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In this paper, we calculate the approximate values of the central tendencies of
the parts with some restrictions across all the ordinary partitions, n-color par-
titions and compositions of ν. Further, these approximate values are compared
graphically with the actual values of central tendencies of the parts with some
restrictions in compositions. These results provide us a new way to explore
statistical behavior of the parts in partitions and compositions.
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1. INTRODUCTION

Enumerative combinatorics is the most interesting area of combinatorics
and it concentrates on counting the number of certain combinatorial objects,
although counting the number of elements in a set is a rather broad mathema-
tical problem. Analytic combinatorics concerns the enumeration of combina-
torial structures using tools from complex analysis and probability theory and
aims at obtaining asymptotic formulae, in contrast with enumerative combi-
natorics, which uses explicit combinatorial formulae and generating functions
to describe the results. In literature, we find several applications of analytical
number theory and combinatorial number theory, see for instance [7,12]. Parti-
tion theory [5] studies various enumeration and asymptotic problems related to
integer partitions and is closely related to q-series, special functions and ortho-
gonal polynomials. Originally a part of number theory and analysis, it is now
considered a part of combinatorics or an independent field. It incorporates the
bijective approach and various tools in analysis, analytic number theory and
has connections with statistical mechanics [6]. While studying combinatorial
objects, partitions are often studied with some restrictions on parts [4,8,9,13].
Recently, Hirschhorn [10,11] has studied statistical distribution of parts of or-
dinary partitions. In the present paper, we study the central tendencies of
the restricted parts across all the ordinary partitions, n-color partitions and
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compositions of ν. We shall do it by considering a general part λ in the ordi-
nary partitions, a general part mi in the n-color partitions. Before proceeding
further we recall some basic definitions.

A partition [5] of positive integer ν is a finite non-increasing sequence of
positive integers λ1, λ2, . . . λr such that

r∑
i=1

λi = ν

where λ′is are called summands of the partition. The number of partitions of
ν is denoted by p(ν).

For example, p(3) = 3, where the relevant ordinary partitions of 3 are 3,
21, 111.

The generating function for ordinary partitions [5] is given by

∞∑
ν=0

p(ν)qν =
∞∏
ν=1

1

(1− qν)
.

An “n-color partition” [1] is a partition in which a summand of size n, (n ≥
0) can come in n different colors denoted by the subscripts: n1, n2, n3, · · · , nn.
The number of “n-color partitions” of ν is denoted by P (ν).

For example, P (3) = 6, where the relevant colored partitions of 3 are: 31,
32, 33, 2111, 2211, 111111.

The generating function for n-color partitions [2] is given by

∞∑
ν=0

P (ν)qν =

∞∏
ν=1

1

(1− qν)ν
.

A composition [5] of positive integer ν is an ordered partition. The number
of compositions of ν is denoted by c(ν). Thus c(3) = 4, where the relevant
compositions of 3 are: 3, 21, 12, 111.

The generating function for compositions [5] is given by
∞∑
ν=0

c(m, ν)qν =

qm

(1−q)m , where c(m, ν) denotes the number of compositions of ν with exactly m
parts.

2. CENTRAL TENDENCIES USING ORDINARY PARTITIONS

In this section, we will discuss the mean, variance and standard deviation
of a general part λ in the ordinary partitions of ν.



3 Central tendencies of parts 293

2.1. EXACT CALCULATIONS

Let p(ν) be the number of ordinary partitions of ν. Out of the p(ν)
ordinary partitions of ν, it is easy to see that there are p(ν − λ) partitions
with at least one λ as a part: simply delete λ as a part from those partitions
and we obtain the partitions of ν − λ (and the process is reversible). In the
same way, we see that the number of ordinary partitions of ν with at least two
λ’s as a part is p(ν − 2λ) (delete one λ as a part from the p(ν − λ) partitions
of ν with at least one λ). Continuing this way, we see that the number of
partitions of ν with at least k λ’s is p(ν − kλ). It follows that the number of
partitions of ν with exactly k λ’s is p(ν − kλ)− p(ν − kλ− λ). If we let X be
the number of λ’s in a partition of ν and let fk be the relative frequency with
which X = k, k = 0, 1, 2, · · ·

[
ν
λ

]
, then

fk =
p(ν − kλ)− p(ν − kλ− λ)

p(ν)
.

It can be easily verified that

[ νλ ]∑
k=0

fk = 1.

