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Let K be a connected compact Lie group acting on a finite dimensional vector
space (V, {,)). We consider the semidirect product G = K x V. There are a dense
open subset A of the dual vector space V* of V and a subgroup H of K such
that for each £ € A the stability group K is conjugate to H. Let Ay := {£ €
A; Ko = H} and Aw gy = Ap /K where ¢ and ¢ in Ag are identified if they

-~

are on the same K-orbit in V*. We define the subspace (G)m,x of the unitary
dual G of G by

(G i = {Indi iy (p@xe); p € H,xe €V, 0 € Aoy}

~

In this paper, we give a precise description of the set (G)u,x and we determine
explicitly the topology of the space (g*/G)m x which is formed by all the ad-
missible coadjoint orbits Oa,e)u where p is the highest weight of p € H and

£ € Mg k). Also, we show that the topological spaces (@)H,K and (g*/@)u x
are homeomorphic.
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1. INTRODUCTION

Let G be a locally compact group. By the unitary dual G of G, we mean
the set of all equivalence classes unitary representations of G' equipped with the
Fell topology (see [6]). One of the most elegant results in the theory of unitary
representations is attached to the determination of the topology of G. Following
the Kirillov mapping, it is well-known that for a simply connected nilpotent Lie
group and more generally for an exponential solvable Lie group G = exp(g),
its dual space G is homeomorphic to the coadjoint orbits g*/G (see [14]). In
the context of the semi direct product G = K x N of compact connected Lie
groups K acting on simply connected nilpotent Lie groups N, we have again
a concrete geometric parametrization of G by the so-called admissible coadjoint
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orbits (see [15]). A part from this parametrization, we can ask: is the topology
of G related to the topology of the admissible coadjoint orbits?

In this direction, an affirmative answer to this question was given for the
Euclidean motion groups (see [5]), and it was generalized to a class of Cartan
motion groups in [3].

In the present work, we consider the semidirect product G = K x V of
compact connected Lie groups K acting on a finite dimensional vector space
V. It is worth mentioning here that there are a dense open subset A of the
dual vector space V* of V and a subgroup H of K such that for each £ € A
the stability group Ky is conjugate to H (for more details, see [11]). We can
assume that A is invariant under the action of K and we define the subset Ay
of A by

Ag:={lelA; K,=H}.

Let A(g, iy = A /K where £ and ¢’ in A are identified if they are on the

same K-orbit in V*. We define a certain subspace (@) oK C G that is generic
in some sense as follows:

(G = {IndS"V(p@xe); pe Hixe eV, L€ Ay}

For every admissible linear form v of the Lie algebra g of G, we can
construct an irreducible unitary representation my, by holomorphic induction
and according to Lipsman (see [15]), every irreducible representation of G arises
in this manner. Then we get a map from the set g of the admissible linear
forms onto the dual space G of G. Note that 7y is equivalent to my if and only
if 1) and ¢’ are on the same G-orbit, finally we obtain a bijection between the
space g /G of admissible coadjoint orbits and the unitary dual G.

In this paper, we show that the subspace (G) H,K is homeomorphic to the
subspace (g*/G)u i of g*/G which is formed by all the admissible coadjoint
orbits O(C;,K), where p is the highest weight of p € Hand ¢ € A,k

Here we give a short description of the contents of the paper. In Section 2,
we recall some results about the construction of the induced symplectic ma-
nifold (Marsden-Weinstein reduction). Section 3, serves to fix notations and
an important fact worth mentioning here is that every coadjoint orbit of G is
always obtained by symplectic induction. Section 4 is devoted to the descrip-
tion via Mackey’s little group theory of the unitary dual CA?, mostly in order to
give a concrete parametrization for our space (@) u,x by Mackey parameters.
In Section 5, we study the convergence in (g*/G)y x in terms of Mackey para-
meters. In the last section, the convergence in the space (g*/G)n i is studied
and our results of this work are derived in Theorem 6.2.
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2. SYMPLECTIC INDUCTION

Along this paper, we denote by Ad;, and Adj, respectively, the adjoint
and coadjoint representations for such Lie group L. Let S be a closed Lie sub-
group of a connected Lie group L and let (M,w) be a symplectic manifold. We
assume that S acts smoothly on M by symplectomorphisms and M equipped
with an equivariant momentum map Jys : M — s*, where s denotes the Lie
algebra of S. Using symplectic induction one can construct in a canonical way
a symplectic manifold (M;,4, winq) on which L acts in a Hamiltonian way with
an equivariant momentum map J;ng : Mg — ¥ where [ is the Lie algebra
of L.

