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1. INTRODUCTION

The notion of frame in a general Hilbert space was first introduced by Duf-
fin and Schaeffer in 1952 to study nonharmonic Fourier series [8]. However, the
frame theory had not interested many researchers until Daubechies, Crossman
and Meyer published their ground breaking work [7] in 1986. In recent years,
the study of frame theory has seen great achievements, and discrete frames are
widely used in signal processing, quantum measurements, image processing, co-
ding and communication and some other fields [4,6,14,17,18,21]. The study of
equalities and inequalities related to Paraeval frames were studied by Balan et
al. in [3] and many other mathematicians [11, 12, 16, 19]. The notion of frame
was generalized to a family indexed by some locally compact space endowed
with Radon measure by Ali et al. in [2] known as continuous frame. Continuous
frames are applied in some fields [10,20]. In particular, Sun in 2006 introduced
g-frames in Hilbert space in [22], which includes many generalizations of the
discrete frame, for example, frames of subspaces [5], pseudo-frames [15], and
bounded quasi-projectors [9], and so on. The notion of g-frame is an extension
that includes bounded invertible operators and all mentioned above extensions
of discrete frames. The notion of continuous g-frame was firstly introduced
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by M.A. Dehghan and M.A. Hasankhani Fard in [1], which is an extension of
g-frames and continuous frames.

In this paper, using the method of operator theory we establish some
new inequalities for (dual) continuous g-frames, which extend and improve the
results obtained by Balan, Casazza and Găvruţa; we obtain a characterization
of multi-element erasure for continuous g-frames, which generalize the results
obtained by M.A. Dehghan and M.A. Hasankhani Fard.

This paper is organized as follows. Section 2 is an auxiliary one and in
this section, we recall some basic notions, properties and some related results.
In Section 3, using the method of operator theory we obtain some important in-
equalities for (dual) continuous g-frames. In Section 4, we derive an equivalent
characterization of multi-element erasure for continuous g-frames.

2. PRELIMINARIES

First we recall some basic notations, notions and properties of frames in
Hilbert space. The readers can refer to [1, 6, 20,22] for details.

Let U, V be separable Hilbert spaces, (Ω, µ) a positive measure space, and
I a countable index set. We denote by IU the identity operator on U , {Vω}ω∈Ω

a sequence of closed subspaces of V , and L(U, Vω) the set of all bounded linear
operators from U into Vω. Let

(⊕ω∈ΩVω, µ)L2 =

{
f = {fω}ω∈Ω, fω : Ω→ U :

∫
Ω
‖fω‖2dµ(ω) <∞

}
.

Then (⊕ω∈ΩVω, µ)L2 is a Hilbert space under the following inner product
:

〈f, g〉 =

∫
Ω
〈fω, gω〉dµ(ω) f, g ∈ (⊕ω∈ΩVω, µ)L2 .

Definition 2.1 ([22, Definition 1.1]). A sequence {Λi ∈ L(U, Vi)}i∈I is
called a g-frame for U with respect to {Vi}i∈I if there exist 0 < A1 ≤ B1 < +∞
such that

∀f ∈ U, A1‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B1‖f‖2.

The numbers A1, B1 are called a lower and upper bound for the frame.

Definition 2.2 ([20, Definition 2.1]). Let (X,µ) be a measure space with
positive measure µ. Let f : X → H be weakly measurable (i.e., for all h ∈
H, the mapping x → 〈f(x), h〉 is measurable). Then {f(x)}x∈X is called a
continuous frame for H if there exist constants 0 < A2 ≤ B2 < +∞ such that

(2.1) ∀h ∈ H, A2‖h‖2 ≤
∫
X
|〈f(x), h〉|2dµ(x) ≤ B2‖h‖2.
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We call A2 and B2 the lower and upper continuous frame bound, respectively. If
only the right-hand inequality of (2.1) is satisfied, we call {f(x)}x∈X the con-
tinuous Bessel sequence for H with Bessel bound B2. If A2 = B2 = λ, we call
{f(x)}x∈X λ-tight continuous frame. Moreover, if λ = 1, {f(x)}x∈X is called
Parseval continuous frame.

Definition 2.3 ([1, Definition 2.1]). We say that Λ = {Λω ∈ L(U, Vω)}ω∈Ω

is a continuous g-frame for U with respect to (Ω, µ), if

(i) Λ is weakly-measurable, i.e., for f ∈ U , ω → Λω is a measurable
function on Ω,

(ii) there exist positive constants A, B such that

(2.2) ∀f ∈ H, A‖f‖2 ≤
∫

Ω
‖Λωf‖2dµ(ω) ≤ B‖f‖2.

