CLASSIFYING p-GROUPS BY THEIR SCHUR MULTIPLIERS

PEYMAN NIROOMAND

Communicated by Vasile Brinzinescu

Some recent results devoted to the investigation of the structure of p-groups rely
on the study of their Schur multipliers. One of these results states that for any

p-group G of order p™ there exists a nonnegative integer s(G) such that the order

of the Schur multiplier of G is equal to p%("ﬂ)("%)“*s(c). Characterizations

of the structure of all non-abelian p-groups G have been obtained for the case
that s(G) = 0 or 1. The present paper is devoted to the characterization of all
p-groups with s(G) = 2.
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Originating in the work of Schur in 1904, the concept of Schur multiplier,
M(G), was studied by several authors, and proved to be an important tool in
the classification of p-groups. It is known that the order of Schur multiplier of
a given finite p-group of order p™ is equal to p%”(”_l)_t(G) for some t(G) > 0
by a result of Green [5]. It is of interest to know which p-groups have the Schur
multiplier of order p%”(”_l)_t(a), when ¢(G) is in hand.

Historically, there are several papers trying to characterize the structure
of G by just the order of its Schur multiplier. In [1] and [13], Berkovich and
Zhou classified the structure of G when ¢(G) = 0,1 and 2, respectively.

Later, Ellis in [2] showed that having a new upper bound on the order of
Schur multiplier of groups reduces characterization process of structure of G.
He reformulated the upper bound due to Gaschiitz et. al. [4] and classified in
a new way to that of [1,13] the structure of G when t(G) = 3.

The result of [9] shows that there exists a nonnegative integer s(G) such
that |M(G)| = p2(r=D=2+1=5(G) which is a reduction of Green’s bound for
any given non-abelian p-group G of order p”. One can check that the struc-
ture of G can be characterized by using [9, Main Theorem], when ¢(G) = 1, 2, 3.
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Moreover, characterizing non-abelian p-groups by s(G) can be significant since
for instance the results of [9] and [12] emphasize that the number of groups
with a fixed s(G) is larger than the number of groups with fixed ¢(G). Also,
the result of [10] and [11] shows handling the class of p-groups characterized
by s(G) = 0,1 may characterize the structure of G by knowing ¢(G).

In the present paper, we intend to classify the structure of all non-abelian
p-groups when s(G) = 2.

Throughout this paper, we use the following notations.
Qs: quaternion group of order 8,
Dsg: dihedral group of order 8,
Ei: extra special p-group of order p? and exponent p,
Es: extra special p-group of order p? and exponent p? (p # 2),
Z;E,T): direct product of m copies of the cyclic group of order p",
G?: the abelianization of group G,
H - K: the central product of H and K,
E(m): E-Z(F), where E is an extra special p-group and Z(F) is a cyclic
group of order p™ (m > 2),
®(@G): the Frattini subgroup of group G.

Also, G has the property s(G) = 2 or briefly with s(G) = 2 means the
order of its Schur multiplier is of order p%(”_l)("_Q)_l.
The following lemma is a consequence of [9, Main Theorem].

LEMMA 1. There exists no p-group G with |G'| > p3 and s(G) = 2.

LEMMA 2. There exists no p-group G of order p® (n > 5) when G is
not elementary abelian and s(G) = 2.

Proof. First, suppose that n = 5. By virtue of [11, Theorem 3.6], the result
follows. In case n > 6, by invoking [9, Lemma 2.3], we have |[M(G/G")| <
p%("72)("73), and since G/Z(G) is capable, the rest of proof is obtained by
using [3, Proposition 1]. O

LEMMA 3. Let G be a p-group and |G| = p or p> with s(G) = 2. Then
Z(G) is of exponent at most p> and p, respectively.

Proof. Taking a cyclic central subgroup K of order p* (k > 3) and using [6,
Theorem 2.2], we should have

IM(G)| < p~Y|G/K ® K|pz(n—k)(n—k-1) prklps(n=k)(n—k-1)

IN

< p%(nfl)(n72)72

)

which is a contradiction. In case |G’| = p?, the result is obtained similarly. [
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Lemma 1 indicates that when G has the property s(G) = 2, then |G'| <
p?. First we survey the case |G'| = p

THEOREM 4. Let G be a p-group with center of order at most p* such
that G® is elementary abelian of order p" ‘and s(G) = 2. Then G = F(2),
Es xZ,, Qs or H, where H is an extra special p-group of order p?mt (m > 2).