For the construction of the Hamiltonian spaces (Mnq4, Wind, L, Jind), one
proceeds as follows. It is well-known that the subgroup S acts on L by the
left multiplication. We denote by (7« the canonical lift of this action to
the symplectic manifold 7% L, equipped with its canonical symplectic form dvy,
and by identifying [* with the left-invariant 1-forms on L, we get the natural
isomorphism T*L = [ x [*. Then the action of S on T*L is given by

er-r(h)(g, f) = (gh™", Ads(h)f).

Let ppr be the action of S on M, so S acts on M = M x T*L by the
action @77 defined by

(2.1) exi()m.g. f) = (ear(h)m), gh™", Ad5(h)f),

for all h € S, (m,g, f) € M x T*L. This action is symplectic for the symplectic
form w = w + dvy, and it is a proper action because S is closed. Furthermore,
this action admits an equivariant momentum map JM = Jy + Jr+p. By ob-
serving that the element 0 € s* is a regular value for J, then the quotient
Ming = JAZ;(O) /S is a symplectic manifold (Marsden-Weinstein reduction). We

call M;,q induced symplectic manifold and some times we denote it by [ ndéM .

In order to obtain a Hamiltonian action of L on M;, 4 we remark that
the group L acts naturally on itself on the left, the canonical lift of this action
to T" L is Hamiltonian and we let also L act trivially on M, then we obtain a
Hamiltonian action of L on M with equivariant momentum map J:M—1
defined by

J(m, g, f) = Adp(9)f.

The S-action on M commutes with the action of L on M , hence we
obtain a symplectic action of L on M;,q. The fact that J is invariant under
the S-action, it descends as an equivariant momentum map for the L-action on
Mg denoted by J;pg. This finishes the production of the induced symplectic
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manifold, and it was pointed out in [2], that M;,,4 is a fibre bundle over T%(L/S)
with typical fibre M.

3. GENERALIZED MOTION GROUPS AND SYMPLECTIC INDUCTION

Let K be a connected compact Lie group acting unitary on a finite di-
mensional vector space (V,(,)). We write k.v and A.v (resp. k.¢ and A.¢) for
the result of applying elements k € K and A € ¢ := Lie(K) to v € V (resp. to
e V).

Now, one can form the semidirect product G := K x V which is the so-
called generalized motion group. As a set G = K x V and the multiplication
in this group is given by

(k,v)(h,u) = (kh,v + k.u), Y(k,v), (h,u) € G.

The Lie algebra of G is g = €@V (as a vector space) and the Lie algebra
structure is given by the bracket

[(A,a),(B,b)] = ([A, B],A.b— B.a), ¥(A,a),(B,b) € g.

Under the identification of the dual g* of g with £*® V™, we can express the
duality between g and g* as F/(A4,a) = f(A)+{(a), forall F' = (f,¢),(A,a) € g.
The adjoint and coadjoint representations of G are given respectively, by the
following relations

Adg(k,v)(A,a) = (Adg(k)A k.a — Adg(k)Av),Y(k,v) € G,(A,a) € g,
Adg(k,v)(f,4) = (Adg(k)f +kLOv kL),Y(k,v)e€G,(f, L)< g,
where £ ® v is the element of £* defined by
LOv(A) =l(Av)=—(AL)(v),VAet,l eV veV.
Therefore, the coadjoint orbit of G' passing through (f, ¢) € g* is given by

(3.1) 0%y = {(Ad*K(k)f +ELOw, k.é),k ceK,ve V}.

For ¢ € V*, we define Ky := {k € K; k.l = (} the isotropy subgroup of ¢ in
K and the Lie algebra of Kj is given by the vector space ¢, = {A € & A.L = 0}.
Hence, if we define the linear map ¢y : € 5 A — — AL € V*, we obtain the
equality &, = Ker(iy).