The numbers A, B are called a lower and upper frame bound for the
continuous g- frame, respectively. If only the right-hand inequality of (2.2) is
satisfied, we call {Λω}ω∈Ω a Bessel continuous g-mapping for U with respect
to (Ω, µ) with bound B. If A = B = λ, we call {Λω}ω∈Ω λ-tight continuous
g-frame. Moreover, if λ = 1, {Λω}ω∈Ω is called Parsevel continuous g-frame.

Remark 2.1. A continuous g-frame is a generalization of g-frame. Indeed,
when Ω is countable, and µ is a counting measure, a continuous g-frame is just
a g-frame.

Let {Λω}ω∈Ω be a continuous g-frame for U with respect to (Ω, µ). In
[1], the authors defined the continuous g-frame operator S : U → U as follows:

S(f) =

∫
Ω

Λ∗ωΛωfdµ(ω), ∀f ∈ U.(2.3)

It is easy to check that S is a bounded, positive, self-adjoint and invertible
operator. Denote Λ̃ω = ΛωS

−1, then {Λ̃ω}ω∈Ω is a continuous g-frame for U
with respect to (Ω, µ) with frame bounds 1

B ,
1
A , the frame operator S−1, which

is called the canonical dual continuous g-frame of {Λω}ω∈Ω (see [1]).

For any Ω1 ⊂ Ω, denote Ωc
1 = Ω\Ω1, and we define the following opera-

tors:

SΩ1f =

∫
Ω1

Λ∗ωΛωfdµ(ω), ∀f ∈ U.(2.4)

SΩc
1
f =

∫
Ωc

1

Λ∗ωΛωfdµ(ω), ∀f ∈ U.(2.5)

Then S = SΩ1 + SΩc
1
, and SΩ1 , SΩc

1
are positive and self-adjoint operators.



266 W. Zhang and Y.Z. Li 4

Definition 2.4 ([1], Definition 3.1). Let {Λω}ω∈Ω and {Θω}ω∈Ω be two
continuous g-frames for U with respect to (Ω, µ) such that

f =

∫
Ω

Λ∗ωΘωfdµ(ω) =

∫
Ω

Θ∗ωΛωfdµ(ω), f ∈ U.

Then {Θω}ω∈Ω is called an alternate dual continuous g-frame of {Λω}ω∈Ω.

3. NEW INEQUALITIES FOR CONTINUOUS G-FRAMES

Balan et al. in [3] obtained the following Theorem 3.1, and P. Găvruţa
in [11] obtained the following Theorem 3.2.

Theorem 3.1. Let {fj}j∈J ⊂ H be a Parseval frame. For any f ∈ H,
J1 ⊂ J , we have ∑

j∈J1

|〈f, fj〉|2 + ‖
∑
j∈Jc

1

〈f, fj〉fj‖2 ≥
3

4
‖f‖2(3.6)

where Jc1 = J \ J1.

Theorem 3.2. Let {fj}j∈J ⊂ H be a frame and {gj}j∈J ⊂ H be an
alternate dual frame of {fj}j∈J . Then for any f ∈ H, we have

Re(
∑
j∈J1

〈f, gj〉〈f, fj〉) + ‖
∑
j∈Jc

1

〈f, gj〉fj‖2 ≥
3

4
‖f‖2(3.7)

This section is devoted to some inequalities for continuous g-frames.
Using operator theory method we extend these two theorems to the case of
continuous g-frames. We also obtain some other interesting results. For this
purpose, we first give a simple property of self-adjoint operators.

Lemma 3.1. Let T ∈ L(H) be a self-adjoint operator and a, b, c ∈ R, U =
aT 2 + bT + cIH , then the following statements hold.

(i) if a > 0, then

U ≥ 4ac− b2

4a
IH .

(ii) if a < 0, then

U ≤ 4ac− b2

4a
IH .

Proof. We only prove (i), and (ii) can be proved similarly. It is easy to
check that

U = a(T +
b

2a
IH)2 +

4ac− b2

4a
IH .

Observing that (T + b
2aIH)2 is a positive operator, we have (i). �
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Proposition 3.1. Let {Λω}ω∈Ω be a continuous g-frame for U with re-

spect to (Ω, µ) with frame operator S. Then {ΛωS−
1
2 }ω∈Ω is a Parseval conti-

nuous g-frame for U with respect to (Ω, µ).

