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Let Γ(G) denote the set of commutators of a group G. In this paper, we first show
that if p is a prime number and G is a p-group of maximal class then Γ(G) = G′.
As a consequence of this result we present various sufficient conditions implying
that the commutators form a subgroup. Next, we prove that if G is a wreath
product G = A o P, with A a nontrivial finite abelian group and P a p-group of
maximal class, with |A| > 2 or p > 2, then the commutator length of G is equal
to 2..
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1. INTRODUCTION

Recall that the commutator length c(G) of a group G is defined to be the
minimal number such that every element of G′ can be expressed as a product
of at most c(G) commutators. A group G is called a c-group if c(G) is finite.
For any positive integer n, denote bycn the class of groups with commutator
length equal to n. Denote by Γ(G) the set of commutators in G.

The question as whether every element of the commutator subgroup of a
group G is a commutator (Γ(G) = G′) or not, was studied by many authors.
See [12] for a survey article about commutators.

The smallest group with Γ(G) = G′ has order 96 (see [9]). Indeed there
exist many papers providing examples of groups in which Γ(G) = G′ or Γ(G) 6=
G′. In [10], Guralnick gave interesting examples of wreath product G := U oH
where U is any nontrivial finite abelian group and H is a finite group with
derived subgroup of order at least 3, in which c(G) 6= 1. In particular if H is
perfect, then G′ is perfect and c(G) 6= 1.

In [4], we also used wreath product constructions to obtain for any po-
sitive integer n, solvable groups of derived length n and commutator length
equal to 1 or 2. Let W = GoH be the wreath product of G by a n-generator
abelian group H. In [3], we proved that every element of W ′ is a product of
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at most n+ 2 commutators, and every element of W 2 is a product of at most
3n+ 4 squares in W . This generalizes our previous result.

There are few sufficient conditions implying that the commutators form
a subgroup (see [13]). In this paper, we show that in any p-group of maximal
class, the commutators form a subgroup. As a consequence of this result we
show in Corollary 3, that if P is a p-group of maximal class and G = P o C1 o
· · · o Cn, where Ci is a finite cyclic group for i = 1, · · · , n, then Γ(G) = G′.
We also collect in Corollary 4, various sufficient conditions implying that the
commutators form a subgroup. Finally, let A be a nontrivial finite abelian
group and P be a p-group of maximal class. Let G = A o P and assume
that |A| > 2 or p > 2. By using Guralnick’s [10] recent result, we show that
the commutator length of G is equal to 2. We also give a precise formula for
expressing every element of G′ as a product of two commutators.

The precise statements of results are given in the next section.

2. MAIN RESULTS

Our notation is standard. Let G be a group and x, y and z ∈ G. Then
xy = y−1xy, [x, y] = x−1y−1xy.

Let G be a p-group of maximal class of order pn, n ≥ 4. For each i with
2 ≤ i ≤ n − 2 the 2−step centralizer Ki in G is defined to be the centralizer
in G of γi(G)/γi+2(G). Clearly γ2(G) ≤ Ki for each i. Define Pi = Pi(G) by
P0 = G, P1 = K2 and Pi = γi(G) for 2 ≤ i ≤ n. Take s1 ∈ P1 − P2, s ∈
G−

⋃n−2
i=2 Ki, and define si = [si−1, s] = [s1,i−1 s] for 2 ≤ i ≤ n− 1. Note that

G = 〈s, s1〉, Pi = 〈si, · · · , sn−1〉 for 1 ≤ i ≤ n − 2 and sp ∈ Pn−1 = Z(G) =
γn−1(G) (see [11] and [14]).

In the rest of the paper, we use the above notations.

The main results of this paper are as follows.

Theorem 1. If G is a p-group of maximal class, then Γ(G) = G′.

We have the following consequences of this result.

Corollary 2. If G is a p-group of maximal class of order pn (n ≥ 4)
and s 6∈ Ki for 2 ≤ i ≤ n − 2, then G′ = {[g, s]}|g ∈ G}. In particular,
every element of G = 〈s, s1〉 can be expressed in the form sisi11 [g, s] in which
i, i1 ∈ N, 0 ≤ i ≤ p2 and g ∈ G.

By repeated application of Rhemtulla’s [15] result we show that:

Corollary 3. Let P be a p-group of maximal class and G = P oC1o· · ·oCn,
where Ci is a finite cyclic group for i = 1, · · · , n. Then Γ(G) = G′.
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In the next corollary, we collect various sufficient conditions implying that
the commutators form a subgroup.

Corollary 4. Let G be a finite nonabelain p-group of order pn. If one
of the following assertions holds, then Γ(G) = G′ :

(i) p = 2 and |G : G′| = 4.
(ii) G has an abelian subgroup of index p and |G : G′| = p2.
(iii) G has a cyclic subgroup U of index p2 such that CG(U) is cyclic.
(iv) n > 4, and G has only one abelian subgroup of order p3.

Two interesting results are indicated by the following theorems.

Theorem 5. Let G be a p-group, p > 2. If G has no normal elementary
abelian subgroup of rank 3, then Γ(G) = G′.

Theorem 6. Let A be a nontrivial finite abelian group and P = 〈s, s1〉 be
a p-group of maximal class. Let G = A oP. If |A| > 2 or p > 2, then c(G) = 2.
In particular, every element of G′ is a product of at most two commutators
[b1, s1][s, g]b, for suitable g in G and b, b1 in the base group of G.