Let 2, : & < € be the injection map, then 2; : £* — £/ is the projection
map and we have

(3.2) ¢, = Ker(y)

where € is the annihilator of € (for more details see [2]).
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It is well-known that the coadjoint orbit O, b0 of G is symplectomorphic
to a subbundle of a modified cotangent bundle, obtained by symplectic in-
duction from a point. In this context, the following result give a more general
property of the coadjoint orbit (’)8(7 0 and was discussed by Baguis in [2].

LEMMA 3.1. The coadjoint orbit (’)(CJ*L 0 18 always obtained by symplectic
induction from the coadjoint orbit OS5t of Gy passing through v = (1;(f),0) €
gy, where Gy = Ky x V and g, is the Lie algebra of Gy.

Using the convention of Section 1 and notations of the previous Lemma,
we can write

Off ) = Indg, (OF").

Note that the coadjoint orbit @S is canonically isomorphic to the co-
adjoint orbit Offf N of K, passing through ¢;(f). Let us choose the symplectic
il

manifold M as M = OS*. By applying the symplectic induction from M with
the groups L and H as L = G and H = Gy, we obtain that

O ) = Mina = J-1(0) /Gy,

where J37 M=MxTG — g; is the momentum map of M and the zero
level set J=1(0) is given by J=1(0) = {((Ad}((k)(zz( 0, g, (Adi (k) f+L©
v,E)), ke Ky,ge G,v € V} (see [2]).

4. DUAL SPACES OF GENERALIZED MOTION GROUPS

We start with recalling briefly the description of the unitary dual of G via
Mackey’s little group theory. For every non-zero linear form ¢ on V, we denote
by x¢ the unitary character of the vector Lie group V given by x; = €. Let p
be an irreducible unitary representation of K, on some Hilbert space H,. The
map

p® Xt (kyv) — ¢ p(k)

is a representation of the Lie group Ky x V such that one induces in order
to get a unitary representation of G. We denote by H, ¢ = L*(K, H,)? the
subspace of L?(K, H,) consisting of all the maps £ which satisfy the covariance
condition
E(kh) = p(h"1E(k),Vk € K, h € K.
The induced representation

T(p) = Indig" 2 (p © Xo)
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is defined on H, s by
(o) (ky 0)E(R) = P e (k1)

where (k,v) € G,h € K and £ € H(p,0)- By Mackey’s theory we can say that
the induced representation m(, s is irreducible and every infinite dimensional
irreducible unitary representation of G is equivalent to one of m(, ». Moreover,
tow representations m(, ») and 7, ¢ are equivalent if and only if £ and 0" are
contained in the same K-orbit and the representation p and p’ are equivalent
under the identification of the conjugate subgroups K, and K. All irreduci-
ble representations of G which are not trivial on the normal subgroup V, are
obtained by this manner. On the other hand, we denote also by 7 the exten-
sion of every unitary irreducible representation 7 of K on G, simply defined by
7(k,v) = 7(k) for k € K and v € V. There exists a so-called principal stability
subgroup for the action of K on V*, i.e., there are a dense open subset A of
V* and a subgroup H of K such that for each ¢ € A the stability group Ky is
conjugate to H (see [11]). We can assume that A is invariant under the action
of K and we define the subset Ay of A by

Ay 2:{£€A; KZZH}.

Let Ay k) := Au/K where £ and ¢ in Ay are identified if they are on

the same K-orbit in V*. Below we give a certain subspace ((A?) K C G which
is so-called generic in some sense:

(@)H,K = {IndEXV(p@x0); p € Hxi eV, te Ay}
Applying Mackey’s analysis, we obtain the bijection
(G)HJ( ~ j‘.\[ X A(H,K)'

In the remainder of this paper, we shall assume that G is exponential,
i.e., Ky is connected for all £ € V*. Let p, be an irreducible representation of
K, with highest weight p. For simplicity, we shall write 7, ) instead of 7(,, s
and M, ¢ instead of H(,, »).