Proof. Take T = S−
1
2 in Proposition 3.3 of [1]. �

Theorem 3.3. Let {Λω}ω∈Ω be a continuous g-frame for U with respect
to (Ω, µ) with frame operator S. Then for Ω1 ⊂ Ω and f ∈ U , we have

0 ≤
∫

Ω1

‖Λωf‖2dµ(ω)−
∫

Ω
‖Λ̃ωSΩ1f‖2dµ(ω) ≤ 1

4

∫
Ω
‖Λωf‖2dµ(ω),(3.8)

(3.9)
1

2

∫
Ω
‖Λωf‖2dµ(ω) ≤

∫
Ω
‖Λ̃ωSΩ1f‖2dµ(ω) +

∫
Ω
‖Λ̃ωSΩc

1
f‖2dµ(ω)

≤ 3

2

∫
Ω
‖Λωf‖2dµ(ω),

(3.10)
3

4

∫
Ω
‖Λωf‖2dµ(ω) ≤

∫
Ω1

‖Λωf‖2dµ(ω) +

∫
Ω
‖Λ̃ωSΩ1f‖2dµ(ω)

≤
∫

Ω
‖Λωf‖2dµ(ω),

where {Λ̃ω}ω∈Ω = {ΛωS−1}ω∈Ω is the canonical dual continuous g-frame of
{Λω}ω∈Ω.

Proof. Denote Θω = ΛωS
− 1

2 for ω ∈ Ω, {Θω}ω∈Ω is a continuous g-
frame for U with respect to (Ω, µ) by Proposition 3.1. For any f ∈ U , let
Ŝf =

∫
Ω Θ∗ωΘωfdµ(ω) = f , then

ŜΩ1f =

∫
Ω1

Θ∗ωΘωfdµ(ω) =

∫
Ω1

S−
1
2 Λ∗ωΛωS

− 1
2 fdµ(ω) = S−

1
2SΩ1S

− 1
2 f.

(3.11)

Obviously, ŜΩ1 + ŜΩc
1

= IU , furthermore, we have ŜΩ1ŜΩc
1

= ŜΩc
1
ŜΩ1 , so

0 ≤ ŜΩ1ŜΩc
1

= ŜΩ1(IU − ŜΩ1) = ŜΩ1 − (ŜΩ1)2.(3.12)

By Lemma 3.1, we obtain

ŜΩ1 − (ŜΩ1)2 ≤ 1

4
IU .(3.13)

Combining (3.11), (3.12) and (3.13), we have

0 ≤ S−
1
2 (SΩ1 − SΩ1S

−1SΩ1)S−
1
2 ≤ 1

4
IU .(3.14)
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(3.14) is equivalent to

0 ≤ SΩ1 − SΩ1S
−1SΩ1 ≤

1

4
S.(3.15)

For any f ∈ U , we have

〈SΩ1f, f〉 − 〈SΩ1S
−1SΩ1f, f〉 =〈SΩ1f, f〉 − 〈S−1SΩ1f, SΩ1f〉

=

∫
Ω1

‖Λωf‖2dµ(ω)−
∫

Ω
‖Λ̃ωSΩ1f‖2dµ(ω).

Therefore, we obtain (3.8) by (3.15). Next we prove (3.9).

It is easy to check that

(ŜΩ1)2 + (ŜΩc
1
)2 =(ŜΩ1)2 + (IU − ŜΩ1)2

=2(ŜΩ1)2 − 2ŜΩ1 + IU(3.16)

We have

(ŜΩ1)2 + (ŜΩc
1
)2 ≥ 1

2
IU .(3.17)

by Lemma 3.1. By simple calculation, we have

(ŜΩ1)2 + (ŜΩc
1
)2 =2(ŜΩ1)2 − 2ŜΩ1 + IU

=IU + 2ŜΩ1 − 2(ŜΩ1)2 + 4((ŜΩ1)2 − ŜΩ1)(3.18)

