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Let K be a connected compact Lie group acting on a finite dimensional vector
space (V, 〈, 〉). We consider the semidirect product G = KnV. There are a dense
open subset Λ of the dual vector space V ∗ of V and a subgroup H of K such
that for each ` ∈ Λ the stability group K` is conjugate to H. Let ΛH := {` ∈
Λ; K` = H} and Λ(H,K) := ΛH/K where ` and `′ in ΛH are identified if they

are on the same K-orbit in V ∗. We define the subspace (Ĝ)H,K of the unitary

dual Ĝ of G by

(Ĝ)H,K := {IndKnV
HnV (ρ⊗ χ`); ρ ∈ Ĥ, χ` ∈ V̂ , ` ∈ Λ(H,K)}.

In this paper, we give a precise description of the set (Ĝ)H,K and we determine
explicitly the topology of the space (g‡/G)H,K which is formed by all the ad-

missible coadjoint orbits OG(µ,`), where µ is the highest weight of ρ ∈ Ĥ and

` ∈ Λ(H,K). Also, we show that the topological spaces (Ĝ)H,K and (g‡/G)H,K
are homeomorphic.
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1. INTRODUCTION

Let G be a locally compact group. By the unitary dual Ĝ of G, we mean
the set of all equivalence classes unitary representations of G equipped with the
Fell topology (see [6]). One of the most elegant results in the theory of unitary
representations is attached to the determination of the topology of Ĝ. Following
the Kirillov mapping, it is well-known that for a simply connected nilpotent Lie
group and more generally for an exponential solvable Lie group G = exp(g),
its dual space Ĝ is homeomorphic to the coadjoint orbits g∗/G (see [14]). In
the context of the semi direct product G = K nN of compact connected Lie
groups K acting on simply connected nilpotent Lie groups N, we have again
a concrete geometric parametrization of Ĝ by the so-called admissible coadjoint
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orbits (see [15]). A part from this parametrization, we can ask: is the topology
of Ĝ related to the topology of the admissible coadjoint orbits?

In this direction, an affirmative answer to this question was given for the
Euclidean motion groups (see [5]), and it was generalized to a class of Cartan
motion groups in [3].

In the present work, we consider the semidirect product G = K n V of
compact connected Lie groups K acting on a finite dimensional vector space
V. It is worth mentioning here that there are a dense open subset Λ of the
dual vector space V ∗ of V and a subgroup H of K such that for each ` ∈ Λ
the stability group K` is conjugate to H (for more details, see [11]). We can
assume that Λ is invariant under the action of K and we define the subset ΛH
of Λ by

ΛH := {` ∈ Λ; K` = H}.

Let Λ(H,K) := ΛH/K where ` and `′ in ΛH are identified if they are on the

same K-orbit in V ∗. We define a certain subspace (Ĝ)H,K ⊂ Ĝ that is generic
in some sense as follows:

(Ĝ)H,K := {IndKnV
HnV (ρ⊗ χ`); ρ ∈ Ĥ, χ` ∈ V̂ , ` ∈ Λ(H,K)}.

For every admissible linear form ψ of the Lie algebra g of G, we can
construct an irreducible unitary representation πψ by holomorphic induction
and according to Lipsman (see [15]), every irreducible representation of G arises
in this manner. Then we get a map from the set g‡ of the admissible linear
forms onto the dual space Ĝ of G. Note that πψ is equivalent to πψ′ if and only
if ψ and ψ′ are on the same G-orbit, finally we obtain a bijection between the
space g‡/G of admissible coadjoint orbits and the unitary dual Ĝ.

In this paper, we show that the subspace (Ĝ)H,K is homeomorphic to the
subspace (g‡/G)H,K of g‡/G which is formed by all the admissible coadjoint

orbits OG(µ,`), where µ is the highest weight of ρ ∈ Ĥ and ` ∈ Λ(H,K).

