ON COMMUTATORS IN P-GROUPS OF MAXIMAL CLASS
AND SOME CONSEQUENCES

MEHRI AKHAVAN-MALAYERI

Communicated by Vasile Brînzănescu

Let $\Gamma(G)$ denote the set of commutators of a group G. In this paper, we first show that if p is a prime number and G is a p-group of maximal class then $\Gamma(G) = G'$. As a consequence of this result we present various sufficient conditions implying that the commutators form a subgroup. Next, we prove that if G is a wreath product $G = A \wr P$, with A a nontrivial finite abelian group and P a p-group of maximal class, with $|A| > 2$ or $p > 2$, then the commutator length of G is equal to 2.

AMS 2010 Subject Classification: 20F12.

Key words: commutator subgroup, p-group of maximal class, wreath product.

1. INTRODUCTION

Recall that the commutator length $c(G)$ of a group G is defined to be the minimal number such that every element of G' can be expressed as a product of at most $c(G)$ commutators. A group G is called a c-group if $c(G)$ is finite. For any positive integer n, denote by c_n the class of groups with commutator length equal to n. Denote by $\Gamma(G)$ the set of commutators in G.

The question as whether every element of the commutator subgroup of a group G is a commutator ($\Gamma(G) = G'$) or not, was studied by many authors. See [12] for a survey article about commutators.

The smallest group with $\Gamma(G) = G'$ has order 96 (see [9]). Indeed there exist many papers providing examples of groups in which $\Gamma(G) = G'$ or $\Gamma(G) \neq G'$. In [10], Guralnick gave interesting examples of wreath product $G := U \wr H$ where U is any nontrivial finite abelian group and H is a finite group with derived subgroup of order at least 3, in which $c(G) \neq 1$. In particular if H is perfect, then G' is perfect and $c(G) \neq 1$.

In [4], we also used wreath product constructions to obtain for any positive integer n, solvable groups of derived length n and commutator length equal to 1 or 2. Let $W = G \wr H$ be the wreath product of G by a n-generator abelian group H. In [3], we proved that every element of W' is a product of
at most \(n + 2\) commutators, and every element of \(W^2\) is a product of at most
\(3n + 4\) squares in \(W\). This generalizes our previous result.

There are few sufficient conditions implying that the commutators form
a subgroup (see [13]). In this paper, we show that in any \(p\)-group of maximal
class, the commutators form a subgroup. As a consequence of this result we
show in Corollary 3, that if \(P\) is a \(p\)-group of maximal class and \(G = P \wr C_1 \wr \cdots \wr C_n\), where \(C_i\) is a finite cyclic group for \(i = 1, \ldots, n\), then \(\Gamma(G) = G'\).

We also collect in Corollary 4, various sufficient conditions implying that the
commutators form a subgroup. Finally, let \(A\) be a nontrivial finite abelian
group and \(P\) be a \(p\)-group of maximal class. Let \(G = A \wr P\) and assume
that \(|A| > 2\) or \(p > 2\). By using Guralnick’s [10] recent result, we show that
the commutator length of \(G\) is equal to 2. We also give a precise formula for
expressing every element of \(G'\) as a product of two commutators.

The precise statements of results are given in the next section.

2. MAIN RESULTS

Our notation is standard. Let \(G\) be a group and \(x, y\) and \(z \in G\). Then
\[x^y = y^{-1}xy, \ [x, y] = x^{-1}y^{-1}xy.\]

Let \(G\) be a \(p\)-group of maximal class of order \(p^n, n \geq 4\). For each \(i\) with
\(2 \leq i \leq n - 2\) the 2-step centralizer \(K_i\) in \(G\) is defined to be the centralizer
in \(G\) of \(\gamma_i(G)/\gamma_{i+2}(G)\). Clearly \(\gamma_2(G) \leq K_i\) for each \(i\). Define \(P_i = P_i(G)\) by
\(P_0 = G, P_1 = K_2\) and \(P_i = \gamma_i(G)\) for \(2 \leq i \leq n\). Take \(s_1 \in P_1 - P_2, s \in
G - \bigcup_{i=2}^{n-2} K_i\), and define \(s_i = [s_{i-1}, s] = [s_1, s_{i-1} s]\) for \(2 \leq i \leq n - 1\). Note that
\(G = \langle s, s_1 \rangle, P_i = \langle s_1, \cdots, s_{n-1} \rangle\) for \(1 \leq i \leq n - 2\) and \(s_p \in P_{n-1} = Z(G) =
\gamma_{n-1}(G)\) (see [11] and [14]).

In the rest of the paper, we use the above notations.

The main results of this paper are as follows.

Theorem 1. If \(G\) is a \(p\)-group of maximal class, then \(\Gamma(G) = G'\).

We have the following consequences of this result.