Thus, we have

(ŜΩ1)2 + (ŜΩc
1
)2 ≤ IH + 2ŜΩ1 − 2(ŜΩ1)2

by (3.12). Again by Lemma 3.1, we get

(ŜΩ1)2 + (ŜΩc
1
)2 ≤ 3

2
IU(3.19)

combining (3.17),

1

2
IU ≤ (ŜΩ1)2 + (ŜΩc

1
)2 ≤ 3

2
IU(3.20)

(3.20) is equivalent to

1

2
S ≤ SΩ1S

−1SΩ1 + SΩc
1
S−1SΩc

1
≤ 3

2
S(3.21)

For any f ∈ U , we have

〈SΩ1S
−1SΩ1f, f〉+ 〈SΩc

1
S−1SΩc

1
f, f〉 = 〈S−1SΩ1f, SΩ1f〉+ 〈S−1SΩc

1
f, SΩc

1
f〉

=

∫
Ω
‖Λ̃ωSΩ1f‖2dµ(ω) +

∫
Ω
‖Λ̃ωSΩc

1
f‖2dµ(ω)

By using (3.21), we know that (3.9) holds.
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Finally, we prove (3.10). Observe that

ŜΩ1 + (ŜΩ1)2 =ŜΩ1 + (IU − ŜΩ1)2

=(ŜΩ1)2 − ŜΩ1 + IU .(3.22)

and that ŜΩ1 − (ŜΩ1)2 ≥ 0 by (3.12). We have

3

4
IU ≤ ŜΩ1 + (ŜΩ1)2 ≤ IU ,(3.23)

by Lemma 3.1. Therefore, we have

3

4
S ≤ SΩ1 + SΩ1S

−1SΩ1 ≤ S,(3.24)

by (3.11). For f ∈ U , we have

〈(SΩ1 + SΩ1S
−1SΩ1)f, f〉 =〈SΩ1f, f〉+ 〈SΩ1S

−1SΩ1f, f〉
=〈SΩ1f, f〉+ 〈S−1SΩ1f, SΩ1f〉

=

∫
Ω1

‖Λωf‖2dµ(ω) +

∫
Ω
‖Λ̃ωSΩ1f‖2dµ(ω)

Combining this and (3.24), (3.10) holds. The proof is completed. �

Corollary 3.1. Let {Λω}ω∈Ω be a continuous Parseval g-frame for U
with respect to (Ω, µ). Then for Ω1 ⊂ Ω and f ∈ U , we have

0 ≤
∫

Ω1

‖Λωf‖2dµ(ω)−
∥∥∥∥∫

Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥ ≤ 1

4
‖f‖2.(3.25)

1

2
‖f‖2 ≤

∥∥∥∥∫
Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥+

∥∥∥∥∥
∫

Ωc
1

Λ∗ωΛωfdµ(ω)

∥∥∥∥∥ ≤ 3

2
‖f‖2.(3.26)

3

4
‖f‖2 ≤

∫
Ω1

‖Λωf‖2dµ(ω) +

∥∥∥∥∫
Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥ ≤ ‖f‖2.(3.27)

Proof. {Λω}ω∈Ω is a continuous Parseval g-frame for U with respect to
(Ω, µ), for f ∈ U , we have ∫

Ω
‖Λω‖2dµ(ω) = ‖f‖2.

Observe that the frame operator of {Λω}ω∈Ω is IU , therefore, for f ∈ U , we
also have∫

Ω
‖Λ̃ωSΩ1f‖2dµ(ω) =

∫
Ω
‖ΛωSΩ1f‖2dµ(ω) = ‖SΩ1f‖2 =

∥∥∥∥∫
Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥ ,
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and ∫
Ω
‖Λ̃ωSΩc

1
f‖2dµ(ω) =

∥∥∥∥∥
∫

Ωc
1

Λ∗ωΛωfdµ(ω)

∥∥∥∥∥ .
Hence (3.25), (3.26), (3.27) hold. The proof is completed. �

Observe that { 1√
λ

Λω}ω∈Ω is a continuous Parseval g-frame if {Λω}ω∈Ω is

a continuous λ-tight g-frame for U with respect to (Ω, µ). As an immediate
consequence of Corollary 3.1, we have

Corollary 3.2. Let {Λω}ω∈Ω be a continuous λ-tight g-frame for U with
respect to (Ω, µ). Then for Ω1 ⊂ Ω and f ∈ U , we have

0 ≤
∫

Ω1

‖Λωf‖2dµ(ω)−
∥∥∥∥∫

Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥ ≤ λ

4
‖f‖2.(3.28)

λ

2
‖f‖2 ≤

∥∥∥∥∫
Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥+

∥∥∥∥∥
∫

Ωc
1

Λ∗ωΛωfdµ(ω)

∥∥∥∥∥ ≤ 3λ

2
‖f‖2.(3.29)

3λ

4
‖f‖2 ≤

∫
Ω1

‖Λωf‖2dµ(ω) +

∥∥∥∥∫
Ω1

Λ∗ωΛωfdµ(ω)

∥∥∥∥ ≤ λ‖f‖2.(3.30)

Next we will give an inequality for dual continuous g-frames. To do so,
we first give the following lemma.