Here we give a short description of the contents of the paper. In Section 2,
we recall some results about the construction of the induced symplectic ma-
nifold (Marsden-Weinstein reduction). Section 3, serves to fix notations and
an important fact worth mentioning here is that every coadjoint orbit of G is
always obtained by symplectic induction. Section 4 is devoted to the descrip-
tion via Mackey’s little group theory of the unitary dual Ĝ, mostly in order to
give a concrete parametrization for our space (Ĝ)H,K by Mackey parameters.
In Section 5, we study the convergence in (g‡/G)H,K in terms of Mackey para-
meters. In the last section, the convergence in the space (g‡/G)H,K is studied
and our results of this work are derived in Theorem 6.2.
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2. SYMPLECTIC INDUCTION

Along this paper, we denote by AdL and Ad∗L, respectively, the adjoint
and coadjoint representations for such Lie group L. Let S be a closed Lie sub-
group of a connected Lie group L and let (M,ω) be a symplectic manifold. We
assume that S acts smoothly on M by symplectomorphisms and M equipped
with an equivariant momentum map JM : M −→ s∗, where s denotes the Lie
algebra of S. Using symplectic induction one can construct in a canonical way
a symplectic manifold (Mind, ωind) on which L acts in a Hamiltonian way with
an equivariant momentum map Jind : Mind −→ l∗ where l is the Lie algebra
of L.

For the construction of the Hamiltonian spaces (Mind, ωind, L, Jind), one
proceeds as follows. It is well-known that the subgroup S acts on L by the
left multiplication. We denote by ϕT ∗L the canonical lift of this action to
the symplectic manifold T ∗L, equipped with its canonical symplectic form dνL
and by identifying l∗ with the left-invariant 1-forms on L, we get the natural
isomorphism T ∗L ∼= L× l∗. Then the action of S on T ∗L is given by

ϕT ∗L(h)(g, f) = (gh−1, Ad∗S(h)f).

Let ϕM be the action of S on M, so S acts on M̃ = M × T ∗L by the
action ϕ

M̃
defined by

ϕ
M̃

(h)(m, g, f) =
(
ϕM (h)(m), gh−1, Ad∗S(h)f

)
,(2.1)

for all h ∈ S, (m, g, f) ∈M ×T ∗L. This action is symplectic for the symplectic
form ω̃ = ω + dνL, and it is a proper action because S is closed. Furthermore,
this action admits an equivariant momentum map J

M̃
= JM + JT ∗L. By ob-

serving that the element 0 ∈ s∗ is a regular value for J
M̃

, then the quotient

Mind = J−1
M̃

(0)/S is a symplectic manifold (Marsden-Weinstein reduction). We

call Mind induced symplectic manifold and some times we denote it by IndLSM.

In order to obtain a Hamiltonian action of L on Mind we remark that
the group L acts naturally on itself on the left, the canonical lift of this action
to T ∗L is Hamiltonian and we let also L act trivially on M , then we obtain a
Hamiltonian action of L on M̃ with equivariant momentum map J̃ : M̃ −→ l∗

defined by

J̃(m, g, f) = Ad∗L(g)f.

The S-action on M̃ commutes with the action of L on M̃, hence we
obtain a symplectic action of L on Mind. The fact that J̃ is invariant under
the S-action, it descends as an equivariant momentum map for the L-action on
Mind denoted by Jind. This finishes the production of the induced symplectic
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manifold, and it was pointed out in [2], that Mind is a fibre bundle over T ∗(L/S)
with typical fibre M.

3. GENERALIZED MOTION GROUPS AND SYMPLECTIC INDUCTION

Let K be a connected compact Lie group acting unitary on a finite di-
mensional vector space (V, 〈, 〉). We write k.v and A.v (resp. k.` and A.`) for
the result of applying elements k ∈ K and A ∈ k := Lie(K) to v ∈ V (resp. to
` ∈ V ∗).

Now, one can form the semidirect product G := K n V which is the so-
called generalized motion group. As a set G = K × V and the multiplication
in this group is given by

(k, v)(h, u) = (kh, v + k.u), ∀(k, v), (h, u) ∈ G.