Corollary 2. If \(G\) is a \(p\)-group of maximal class of order \(p^n\) \((n \geq 4)\)
and \(s \notin K_i\) for \(2 \leq i \leq n - 2\), then \(G' = \{ [g, s] | g \in G \}\). In particular,
every element of \(G = \langle s, s_1 \rangle\) can be expressed in the form \(s^i s_1^{i_1} [g, s]\) in which
\(i, i_1 \in \mathbb{N}, 0 \leq i \leq p^2\) and \(g \in G\).

By repeated application of Rhemtulla’s [15] result we show that:

Corollary 3. Let \(P\) be a \(p\)-group of maximal class and \(G = P \wr C_1 \cdots \wr C_n\),
where \(C_i\) is a finite cyclic group for \(i = 1, \cdots, n\). Then \(\Gamma(G) = G'\).
In the next corollary, we collect various sufficient conditions implying that the commutators form a subgroup.

Corollary 4. Let \(G \) be a finite nonabelian \(p \)-group of order \(p^n \). If one of the following assertions holds, then \(\Gamma(G) = G' \):

(i) \(p = 2 \) and \(|G : G'| = 4 \).

(ii) \(G \) has an abelian subgroup of index \(p \) and \(|G : G'| = p^2 \).

(iii) \(G \) has a cyclic subgroup \(U \) of index \(p^2 \) such that \(C_G(U) \) is cyclic.

(iv) \(n > 4 \), and \(G \) has only one abelian subgroup of order \(p^3 \).

Two interesting results are indicated by the following theorems.

Theorem 5. Let \(G \) be a \(p \)-group, \(p > 2 \). If \(G \) has no normal elementary abelian subgroup of rank 3, then \(\Gamma(G) = G' \).

Theorem 6. Let \(A \) be a nontrivial finite abelian group and \(P = \langle s, s_1 \rangle \) be a \(p \)-group of maximal class. Let \(G = A \wr P \). If \(|A| > 2 \) or \(p > 2 \), then \(c(G) = 2 \).

In particular, every element of \(G' \) is a product of at most two commutators \([b_1, s_1][s, g]^b\), for suitable \(g \) in \(G \) and \(b, b_1 \) in the base group of \(G \).

3. PROOFS

Proof of Theorem 1. Of course a nonabelian group of order \(p^3 \) is a \(p \)-group of maximal class. It is also well known that if \(G \) is a nonabelian group of order \(p^3 \), where \(p \) is odd, then \(G \) is an extra-special group and \(G \) is isomorphic to

\[
\langle x, y | x^p = y^p = 1, [x, y] = [x, y]^x = [x, y]^y \rangle,
\]
or

\[
\langle x, y | y^p = x^{p^2} = 1, x^y = x^{p+1} \rangle.
\]

Note that these groups have exponent \(p \) and \(p^2 \), respectively.

In both cases one has \(G' = \langle [x, y] \rangle = \{[x, y]^i | 0 \leq i < p \} \); thus \(\Gamma(G) = G' \).

If \(p = 2 \) then \(G \) is isomorphic to \(D_8 \) or \(Q_8 \). If \(\{x, y\} \) is a generating set for \(G \) then \(G' = \{1, [x, y]\} \); thus \(\Gamma(G) = G' \).

For \(n \geq 4 \), we will use induction on \(n \). If \(G = \langle s, s_1 \rangle \) is a \(p \)-group of maximal class of order \(p^4 \), then \(\gamma_2(G) = \langle s_2, s_3 \rangle = \langle [s_1, s], [s_1, s, s] \rangle \), \(\gamma_3(G) = Z(G) = \langle s_3 \rangle = \langle [s_1, s, s] \rangle \), and \(\gamma_4(G) = 1 \). Let \(\gamma \in G' \), then \(\gamma = [s_1, s]^i[s_1, s, s]^j \) where \(i, j \in \mathbb{Z} \). Clearly we have \(\gamma = [s_1, s][s_1, s, s]^{j-i(i-1)/2} \)

\[
= [s_1, s][s_2]^{j-i(i-1)/2}, s] = [s_1 s_2]^{j-i(i-1)/2}, s].
\]

Let \(n > 4 \) and \(G = \langle s, s_1 \rangle \). Let also \(\overline{G} = G/Z(G) \) and observe that \(\overline{G} \) is a \(p \)-group of maximal class. It is easy to prove that the \(i \)th 2–step centralizer in \(G \) is \(\overline{K}_i = K_i/Z(G) \) for \(2 \leq i \leq n - 3 \). Also, we have:

\[
P_0(\overline{G}) = \overline{P_0(G)}, \quad P_1(\overline{G}) = \overline{P_1(G)} = K_2, \quad P_i(\overline{G}) = \overline{P_i(G)} \quad \text{for} \quad 2 \leq i \leq n - 3,
\]
\(s \in \overline{G} - \bigcup_{i=2}^{n-3} K_i, \ s_1 \in \overline{P_1} - \overline{P_2} \) and \(\overline{G} = \langle s, s_1 \rangle \).