Lemma 3.2. Let {Λω}ω∈Ω be a continuous g-frame for U with respect to
(Ω, µ), {Γω}ω∈Ω be an alternate dual continuous g-frame of {Λω}ω∈Ω, and
a = {aω}ω∈Ω ∈ l∞(Ω). Define the operator Ta as follows:

Ta : U → U, Taf =

∫
Ω
aωΓ∗ωΛωfdµ(ω), ∀f ∈ U,

then Ta is a bounded linear operator, and

T ∗a f =

∫
Ω
āωΛ∗ωΓωfdµ(ω).

Where l∞(Ω) = {{aω}ω∈Ω : sup
ω∈Ω
|aω| <∞}.

Proof. For Ω1 ⊂ Ω and f ∈ U , we have∥∥∥∥∫
Ω1

aωΓ∗ωΛωfdµ(ω)

∥∥∥∥ = sup
g∈U,‖g‖=1

∣∣∣∣〈∫
Ω1

aωΓ∗ωΛωfdµ(ω), g

〉∣∣∣∣
= sup
g∈U,‖g‖=1

∣∣∣∣∫
Ω1

〈Γ∗ωΛωf, āωg〉 dµ(ω)

∣∣∣∣
= sup
g∈U,‖g‖=1

∣∣∣∣∫
Ω1

〈Λωf, āωΓωg〉 dµ(ω)

∣∣∣∣
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≤ sup
g∈U,‖g‖=1

(∫
Ω1

‖Λωf‖2dµ(ω)

) 1
2

·
(∫

Ω1

‖āωΓωg‖2dµ(ω)

) 1
2

≤
√
BB′M‖f‖,

where M = sup
ω∈Ω
|aω|, aω is the conjugate of aω and B′ is the upper bound of

{Γω}ω∈Ω. Hence Ta is well-defined and ‖Taf‖ ≤
√
BB′M‖f‖. Therefore, Ta is

a bounded linear operator. Now let us compute (Ta)
∗.

〈f, (Ta)
∗g〉 = 〈Taf, g〉 =

〈∫
Ω
aωΓ∗ωΛωfdµ(ω), g

〉
=

∫
Ω
〈Λωf, āωΓωg〉dµ(ω)

=

∫
Ω
〈f, āωΛ∗ωΓωg〉dµ(ω)

=

〈
f,

∫
Ω
āωΛ∗ωΓωgdµ(ω)

〉
.

The proof is completed. �

Theorem 3.4. Let {Λω}ω∈Ω be a continuous g-frame for U with respect
to (Ω, µ), {Γω}ω∈Ω be an alternate dual continuous g-frame of {Λω}ω∈Ω, and
{aω}ω∈Ω ∈ l∞(Ω). Then for f ∈ U , we have

3

4
‖f‖2 ≤

∥∥∥∥∫
Ω
aωΓ∗ωΛωfdµ(ω)

∥∥∥∥2

+ Re(

∫
Ω

(1− aω)〈Λωf, Γωf〉dµ(ω))

=

∥∥∥∥∫
Ω

(1− aω)Γ∗ωΛωfdµ(ω)

∥∥∥∥2

+ Re(

∫
Ω
aω〈Λωf, Γωf〉dµ(ω))

≤ 3 + ‖Ta − T1−a‖2

4
‖f‖2(3.31)

Proof. First we prove the “equality” part. Let T1−af =
∫

Ω(1− aω)Γ∗ωΛω
fdµ(ω), ∀f ∈ U , then

T ∗1−af =

∫
Ω

(1− āω)Λ∗ωΓωfdµ(ω), ∀f ∈ U,

and Ta + T1−a = IU . So for f ∈ U , we have∥∥∥∥∫
Ω
aωΓ∗ωΛωfdµ(ω)

∥∥∥∥2

+

∫
Ω

(1− aω)〈Λωf, Γωf〉dµ(ω)