The Lie algebra of G is g = k⊕ V (as a vector space) and the Lie algebra
structure is given by the bracket

[(A, a), (B, b)] = ([A,B], A.b−B.a), ∀(A, a), (B, b) ∈ g.

Under the identification of the dual g∗ of g with k∗⊕V ∗, we can express the
duality between g and g∗ as F (A, a) = f(A)+`(a), for all F = (f, `), (A, a) ∈ g.
The adjoint and coadjoint representations of G are given respectively, by the
following relations

AdG(k, v)(A, a) = (AdK(k)A, k.a−AdK(k)A.v), ∀(k, v) ∈ G, (A, a) ∈ g,

Ad∗G(k, v)(f, `) = (Ad∗K(k)f + k.`� v, k.`), ∀(k, v) ∈ G, (f, `) ∈ g∗,

where `� v is the element of k∗ defined by

`� v(A) = `(A.v) = −(A.`)(v), ∀A ∈ k, ` ∈ V ∗, v ∈ V.

Therefore, the coadjoint orbit of G passing through (f, `) ∈ g∗ is given by

OG(f,`) =
{(
Ad∗K(k)f + k.`� v, k.`

)
, k ∈ K, v ∈ V

}
.(3.1)

For ` ∈ V ∗, we defineK` := {k ∈ K; k.` = `} the isotropy subgroup of ` in
K and the Lie algebra of K` is given by the vector space k` = {A ∈ k; A.` = 0}.
Hence, if we define the linear map ψ` : k 3 A 7−→ −A.` ∈ V ∗, we obtain the
equality k` = Ker(ψ`).

Let ı` : k` ↪→ k be the injection map, then ı∗` : k∗ −→ k∗` is the projection
map and we have

k◦` = Ker(ı∗` )(3.2)

where k◦` is the annihilator of k` (for more details see [2]).
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It is well-known that the coadjoint orbit OG(f,`) of G is symplectomorphic
to a subbundle of a modified cotangent bundle, obtained by symplectic in-
duction from a point. In this context, the following result give a more general
property of the coadjoint orbit OG(f,`) and was discussed by Baguis in [2].

Lemma 3.1. The coadjoint orbit OG(f,`) is always obtained by symplectic

induction from the coadjoint orbit OG`ν of G` passing through ν = (ı∗` (f), `) ∈
g∗` , where G` = K` n V and g` is the Lie algebra of G`.

Using the convention of Section 1 and notations of the previous Lemma,
we can write

OG(f,`) = IndGG`(O
G`
ν ).

Note that the coadjoint orbit OG`ν is canonically isomorphic to the co-
adjoint orbit OK`ı∗` (f) of K` passing through ı∗` (f). Let us choose the symplectic

manifold M as M = OG`ν . By applying the symplectic induction from M with
the groups L and H as L = G and H = G`, we obtain that

OG(f,`) = Mind = J−1
M̃

(0)/G`,

where J
M̃

: M̃ = M × T ∗G −→ g∗` is the momentum map of M̃ and the zero

level set J−1
M̃

(0) is given by J−1
M̃

(0) =
{((

Ad∗K(k)(ı∗` (f)), `
)
, g,
(
Ad∗K(k)f + `�

v, `
))
, k ∈ K`, g ∈ G, v ∈ V

}
(see [2]).

4. DUAL SPACES OF GENERALIZED MOTION GROUPS

We start with recalling briefly the description of the unitary dual of G via
Mackey’s little group theory. For every non-zero linear form ` on V, we denote
by χ` the unitary character of the vector Lie group V given by χ` = ei`. Let ρ
be an irreducible unitary representation of K` on some Hilbert space Hρ. The
map

ρ⊗ χ` : (k, v) 7−→ ei`(v)ρ(k)

is a representation of the Lie group K` n V such that one induces in order
to get a unitary representation of G. We denote by H(ρ,`) := L2(K,Hρ)ρ the
subspace of L2(K,Hρ) consisting of all the maps ξ which satisfy the covariance
condition

ξ(kh) = ρ(h−1)ξ(k),∀k ∈ K,h ∈ K`.