Proof. First assume that |Z(G)| = p. Hence G = Qg or G = H, where H
is an extra special p-group of order p?™*! (m > 2) by a result of [8, Theorem
3.3.6]. Now, assume that |Z(G)| > p?. Lemma 3 and assumption show that
Z(G) = Ty x Ty o1 Zye

In case Z(G) is of exponent p, we deduce from [9, Lemma 2.1] that G =
H x Z,. 1t is easily checked that H = FE5 by using [8, Theorems 2.2.10 and
3.3.6].

In case Z(G) is of exponent p?, since ®(G) = G’, [7, Theorem 3.1] shows
that

p2 DD = | M(G/R(G))| < p IM(G)],
and hence pz(" DE=2-1 < | M(G)). On the other hand, the Main Theorems
of [9] and [12] imply that [M(G)| = p2 (n=1)("=2)~1 gince Z(Q) is cyclic of order
p?. Moreover, G = E(2) by [9, Lemma 2.1], as required. [
THEOREM 5. Let G be a p-group, G be elementary abelian, |G'| = p and

|Z(G)| > p? be of exponent p*>. Then G = E(2) x Z, where Z is an elementary
abelian p-group.

Proof. 1t is known that G = H - Z(G) and H N Z(G) = G’ by virtue
of [9, Lemma 2.1]. Now, for the sake of clarity, we consider two cases.

Case 1. First, assume that G’ lies in a central subgroup K of exponent
p?. Therefore, one can check that there exists a central subgroup T such that
G=H -KxT=x=EF(2)xT. Thus, when T is an elementary abelian p-group
by using [8, Theorem 2.2.10] and Theorem 4, we have

M(G)] = IM(E@)[IM(T)EE2)* T
= 2m’+m—1+3(n—2m —2)(n — 2m — 3) + 2m + 1(n—2m—2)
= f(n-1)(n-2)-1.

In the case T is not elementary abelian, a similar method and
[9, Lemma 2.2] asserts that

IM(G)] < p3* om0 < p3(n-Dn=2)-2,

Case 2. G’ has a complement 7" in Z(G), and hence G = H x T where
T is not elementary abelian, and 50, by invoking [9, Lemma 2.2] and [8, Theo-
rems 2.2.10 and 3.3.6], |M(G)| < p2(D=2-2
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THEOREM 6. Let G be a p-group of order p*, G® be elementary abelian
of order p"~1 and Z(G) be of exponent p. Then G has the property s(G) = 2
if and only if it is isomorphic to one of the following groups.
Qs x 280 By x 209 or H x 227D,
where H is extra special of order p*™+1 m > 2.

Proof. 1t is obtained via Theorem 4, [8, Theorems 2.2.10 and 3.3.6] and
assumption. [

LEMMA 7. Let G be a p-group of order p* and |G'| = p. Then G has the
property s(G) = 2 if and only if G is isomorphic to the one of the following
groups.

(1) Qs x Zo,

(2)<ab|a—1b4—1[aba] [a,b,b] =1, [a,b] = a®b?)

(3) (a b c | a? =b% = c? = 1,abc = bca = cab).

(4) Ey=E(2),

(5) Eg X Zp,
(6) (a,b|a” =1,0P =1,[a,b,a] = [a,b,b] = 1),

Proof. 1t is obtained by using Theorems 4, 6 and a result of
[10, Lemma 3.5]. O

The structure of all p-groups of order p™ is characterized with the property
s(G) =2 and |G'| = p. Now, we suppose that |G| = p?