= ‖Taf‖2 + 〈T1−af, f〉 = 〈Taf, Taf〉+ 〈(IU − Ta)f, f〉
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= 〈Taf, Taf〉+ 〈f, f〉 − 〈Taf, f〉.(3.32)

On the other hand,∥∥∥∥∫
Ω

(1− aω)Γ∗ωΛωfdµ(ω)

∥∥∥∥2

+

∫
Ω
aω〈Λωf, Γωf〉dµ(ω)

= ‖T1−af‖2 + 〈Taf, f〉 = 〈T1−af, T1−af〉+ 〈f, Taf〉
= 〈(IU − Ta)f, (IU − Ta)f〉+ 〈f, Taf〉
= 〈f, f〉 − 〈Taf, f〉+ 〈Taf, Taf〉.(3.33)

Therefore, by (3.32) and (3.33), we have∥∥∥∥∫
Ω
aωΓ∗ωΛωfdµ(ω)

∥∥∥∥2

+

∫
Ω

(1− aω)〈Λωf, Γωf〉dµ(ω)

=

∥∥∥∥∫
Ω

(1− aω)Γ∗ωΛωfdµ(ω)

∥∥∥∥2

+

∫
Ω
aω〈Λωf, Γωf〉dµ(ω).(3.34)

Thus ∥∥∥∥∫
Ω
aωΓ∗ωΛωfdµ(ω)

∥∥∥∥2

+ Re(

∫
Ω

(1− aω)〈Λωf, Γωf〉dµ(ω))

=

∥∥∥∥∫
Ω

(1− aω)Γ∗ωΛωfdµ(ω)

∥∥∥∥2

+ Re(

∫
Ω
aω〈Λωf, Γωf〉dµ(ω)).(3.35)

Next we prove the “left-hand inequality” part. By Lemma 3.2, we have

Re(

∫
Ω
aω〈Λωf, Γωf〉dµ(ω)) =

〈
Ta + T ∗a

2
f, f

〉
.

Thus for h ∈ H, we have∥∥∥∥∫
Ω

(1− aω)Γ∗ωΛωfdµ(ω)

∥∥∥∥2

+ Re(

∫
Ω
aω〈Λωf, Γωf〉dµ(ω))

=

〈(
T ∗1−aT1−a +

Ta + T ∗a
2

)
f, f

〉
=

〈(
(IU − T ∗a )(IU − Ta) +

Ta + T ∗a
2

)
f, f

〉
=

〈(
IU + T ∗aTa −

Ta + T ∗a
2

)
f, f

〉
=

〈[(
Ta −

1

2
IU

)∗(
Ta −

1

2
IU

)
+

3

4
IU

]
f, f

〉
=

∥∥∥∥(Ta − 1

2
IU

)
f

∥∥∥∥2

+
3

4
‖f‖2 ≥ 3

4
‖f‖2.
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At last we prove the “right-hand inequality” part. Observe that Ta+T1−a = IU .

For f ∈ U , we have∥∥∥∥∫
Ω

(1− aω)Γ∗ωΛωfdµ(ω)

∥∥∥∥2

+ Re(

∫
Ω
aω〈Λωf, Γωf〉dµ(ω))

= 〈T1−af, T1−af〉+ Re 〈Taf, f〉
= 〈T1−af, T1−af〉+ 〈f, f〉 − Re 〈T1−af, f〉

=
3

4
〈f, f〉+

1

4
〈f, f〉 − Re 〈T1−af, f〉+ 〈T1−af, T1−af〉

=
3

4
〈f, f〉+

1

4
(〈f, f〉 − 4Re 〈T1−af, f〉+ 4 〈T1−af, T1−af〉)

=
3

4
〈f, f〉+

1

4
(〈f, f〉 − 2 〈T1−af, f〉 − 2 〈f, T1−af〉+ 4 〈T1−af, T1−af〉)

=
3

4
〈f, f〉+

1

4
〈(IU − 2T1−a)f, (IU − 2T1−a)f〉

=
3

4
〈f, f〉+

1

4
〈(Ta − T1−a)f, (Ta − T1−a)f〉

≤ 3

4
‖f‖2 +

1

4
‖Ta − T1−a‖2‖f‖2

=
3 + ‖Ta − T1−a‖2

4
‖f‖2.