The induced representation

π(ρ,`) := IndKnV
K`nV (ρ⊗ χ`)
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is defined on H(ρ,`) by

π(ρ,`)(k, v)ξ(h) = ei`(h
−1.v)ξ(k−1h)

where (k, v) ∈ G, h ∈ K and ξ ∈ H(ρ,`). By Mackey’s theory we can say that
the induced representation π(ρ,`) is irreducible and every infinite dimensional
irreducible unitary representation of G is equivalent to one of π(ρ,`). Moreover,
tow representations π(ρ,`) and π(ρ′,`′) are equivalent if and only if ` and `′ are
contained in the same K-orbit and the representation ρ and ρ′ are equivalent
under the identification of the conjugate subgroups K` and K`′ . All irreduci-
ble representations of G which are not trivial on the normal subgroup V, are
obtained by this manner. On the other hand, we denote also by τ the exten-
sion of every unitary irreducible representation τ of K on G, simply defined by
τ(k, v) = τ(k) for k ∈ K and v ∈ V. There exists a so-called principal stability
subgroup for the action of K on V ∗, i.e., there are a dense open subset Λ of
V ∗ and a subgroup H of K such that for each ` ∈ Λ the stability group K` is
conjugate to H (see [11]). We can assume that Λ is invariant under the action
of K and we define the subset ΛH of Λ by

ΛH := {` ∈ Λ; K` = H}.

Let Λ(H,K) := ΛH/K where ` and `′ in ΛH are identified if they are on

the same K-orbit in V ∗. Below we give a certain subspace (Ĝ)H,K ⊂ Ĝ which
is so-called generic in some sense:

(Ĝ)H,K := {IndKnV
HnV (ρ⊗ χ`); ρ ∈ Ĥ, χ` ∈ V̂ , ` ∈ Λ(H,K)}.

Applying Mackey’s analysis, we obtain the bijection

(Ĝ)H,K ' Ĥ × Λ(H,K).

In the remainder of this paper, we shall assume that G is exponential,
i.e., K` is connected for all ` ∈ V ∗. Let ρµ be an irreducible representation of
K` with highest weight µ. For simplicity, we shall write π(µ,`) instead of π(ρµ,`)
and H(µ,`) instead of H(ρµ,`).

5. CONVERGENCE OF IRREDUCIBLE REPRESENTATIONS OF G

Let N be an abelian group, and assume that a compact Lie group K acts
on the left on N by automorphisms. As sets, the semidirect product K nN is
the Cartesian product K ×N and the group multiplication is given by

(k1, x1) · (k2, x2) = (k1k2, x1 + k1x2).



7 Dual topology of generalized motion groups 239

Let χ be a unitary character of N , and let Kχ be the stabilizer of χ under

the action of K on N̂ defined by

(k · χ)(x) = χ(k−1x).

If ρ is an element of K̂χ, then the triple (χ, (Kχ, ρ)) is called a catalo-
guing triple. From the notations of [1], we denote by π(χ,Kχ, ρ) the induced
representation IndKnN

KχnN (ρ⊗ χ). Referring to [1, p. 187], we have

Proposition 1. The mapping (χ, (Kχ, ρ))−→π(χ,Kχ, ρ) is onto K̂ nN .

Let A(K) be the set of all pairs (K ′, ρ ′), where K ′ is a closed subgroup of
K and ρ ′ is an irreducible representation of K ′. We equip A(K) with the Fell

topology (see [6]). Therefore, every element in K̂ nN can be catalogued by
elements in the topological space N̂ × A(K). The following result of Baggett
(see [1, Theorem 6.2-A]) provides a precise and neat description of the topology

of K̂ nN .