LEMMA 8. There exists no p-group of order p"™ (n > 5) with s(G) = 2,
|G’ =p? and G' € Z(G)

Proof. First, assume that |Z(G)| = p?, since Z(G) is elementary by
Lemma 4. Let K be a central subgroup of order p, such that |(G/K)'| = p>.
It is seen that

IM(G)] < IM(G/K)||IK ® G/(K x G')| < IM(G/K)| p"~°
by [7, Theorem 4.1]. On the other hand, [9,12, Main Theorems| imply that
IM(G/K)| < p2=D(=3)-1 4nd hence IM(G)| < pz(n=1(n=2)-2

In case |Z(G)| = p?, there exists a central subgroup K of order p? such
that G’ N K = 1. The rest of the proof is similar to that used in our previous
case.

When |Z(G)| = p, since G is nilpotent of class 3, the result is deduced
by [8, Proposition 3.1.11]. O

THEOREM 9. Let G be a p-group of order p™ (n > 5) and |G'| = p? with

s(G) =2. Then
G212, x (2 %0 Ty) (p#2).
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Proof. By the results of Lemmas 4 and 8, we may assume that G’ C Z(QG)
and Z(G) is of exponent p. We consider three cases relative to |Z(G)|.

Case 1. Assuming that |Z(G)| = p*, there exists a central subgroup K of
order p? such that K NG’ = 1. [9, Main Theorem] implies that |M(G/K)| <
p%(”_?’)(”_‘l), and so |M(G)| < p%(”_l)(”_m_l due to [7, Theorem 4.1].

Case 2. In the case | Z(G)| = p?, we have G’ = Z(G). Moreover [12, Main
Theorem]| implies that n > 6 and so there exists a central subgroup K such
that G/K = H x Z(G/K) where H is an extra special p-group of order p?™*1
m > 2, and so

|M(G)| < pn—3|M(G/K)| < pn—3p%(n—1)(n—4) < p%(n—l)(n—Q)—%
Case 3. Now, we may assume that |Z(G)| = p®. Let K be a complement

of G’ in Z(G), so [11, Main Theorem] implies that |[M(G/K)| < p2(n=2(n=3),
On the other hand, [7, Theorem 4.1] and our assumption imply that

p2( D=1 — | \(@)| < IM(G/EK)||IK @ G/Z(G)]
< [M(G/E)[p"?,

so we should have |[M(G/K)| = p2(=2(=3) 4ng G/Z(G) is elementary abe-
lian. Now, since |IM(G/K)| = p2(=2(=3) 4nq (G/K)'| = p?, by using [12,
Main Theorem|, G/K = Zz(;l) Xg Zy (p # 2). Moreover, [3, Proposition 1] and
our assumption show that G is elementary abelian. Hence, it is readily shown
that

G=1Z,x (Z() %9 Z,) (p#2). O

THEOREM 10. Let G be a group of order p* with s(G) = 2 and |G'| = p*.
Then G is isomorphic to the one of the following groups.
(1) {a,b|a® =b>=1,[a,b,a] =1,[a,b,b] = a% [a,b,b,b] = 1),
(2) (a,b|a? =1,b" =1,[a,b,a] = [a,b,b,a] = [a,b,b,b] = 1)(p # 3).

Proof. The structure of these groups has been characterized in
[10, Lemma 3.6]. O

We summarize all results as follows,

THEOREM 11. Let G be a group of order p™. Then s(G) = 2 if and only
if G is isomorphic to one of the following groups.
(1) B2)x 2z,
(2) By x 20",
(3) Qs x 257,
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(4) H x Zén_zm_l), where H is an extra special p-group of order p?"+t!
(m > 2),
(5) {(a,b|a*=1,b* =1,[a,b,a] = [a,b,b] = 1,[a, b] = a®b?),
(6) (a,b,c | a®=b?=c? =1,abc = bca = cab),
(7) {a,b] a” =1,0° =1,[a,b,a] = [a,b,b] = 1),
4
(8) Zy x (24" %9 Zy) (p #2),
9) {(a,b]a®=0b%=1,[a,b,a] = 1,[a,b,b] = a®, [a,b,b,b] = 1),

(10) (a,b |a? = 1," = 1,[a, b,a] = [a,b,b,a] = [a, b,b,b] = 1)(p # 3).
Acknowledgements. I would like to thank the referee for improving the readability
of this paper.
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