The proof is completed. �

4. ERASURES FOR CONTINUOUS G-FRAMES

In [1, Theorem 3.7] the authors gave a proposition for a continuous g-

frame to be a continuous g-frame for one element erasure, only one element

being deleted. So it is natural to ask whether there is a general result for

erasure of [1, Theorem 3.7]? We can erase some elements of a continuous

g-frame, and the remainder after erasure is also a continuous g-frame. In this

section, we will give some results for erasure. To do that we first give the

following lemma:

Lemma 4.1 ([13, Theorem 2.29]). Suppose that X is a Banach space and

Q ∈ L(X). If ‖Q‖ < 1, then IX − Q is invertible on X. Moreover, we have

‖(IX −Q)−1‖ ≤ 1
1−‖Q‖ .

Theorem 4.1. Let Ω1 ⊂ Ω and {Λω}ω∈Ω be a continuous g-frame for

U with respect to (Ω, µ) with frame bounds A, B, frame operator S. SΩ1 is

defined as in (2.4). Then the following are equivalent:
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(i) IU − S−1SΩ1 is invertible on U .

(ii) IU − SΩ1S
−1 is invertible on U .

(iii) {Λω}ω∈Ω\Ω1
be a continuous g-frame for U with respect to (Ω\Ω1, µ).

In addition, if (i) or (ii) is satisfied, the continuous g-frame {Λω}ω∈Ω\Ω1

has the lower frame bound A(1−‖S−1SΩ1‖). Otherwise if there exists 0 6= f ∈
U such that f = S−1SΩ1f , then {Λω}ω∈Ω\Ω1

is not a continuous g-frame for

U with respect to (Ω \ Ω1, µ).

Proof. (i)⇔(ii) Observe that S and SΩ1 are self-adjoint. Therefore, we

have

(IU − S−1SΩ1)∗ = IU − (S−1SΩ1)∗ = IU − SΩ1S
−1,

So IU −S−1SΩ1 is invertible on U if and only if IU −SΩ1S
−1 is invertible on U .

(i)⇔(iii) Denote the frame operator of {Λω}ω∈Ω\Ω1
by SΩc

1
. It is easy to

check that

(4.36) SΩc
1

= S − SΩ1 = S(IU − S−1SΩ1).

Therefore, {Λω}ω∈Ω\Ω1
is a continuous g-frame for U with respect to

(Ω\Ω1, µ) if and only if S(IU−S−1SΩ1) is a bounded and invertible operator on

U by (4.36). Observe that S(IU−S−1SΩ1) is a bounded and invertible operator

on U , equivalent to IU −S−1SΩ1 and a bounded and invertible operator on U .

Thus we prove the equivalence between (ii) and (iii).

Next we prove that the continuous g-frame {Λω}ω∈Ω\Ω1
has the lower

frame bound A
‖(IU−S−1SΩ1

)−1‖2 if (i) or (ii) is satisfied. Suppose (i) holds. Note

that {Λω}ω∈Ω is a continuous g-frame for U with respect to (Ω, µ) with frame

bounds A, B, frame operator S and Ω1 ⊂ Ω. For f ∈ U , we have

f = S−1Sf = S−1(

∫
Ω

Λ∗ωΛωfdµ(ω))

=

∫
Ω\Ω1

S−1Λ∗ωΛωfdµ(ω) + S−1(

∫
Ω1

Λ∗ωΛωfdµ(ω))

= S−1SΩ1f +

∫
Ω\Ω1

S−1Λ∗ωΛωfdµ(ω),

that is

(4.37) (IU − S−1SΩ1)f =

∫
Ω\Ω1

S−1Λ∗ωΛωfdµ(ω).
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Therefore, we obtain

(4.38) ‖(IU − S−1SΩ1)f‖ =

∥∥∥∥∥
∫

Ω\Ω1

S−1Λ∗ωΛωfdµ(ω)

∥∥∥∥∥ .∥∥∥∥∥
∫

Ω\Ω1

S−1Λ∗ωΛωfdµ(ω)

∥∥∥∥∥ = sup
g∈U, ‖g‖=1

∣∣∣∣∣
〈∫

Ω\Ω1

S−1Λ∗ωΛωfdµ(ω), g

〉∣∣∣∣∣
= sup

g∈U, ‖g‖=1

∣∣∣∣∣
∫

Ω\Ω1

〈Λωf, Λ̃ωg〉dµ(ω)

∣∣∣∣∣
≤ sup
g∈U, ‖g‖=1

(∫
Ω\Ω1

‖Λωf‖2dµ(ω)

)1
2
(∫

Ω\Ω1

‖Λ̃ωg‖2dµ(ω)