5. CONVERGENCE OF IRREDUCIBLE REPRESENTATIONS OF G

Let N be an abelian group, and assume that a compact Lie group K acts
on the left on N by automorphisms. As sets, the semidirect product K x N is
the Cartesian product K x N and the group multiplication is given by

(k1,21) - (k2, 2) = (k1ke, x1 + k122).
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Let x be a unitary character of N, and let K, be the stabilizer of x under
the action of K on N defined by

(k- x)(x) = x(k™ ).

If p is an element of I/(\X, then the triple (x, (Ky,p)) is called a catalo-
guing triple. From the notations of [1], we denote by m(x, K, p) the induced

representation [ ndQ:iVN(p ® x)- Referring to [1, p. 187], we have

PROPOSITION 1. The mapping (x, (Ky, p)) —m(x, Ky, p) is onto K x N.

Let A(K) be the set of all pairs (K, p’), where K is a closed subgroup of
K and p' is an irreducible representation of K'. We equip A(K) with the Fell
topology (see [6]). Therefore, every element in K x N can be catalogued by
elements in the topological space N x A(K). The following result of Baggett
(see [1, Theorem 6.2-A]) provides a precise and neat description of the topology

—

of K x N.

THEOREM 5.1. Let Y be a subset ofm and ™ an element of K x N.
Then 7 is weakly contained in'Y if and only if there exist: a cataloguing triple
(X, (Ky, p)) for m, an element (K', p’) of A(K), and a net {(xn, (Ky,,pn))}
of cataloguing triples such that:

(i) for eachn, the irreducible unitary representation w(xn, Ky,,, pn) of Kx N

s an element of Y,

(i1) the net {(xn, (Ky,,pn))} converges to (x, (K’ p’));
(i13) Ky contains K', and the induced representation Ind?f (p') contains p.

Let us now return to the context and notations of Section 4. To an
irreducible representation p, of H with highest weight p and a linear form
¢ € A ), we associate the representation m(, ) of G and its corresponding
cataloguing triple (x¢, (H, pu)). By a direct application of Theorem 5.1 it gives
us the following result.

~

be a sequence of elements in (G)m K.

~

Then (m(un 4,)), converges to w(, e in (G)mx if and only if (£,), tends to
l asn — +o00 and p" = p for n large enough.

PROPOSITION 2. Let (m(yn y,))

n

~

Remark 5.2. By Proposition 2, we easily see that (G) g x has a Hausdorff
topology.
6. CONVERGENCE OF ADMISSIBLE COADJOINT ORBITS OF G

We shall freely use the notations of the previous sections. Let t; be a
Cartan subalgebra of €, and let t; C t¢ be a Cartan subalgebra of by := Lie(H).
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Now, we fix a linear form £ in Ay i) and we consider an irreducible represen-
tation p, of H with highest weight p. Then the stabilizer Gy, of ¢ = (i, ¢) in
G is given by

G, = {(k,v) L (Adje (k) + kL © 0, k.0) = (u,e)}
- {(k:,v) €G; ked, AdK(k)u—l—EQU:,u}
v)

:{(

since v* (¢ ® v) = 0 (see [2]) where ¢* : € — bh* is the projection map. Thus,
we have Gy = Ky x Vi, then 9 is aligned (see [15]). A linear form v €
g* is called admissible if there exists a unitary character y of the identity

component of Gy, such that dx = w'%’ According to Lipsman (see [15]), the

€G: keH, AdK(k;)p:p}

representation of G obtained by holomorphic induction from (u, £) is equivalent
to the representation 7, ). We denote by gt C g* the set of all admissible linear
forms on g. The quotient space gt /G is called the space of admissible coadjoint
orbits of G. Let (g*/G)u i the subspace of gt /G, that is the subspace formed
by all the coadjoint orbits (’)(“ 0"

Let Tk and Ty be maximal tori respectively in K and H such that
Ty C Tk . Their corresponding Lie algebras are denoted by t¢ and t;,. We denote
by Wk and Wy the Weyl groups of K and H associated respectively to the
tori Tx and T . Notice that every element \ € Py takes pure imaginary values
on ty, where Px is the integral weight lattice of Tx. Hence such an element
A € Pk can be considered as an element of (itg)*. Let C}: be a positive Weyl
chamber in (ity)*, and we define the set P- of dominant integral weights of Tk
by P; = Prg N C;g. For A € P;, denote by Of\{ the K-coadjoint orbit passing
through the vector —i\. It was proved by Kostant in [13], that the projection
of Of\{ on t is a convex polytope with vertices —i(w.\) for w € W, and that
is the convex hull of —i(Wg.\). For the same manner, we fix a positive Weyl
chamber C’;} in t; and we define the set PE of dominant integral weights of
Ty.