3. PROOFS

Proof of Theorem 1. Of course a nonabelian group of order p3 is a p-group
of maximal class. It is also well known that if G is a nonabelian group of order
p3, where p is odd, then G is an extra-special group and G is isomorphic to

〈x, y|xp = yp = 1, [x, y] = [x, y]x = [x, y]y〉,

or
〈x, y|yp = xp

2
= 1, xy = xp+1〉.

Note that these groups have exponent p and p2, respectively.
In both cases one has G′ = 〈[x, y]〉 = {[x, yi]|0 ≤ i < p}; thus Γ(G) = G′.
If p = 2 then G is isomorphic to D8 or Q8. If {x, y} is a generating set

for G then G′ = {1, [x, y]}; thus Γ(G) = G′.
For n ≥ 4, we will use induction on n. If G = 〈s, s1〉 is a p-group of

maximal class of order p4, then γ2(G) = 〈s2, s3〉 = 〈[s1, s], [s1, s, s]〉, γ3(G) =
Z(G) = 〈s3〉 = 〈[s1, s, s]〉, sp ∈ γ3(G) = Z(G) and γ4(G) = 1. Let γ ∈ G′, then
γ = [s1, s]

i[s1, s, s]
j where i, j ∈ Z. Clearly we have γ = [si1, s][s1, s, s]

j−i(i−1)/2

= [si1, s][s
j−i(i−1)/2
2 , s] = [si1s

j−i(i−1)/2
2 , s].

Let n > 4 and G = 〈s, s1〉. Let also G = G/Z(G) and observe that G is a
p-group of maximal class. It is easy to prove that the ith 2−step centralizer in
G is Ki = Ki/Z(G) for 2 ≤ i ≤ n− 3. Also, we have:

P0(G) = P0(G), P1(G) = P1(G) = K2, Pi(G) = Pi(G) for 2 ≤ i ≤ n− 3,
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s ∈ G−
n−3⋃
i=2

Ki, s1 ∈ P1 − P2 and G = 〈s, s1〉.

By induction on n, G
′

= {[g, s]|g ∈ G}. Hence if γ ∈ G′, then γ = [g, s]
with g ∈ G. Thus γ = [g, s]skn−1 = [g, s][skn−2, s] = [gskn−2, s] for suitable k ∈ Z.
This shows that Γ(G) = G′ and completes the proof. �

Corollary 2 is an immediate consequence of this result.

We continue by giving the proof of Corollary 3.

Proof of Corollary 3. Indeed, Rhemtulla [15] proved that the wreath
product of a c1−group by a finite cyclic group is again a c1−group. Repeated
application of Rhemtulla’s result shows that the group G, satisfies the desired
property and the proof is complete. �

Next we provide one example for Corollary 3.

Example. Let q ≡8 3 be a prime number, and S2(2
k, q) a Sylow

2–subgroup of GL(2k, q). By [8, p. 142], we have G = S2(2
k, q) ' S2(2, q) o

Z2 o · · · oZ2, (k− 1 factors) where P = S2(2, q) is a semidihedral group of order
16. Since P is a 2–group of maximal class by Corollary 3, we get Γ(G) = G′.

Next, we prove Corollary 4.

Proof of Corollary 4. Notice that if one of the assertions of Corollary 4
holds, then G is of maximal class (see [6, Lemma J(k)] and [7, Proposition 4.10,
Proposition 13.15, Proposition 13.16]). �

Now we turn to the proof of Theorem 5.

Proof of Theorem 5. Let G be a p-group, p > 2. If G has no normal
elementary abelian subgroup of rank 3, then by [7, Theorem 13.7] one of the
following assertions holds:

(a) G is metacyclic.

(b) G is 3−group of maximal class.

(c) G = EH, where E = Ω1(G) is nonabelian of order p3 and exponent
p, H is cyclic of index p2 in G. Furthermore, Z(G) is cyclic and p2 ≤ |G :
Z(G)| ≤ p3.

First suppose G is metacyclic. We may choose suitable elements s, s1 in
G and a number r, (1 ≤ r ≤ |s1|) such that G = 〈s, s1〉 and ss1 = sr1. Obviously
G′ = 〈[s, s1]〉 = sr−11 . Now if γ ∈ G′, then γ = [s1, s]

i = (s−11 ss1)
i = s−i1 sis1 =

[s−i1 , s]. Therefore G′ = {[s−i1 , s]|1 ≤ r ≤ |s1|} = Γ(G).

Next, if we suppose that G is 3–group of maximal class, then our result
follows from Theorem 1.
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Finally if assertion (c) holds, then G/E ' H/H ∩ E is cyclic. Therefore
1 6= G′ ≤ E. If G′ = E then G = EH = H which is a contradiction. Therefore
G′ is elementary abelian of rank less than or equal 2. By [13, Theorem 2.4] it
follows that Γ(G) = G′, as required. �

Finally, we prove Theorem 6.

Proof of Theorem 6. Let G be the wreath product of a nontrivial finite
abelian group A and a p-group of maximal class P = 〈s, s1〉.

Let B = Dr
1≤i≤|P |

Ai where Ai ' A, be the base group of G. Now G = BP

is the semidirect product of B by P. Hence [B,P ] is a normal subgroup of G
and

G′ = [BP,BP ] = [B,P ]P ′.
Since B is a normal abelian subgroup of G, we see that [P,B] = [G,B]. Now by
Lemma 3 [1], [B,P ] = {[b1, s1][b, s]|b, b1 ∈ B}. By Corollary 2, every element
γ ∈ G′ has the form γ = [b1, s1][b, s][s, g] = [b1, s1][s, gb

−1]b. Hence c(γ) ≤ 2.
Further if |A| > 2 or p > 2, then by Theorem 1 [10], some element of

[P,B] is not a commutator. Thus c(G) = 2, as required.
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