Theorem 5.1. Let Y be a subset of K̂ nN and π an element of K̂ nN .
Then π is weakly contained in Y if and only if there exist: a cataloguing triple
(χ, (Kχ, ρ)) for π, an element (K ′, ρ ′) of A(K), and a net {(χn, (Kχn , ρn))}
of cataloguing triples such that:

(i) for each n, the irreducible unitary representation π(χn,Kχn , ρn) of KnN
is an element of Y ;

(ii) the net {(χn, (Kχn , ρn))} converges to (χ, (K ′, ρ ′));

(iii) Kχ contains K ′, and the induced representation Ind
Kχ
K ′ (ρ

′) contains ρ.

Let us now return to the context and notations of Section 4. To an
irreducible representation ρµ of H with highest weight µ and a linear form
` ∈ Λ(H,K), we associate the representation π(µ,`) of G and its corresponding
cataloguing triple (χ`, (H, ρµ)). By a direct application of Theorem 5.1 it gives
us the following result.

Proposition 2. Let (π(µn,`n))n be a sequence of elements in (Ĝ)H,K .

Then (π(µn,`n))n converges to π(µ,`) in (Ĝ)H,K if and only if (`n)n tends to
` as n −→ +∞ and µn = µ for n large enough.

Remark 5.2. By Proposition 2, we easily see that (Ĝ)H,K has a Hausdorff
topology.

6. CONVERGENCE OF ADMISSIBLE COADJOINT ORBITS OF G

We shall freely use the notations of the previous sections. Let tk be a
Cartan subalgebra of k, and let th ⊂ tk be a Cartan subalgebra of h := Lie(H).
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Now, we fix a linear form ` in Λ(H,K) and we consider an irreducible represen-
tation ρµ of H with highest weight µ. Then the stabilizer Gψ of ψ = (µ, `) in
G is given by

Gψ =
{

(k, v) ∈ G; (Ad∗K(k)µ+ k.`� v, k.`) = (µ, `)
}

=
{

(k, v) ∈ G; k ∈ H,Ad∗K(k)µ+ `� v = µ
}

=
{

(k, v) ∈ G; k ∈ H, Ad∗K(k)µ = µ
}

since ı∗(` � v) = 0 (see [2]) where ı∗ : k∗ −→ h∗ is the projection map. Thus,
we have Gψ = Kψ n Vψ, then ψ is aligned (see [15]). A linear form ψ ∈
g∗ is called admissible if there exists a unitary character χ of the identity
component of Gψ such that dχ = iψ|gψ . According to Lipsman (see [15]), the

representation of G obtained by holomorphic induction from (µ, `) is equivalent
to the representation π(µ,`). We denote by g‡ ⊂ g∗ the set of all admissible linear

forms on g. The quotient space g‡/G is called the space of admissible coadjoint
orbits of G. Let (g‡/G)H,K the subspace of g‡/G, that is the subspace formed
by all the coadjoint orbits OG(µ,`).

Let TK and TH be maximal tori respectively in K and H such that
TH ⊂ TK . Their corresponding Lie algebras are denoted by tk and th. We denote
by WK and WH the Weyl groups of K and H associated respectively to the
tori TK and TH . Notice that every element λ ∈ PK takes pure imaginary values
on tk, where PK is the integral weight lattice of TK . Hence such an element
λ ∈ PK can be considered as an element of (itk)

∗. Let C+
K be a positive Weyl

chamber in (itk)
∗, and we define the set P+

K of dominant integral weights of TK
by P+

K := PK ∩C+
K . For λ ∈ P+

K , denote by OKλ the K-coadjoint orbit passing
through the vector −iλ. It was proved by Kostant in [13], that the projection
of OKλ on t∗k is a convex polytope with vertices −i(w.λ) for w ∈WK , and that
is the convex hull of −i(WK .λ). For the same manner, we fix a positive Weyl
chamber C+

H in t∗h and we define the set P+
H of dominant integral weights of

TH .
It is well-known that K̂ (resp. Ĥ) is in bijective correspondence with P+

K

(resp. P+
H ), and hence

(g‡/G)H,K ' P+
H × Λ(H,K).