It is well-known that K (resp. H) is in bijective correspondence with Pt
(resp. Pj), and hence

(6"/G) i ~ Pjf x Ay

Before the study of convergence in the quotient space g*/G, we need the follo-
wing lemma (see [14, p. 135]).

LEMMA 6.1. Let G be a unimodular Lie group with Lie algebra g and let
g* be the vector dual space of g. We denote g*/G the space of coadjoint orbits
and by p, : ¢ — g*/G the canonical projection. We equip this space with
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the quotient topology, i.e., a subset V in g* /G is open if and only z'fpgl(V) is
open in g*. Therefore, a sequence (Og)k of elements in g*/G converges to the
orbit OF in g* /G if and only if for any | € OF, there exist I}, € (’)g, k eN,

such thatl = lim 1.
k— 400

Now we are ready to prove the following result.

PROPOSITION 3. Let (O(Gun En)) be a sequence of (¢*/G)ur. Then
(O(C;n Zn)) converges to (’)(C; g in (6*/G)m.x if and only if (£,), tends to {
as n — +o0o and pu" = p for n large enough.

Proof. Let at first recall from Lemma 3.1 that the coadjoint orbit (’)(C; 0 is

always obtained by symplectic induction from the coadjoint orbit M = O(IZ ng/

of H x V passing through (u,?) € b* @ V*, i.e.,
OG0 = Mina = J=(0)/(H x V),

where J5; : M=MxTG—hxV:= Lie(H x V) is the momentum map
of M and the zero level set JTMI(O) is given by

J=1(0) = {((Ad*K(k)u,E),g, (Adj (K)pu+ £ @ v,e)), keH,geGue V}.

So if the sequence of admissible coadjoint orbit ((’)(C;n En)) converges to

n

O(Ci ¢ In (¢*/G)p k, then by Lemma 6.1 and the relation (2.1) there exist
sequences (kp)n, (hn)n C H, (Un)n, (Wn)n C V, and (gn)n C G such that the
sequence (F),), defined by

F, = @M(kna Un) ((Ad;((hn),un’ Zn)v 9n, (Ad%(hn)ﬂn + 4 © wp, En))
- (Ad}((knhn)u” 2 (b ©vn), b g (ks ) ™ (Ade (b ) "
b AdY (k) © wn + £y © v, zn))

converges to ((u,ﬁ), eq, (u,ﬁ)). In particular, we have
(6.1) (Adfe(kphn) W™ + 0" (b, © vp), b))  — (1, 0)

as n — +oo. It is clear that (¢,), tends to £ as n — +oo. By observing that
1" (lr, ® v,) = 0 and by compactness of H we may assume that the sequence
(knhn)n converges to hg € H. From the relation (6.1) we get

p" = Adg(hg i
for n large enough. Furthermore, we know that there exists s in the Weyl

group Wy such that
Ade(hg ) = s.p



242 Aymen Rahali 10

(see [10]). Hence p™ = s.u for n large enough. Since the weights " and p are
contained in the set iCE and since every Wi-orbit in h* intersects the closure

iC}; in exactly one point (see [4, p. 203]), it follows that u™ = u for n large
enough.

Conversely, let us assume that (¢,,), converges to £ and u™ = p for n large
enough, then we have

lim (u", ln) = (p, ).

n—-—+o0o

By Lemma 6.1, we deduce that (C’)(C;n’gn))n converges to O(Ciue)' O

According to Proposition 2 and Proposition 3, we get the following result.

~

THEOREM 6.2. The topological space (G)m i is homeomorphic to the sub-
space (gt /G)u i of 6%/G.
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