)1
2

≤ sup
g∈U, ‖g‖=1

1√
A
‖g‖

(∫
Ω\Ω1

‖Λωf‖2dµ(ω)

) 1
2

≤ 1√
A

(∫
Ω\Ω1

‖Λωf‖2dµ(ω)

) 1
2

.(4.39)

By (4.38) and (4.39), we know that IU − S−1SΩ1 is bounded on U . The-

refore, we have

SΩc
1

= S − SΩ1 = S
1
2 (IU − S−

1
2SΩ1S

− 1
2 )S

1
2

≥
√
A(1− ‖S−

1
2SΩ1S

− 1
2 ‖)
√
AIU

≥ A(1− ‖S−1SΩ1‖)IU .

It follows that

A(1− ‖S−1SΩ1‖)‖f‖2 ≤
∫

Ω\Ω1

‖Λωf‖2dµ(ω).

We finally prove the last part. If there exists 0 6= f ∈ U such that

f = S−1SΩ1f . By (4.37), we have∫
Ω\Ω1

S−1Λ∗ωΛωfdµ(ω) = 0.

Observe that S−1 is invertible, then∫
Ω\Ω1

Λ∗ωΛωfdµ(ω) = 0.
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Therefore, we have〈∫
Ω\Ω1

Λ∗ωΛωfdµ(ω), f

〉
=

∫
Ω\Ω1

‖Λωf‖2dµ(ω),

since f 6= 0, thus {Λω}ω∈Ω\Ω1
is not a continuous g-frame for U with respect

to (Ω \ Ω1, µ). The proof is completed. �

By the arguments in Theorem 4.1 and Lemma 4.1, we have

Corollary 4.1. Let Ω1 ⊂ Ω and {Λω}ω∈Ω be a continuous g-frame for U

with respect to (Ω, µ) with frame bounds A, B, frame operator S. SΩ1 is defined

as in (2.4). If ‖S−1SΩ1‖ < 1, then {Λω}ω∈Ω\Ω1
is a continuous g-frame for U

with respect to (Ω \ Ω1, µ) with the lower frame bound A(1− ‖S−1SΩ1‖).

Observe that {Λω}ω∈Ω is a continuous tight g-frame for U with respect

to (Ω, µ) with frame bounds A, then S = AIU . As an immediate consequence

of Theorem 4.1, we have

Corollary 4.2. Let Ω1 ⊂ Ω and {Λω}ω∈Ω be a continuous tight g-frame

for U with respect to (Ω, µ) with frame bounds A, frame operator S. SΩ1 is

defined as in (2.4). If ‖SΩ1‖ < A, then {Λω}ω∈Ω\Ω1
is a continuous g-frame

for U with respect to (Ω \ Ω1, µ) with the lower frame bound (A− ‖SΩ1‖).

Corollary 4.3. Let Ω1 ⊂ Ω and {Λω}ω∈Ω be a continuous Parseval g-

frame for U with respect to (Ω, µ). SΩ1 is defined as in (2.4). If ‖SΩ1‖ < 1,

then {Λω}ω∈Ω\Ω1
is a continuous g-frame for U with respect to (Ω\Ω1, µ) with

the lower frame bound (1− ‖SΩ1‖).

If Ω1 = {ω0}, by Theorem 4.1 we have the following corollary:

Corollary 4.4. Let {Λω}ω∈Ω be a continuous g-frame for U with respect

to (Ω, µ) with frame operator S. Then the following are equivalent.

(i) IU − µ(ω0)Λ̃∗ω0
Λω0 is invertible on U .

(ii) IU − µ(ω0)Λ∗ω0
Λ̃ω0 is invertible on U .

(iii) {Λω}ω∈Ω\{ω0} be a continuous g-frame for U with respect to (Ω \
{ω0}, µ).

In addition, if (i) or (ii) is satisfied, the continuous g-frame {Λω}ω∈Ω\{ω0}
has the lower frame bound A(1 − ‖µ(ω0)Λ̃∗ω0

Λω0‖). Otherwise if there exists

0 6= f ∈ U such that f = µ(ω0)Λ̃∗ω0
Λω0f , then {Λω}ω∈Ω\{ω0} is not a continuous

g-frame for U with respect to (Ω \ {ω0}, µ).

Remark 4.1. The part (i)⇒(iii) in Corollary 4.4 was first stated in Theo-

rem 3.7 in [1].
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