Before the study of convergence in the quotient space g∗/G, we need the follo-
wing lemma (see [14, p. 135]).

Lemma 6.1. Let G be a unimodular Lie group with Lie algebra g and let
g∗ be the vector dual space of g. We denote g∗/G the space of coadjoint orbits
and by pG : g∗ −→ g∗/G the canonical projection. We equip this space with
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the quotient topology, i.e., a subset V in g∗/G is open if and only if p−1
G

(V ) is
open in g∗. Therefore, a sequence (OGk )

k
of elements in g∗/G converges to the

orbit OG in g∗/G if and only if for any l ∈ OG, there exist lk ∈ OGk , k ∈ N,
such that l = lim

k−→+∞
lk.

Now we are ready to prove the following result.

Proposition 3. Let
(
OG(µn,`n)

)
n

be a sequence of (g‡/G)H,K . Then(
OG(µn,`n)

)
n
converges to OG(µ,`) in (g‡/G)H,K if and only if (`n)n tends to `

as n −→ +∞ and µn = µ for n large enough.

Proof. Let at first recall from Lemma 3.1 that the coadjoint orbit OG(µ,`) is

always obtained by symplectic induction from the coadjoint orbit M = OHnV
(µ,`)

of H n V passing through (µ, `) ∈ h∗ ⊕ V ∗, i.e.,

OG(µ,`) = Mind = J−1
M̃

(0)/(H n V ),

where J
M̃

: M̃ = M × T ∗G −→ h n V := Lie(H n V ) is the momentum map

of M̃ and the zero level set J−1
M̃

(0) is given by

J−1
M̃

(0) =
{(

(Ad∗K(k)µ, `), g, (Ad∗K(k)µ+ `� v, `)
)
, k ∈ H, g ∈ G, v ∈ V

}
.

So if the sequence of admissible coadjoint orbit
(
OG(µn,`n)

)
n

converges to

OG(µ,`) in (g‡/G)H,K , then by Lemma 6.1 and the relation (2.1) there exist

sequences (kn)n, (hn)n ⊂ H, (vn)n, (wn)n ⊂ V, and (gn)n ⊂ G such that the
sequence (Fn)n defined by

Fn = ϕ
M̃

(kn, vn)
(
(Ad∗K(hn)µn, `n), gn, (Ad

∗
K(hn)µn + `n � wn, `n)

)
=

(
Ad∗K(knhn)µn + ı∗(`n � vn), `n

)
, gn(kn, vn)−1, (Ad∗K(knhn)µn

+ Ad∗K(kn)`n � wn + `n � vn, `n)
)

converges to
(
(µ, `), eG, (µ, `)

)
. In particular, we have(

Ad∗K(knhn)µn + ı∗(`n � vn), `n
)
−→

(
µ, `
)

(6.1)

as n −→ +∞. It is clear that (`n)n tends to ` as n −→ +∞. By observing that
ı∗(`n � vn) = 0 and by compactness of H we may assume that the sequence
(knhn)n converges to h0 ∈ H. From the relation (6.1) we get

µn = Ad∗K(h−10 )µ

for n large enough. Furthermore, we know that there exists s in the Weyl
group WH such that

Ad∗K(h−10 )µ = s.µ
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(see [10]). Hence µn = s.µ for n large enough. Since the weights µn and µ are
contained in the set iC+

H and since every WH -orbit in h∗ intersects the closure

iC+
H in exactly one point (see [4, p. 203]), it follows that µn = µ for n large

enough.

Conversely, let us assume that (`n)n converges to ` and µn = µ for n large
enough, then we have

lim
n−→+∞

(µn, `n) = (µ, `).

By Lemma 6.1, we deduce that (OG(µn,`n))n converges to OG(µ,`). �

According to Proposition 2 and Proposition 3, we get the following result.

Theorem 6.2. The topological space (Ĝ)H,K is homeomorphic to the sub-
space (g‡/G)H,K of g‡/G.
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