n large enough, then we have

$$\lim_{n \to +\infty} (\mu^n, \ell_n) = (\mu, \ell).$$

By Lemma 6.1, we deduce that $(\mathcal{O}^G_{(\mu^n,\ell_n)})_n$ converges to $\mathcal{O}^G_{(\mu^{,\ell})}$. \Box

According to Proposition 2 and Proposition 3, we get the following result.

THEOREM 6.2. The topological space $(\widehat{G})_{H,K}$ is homeomorphic to the subspace $(\mathfrak{g}^{\ddagger}/G)_{H,K}$ of $\mathfrak{g}^{\ddagger}/G$.

REFERENCES

- W. Baggett, A description of the topology on the dual spaces of certain locally compact groups. Trans. Amer. Math. Soc. 132 (1968), 175–215.
- [2] P. Baguis, Semidirect product and the Pukanszky condition. J. Geom. Phys. 25 (1998), 245–270.
- M. Ben Halima and A. Rahali, On the dual topology of a class of Cartan motion groups. J. Lie Theory 22 (2012), 491–503.
- [4] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups. Grad. Texts in Math. 98. New York: Springer-Verlag, 1985.
- [5] M. Elloumi and J. Ludwig, Dual topology of the motion groups $SO(n) \ltimes \mathbb{R}^n$. Forum Math. **22** (2008), 397–410.
- [6] J.M.G. Fell, Weak containment and induced representations of groups (II). Trans. Amer. Math. Soc. 110 (1964), 424–447.
- [7] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping. Invent. Math. 67 (1982), 491–513.
- [8] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations. Invent. Math. 67 (1982), 515–538.
- [9] G.J. Heckman, Projection of orbits and asymptotic behavior of multiplicities for compact connected Lie groups. Invent. Math. 67 (1982), 333–356.
- [10] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. Pure Appl. Math. 80. New York-San Francisco-London: Academic Press, 1978.
- [11] E. Kaniuth and K.F. Taylor, Kazhdan constants and the dual space topology. Math. Ann. 293 (1992), 495–508.
- [12] A. Kleppner and R.L. Lipsman, The Plancherel formula for group extensions. Ann. Sci. Éc. Norm. Supér. 4 (1972), 459–516.
- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Supér. 6 (1973), 413–455.
- [14] H. Leptin and J. Ludwig, Unitary Representation Theory of Exponential Lie Groups. De Gruyter Exp. Math. 18. Berlin: De Gruyter, 1994.

- [15] R.L. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical. J. Math. Pures Appl. 59 (1980), 337–374.
- [16] G.W. Mackey, The Theory of Unitary Group Representations. Chicago Lectures in Mathematics. Chicago – London: The University of Chicago Press, 1976.
- [17] G.W Mackey, Unitary Group Representations in Physics, Probability and Number Theory. Mathematics Lecture Note Series 55. Reading, Massachusetts: The Benjamin/ Cummings Publishing Company, Inc., 1978.

Received 21 May 2016

Université de Sfax, Faculté des Sciences Sfax, BP 1171, 3038 Sfax, Tunisia aymenrahali@yahoo.fr