By induction on \(n \), \(\overline{G}' = \{ [\overline{g}, s] | g \in G \} \). Hence if \(\gamma \in G' \), then \(\overline{\gamma} = [\overline{g}, s] \) with \(g \in G \). Thus \(\gamma = [g, s]s_{n-1}^k = [g, s][s_{n-2}^k, s] = [gs_{n-2}^k, s] \) for suitable \(k \in \mathbb{Z} \). This shows that \(\Gamma(G) = G' \) and completes the proof. □

Corollary 2 is an immediate consequence of this result.

We continue by giving the proof of Corollary 3.

Proof of Corollary 3. Indeed, Rhemtulla [15] proved that the wreath product of a \(c_1 \)--group by a finite cyclic group is again a \(c_1 \)--group. Repeated application of Rhemtulla’s result shows that the group \(G \), satisfies the desired property and the proof is complete. □

Next we provide one example for Corollary 3.

Example. Let \(q \equiv_8 3 \) be a prime number, and \(S_2(2^k, q) \) a Sylow \(2 \)--subgroup of \(GL(2^k, q) \). By [8, p. 142], we have \(G = S_2(2^k, q) \simeq S_2(2, q) \ltimes \mathbb{Z}_2 \cdots \mathbb{Z}_2 \), \((k - 1 \text{ factors})\) where \(P = S_2(2, q) \) is a semidihedral group of order 16. Since \(P \) is a \(2 \)--group of maximal class by Corollary 3, we get \(\Gamma(G) = G' \).

Next, we prove Corollary 4.

Proof of Corollary 4. Notice that if one of the assertions of Corollary 4 holds, then \(G \) is of maximal class (see [6, Lemma J(k)] and [7, Proposition 4.10, Proposition 13.15, Proposition 13.16]). □

Now we turn to the proof of Theorem 5.

Proof of Theorem 5. Let \(G \) be a \(p \)--group, \(p > 2 \). If \(G \) has no normal elementary abelian subgroup of rank 3, then by [7, Theorem 13.7] one of the following assertions holds:

(a) \(G \) is metacyclic.

(b) \(G \) is 3--group of maximal class.

(c) \(G = EH \), where \(E = \Omega_1(G) \) is nonabelian of order \(p^3 \) and exponent \(p \), \(H \) is cyclic of index \(p^2 \) in \(G \). Furthermore, \(Z(G) \) is cyclic and \(p^2 \leq |G : Z(G)| \leq p^3 \).

First suppose \(G \) is metacyclic. We may choose suitable elements \(s, s_1 \) in \(G \) and a number \(r \), \((1 \leq r \leq |s_1|)\) such that \(G = \langle s, s_1 \rangle \) and \(s_1^s = s_1^r \). Obviously \(G' = \langle [s, s_1] \rangle = s_1^{r-1} \). Now if \(\gamma \in G' \), then \(\gamma = [s_1, s]^i = (s_1^{-1}s_1^i)^i = s_1^{-i}s_1^is_1^{-i} = [s_1^{-i}, s] \). Therefore \(G' = \{[s_1^{-i}, s]|1 \leq r \leq |s_1|\} = \Gamma(G) \).

Next, if we suppose that \(G \) is 3--group of maximal class, then our result follows from Theorem 1.
Finally if assertion (c) holds, then $G/E \cong H/H \cap E$ is cyclic. Therefore $1 \neq G' \leq E$. If $G' = E$ then $G = EH = H$ which is a contradiction. Therefore G' is elementary abelian of rank less than or equal to 2. By [13, Theorem 2.4] it follows that $\Gamma(G) = G'$, as required. □

Finally, we prove Theorem 6.

Proof of Theorem 6. Let G be the wreath product of a nontrivial finite abelian group A and a p-group of maximal class $P = \langle s, s_1 \rangle$.

Let $B = \prod_{1 \leq i \leq |P|} A_i$ where $A_i \cong A$, be the base group of G. Now $G = BP$ is the semidirect product of B by P. Hence $[B, P]$ is a normal subgroup of G and

$$G' = [BP, BP] = [B, P]P'.$$

Since B is a normal abelian subgroup of G, we see that $[P, B] = [G, B]$. Now by Lemma 3 [1], $[B, P] = \{[b_1, s_1][b, s]b, b_1 \in B\}$. By Corollary 2, every element $\gamma \in G'$ has the form $\gamma = [b_1, s_1][b, s][s, g] = [b_1, s_1][s, gb^{-1}]b$. Hence $c(\gamma) \leq 2$.

Further if $|A| > 2$ or $p > 2$, then by Theorem 1 [10], some element of $[P, B]$ is not a commutator. Thus $c(G) = 2$, as required.

Acknowledgements. I thank the editors of Mathematical Reports and the referee who have patiently read and verified this paper, and also suggested valuable comments. The author also like to acknowledge the support of the Alzahra University.

REFERENCES