Thus, the mean of number of λ’s is

µ = E(X) =

[ νλ ]∑
k=0

fkk

= 0

(
p(ν)− p(ν − λ)

p(ν)

)
+ 1

(
p(ν − λ)− p(ν − 2λ)

p(ν)

)
+ 2

(
p(ν − 2λ)− p(ν − 3λ)

p(ν)

)
+ · · ·

=
p(ν − λ) + p(ν − 2λ) + p(ν − 3λ) + · · ·

p(ν)

and

E(X2) =

[ νλ ]∑
k=0

fkk
2

= 0

(
p(ν)− p(ν − λ)

p(ν)

)
+ 1

(
p(ν − λ)− p(ν − 2λ)

p(ν)

)
+ 4

(
p(ν − 2λ)− p(ν − 3λ)

p(ν)

)
+ · · ·
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=
p(ν − λ) + 3p(ν − 2λ) + 5p(ν − 3λ) + · · ·

p(ν)
.

Then,
σ2 = E(X2)− (E(X))2.

2.2. APPROXIMATE CALCULATIONS

In order to approximate µ, σ and fk, we will make use of the rough
approximation [5]

p(ν) ≈ 1

4ν
√

3
exp{K

√
ν}, where K = π

√
2

3
.

Thus

µ =
1

p(ν)

[ νλ ]∑
k=0

p(ν − kλ)− 1

≈ ν

exp{K
√
ν}

∫ [ νλ ]

1

exp{K
√
ν − xλ}

ν − xλ
dx− 1

≈ ν

exp{K
√
ν}

∫ [ νλ ]

1

1√
ν − xλ

exp{K
√
ν − xλ}√

ν − xλ
dx− 1

≈ ν

exp{K
√
ν}


[

1√
ν − xλ

exp{K
√
ν − xλ}
K

(
−2

λ

)][ νλ ]

1

+
1

K

∫ [ νλ ]

1

exp{K
√
ν − xλ}

3/2
√
ν − xλ

dx

}

≈ ν

K exp{K
√
ν}


[
−2 exp{K

√
ν − xλ}

λ
√
ν − xλ

][ νλ ]

1

+

[
−2 exp{K

√
ν − xλ}

Kλ(ν − xλ)

][ νλ ]

1


≈ 2ν

Kλ exp{K
√
ν}

exp{K
√
ν − λ}√

ν − λ

(
1 +

1

K
√
ν − λ

)
.

Also,

E(X2) =
1

p(ν)

[ νλ ]∑
k=0

(2k + 1)p(ν − λk − λ)
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≈ ν

exp{K
√
ν}

∫ [ νλ ]

1

(2x+ 1) exp{K
√
ν − xλ− λ}

ν − xλ− λ
dx

≈ ν

exp {K
√
ν}

∫ [ νλ ]

1

2x+ 1√
ν − xλ− λ

exp{K
√
ν − xλ− λ}√

ν − xλ− λ
dx

≈ 2ν

λK exp{K
√
ν}


[
−(2x+ 1) exp{K

√
ν − xλ− λ}√

ν − xλ− λ

][ νλ ]

1


+

2ν

λK exp{K
√
ν}

{
1

2

∫ [ νλ ]

1

4ν − 2xλ− 3λ

ν − xλ− λ
exp{K

√
ν − xλ− λ}√

ν − xλ− λ
dx

}

≈ 2ν

λK exp{K
√
ν}


[
−(2x+ 1) exp{K

√
ν − xλ− λ}√

ν − xλ− λ

][ νλ ]

1


− 2ν

λK exp{K
√
ν}


[

(4ν − 2xλ− 3λ) exp{K
√
ν − xλ− λ}

λk(ν − xλ− λ)

][ νλ ]

1


≈ 2ν

λK exp{K
√
ν}

{
3 exp{K

√
ν − 2λ}√

ν − 2λ

(4ν − 5λ) exp{K
√
ν − 2λ}

λK(ν − 2λ)

}
≈ 2ν

λK exp{K
√
ν}

exp{K
√
ν − 2λ}√

ν − 2λ

(
3 +

4ν − 5λ

λK
√
ν − 2λ

)
.

And,
σ2 = E(X2)− (E(X))2.

3. CENTRAL TENDENCIES USING N-COLOR PARTITIONS

Here, central tendencies are studied by observing a general part mi of the
n-color partitions of ν.

3.1. EXACT CALCULATIONS

Let P (ν) denote the number of n-color partitions of ν. Out of the P (ν) n-
color partitions of ν, it is easy to see that there are P (ν−m) n-color partitions
with at least one mi as a part: simply delete mi as a part from these n-
color partitions and we obtain the partitions of ν − m (and the process is
reversible). In the same way, we see that the number of n-color partitions
of ν with at least two mi’s is P (ν − 2m) (delete a ij as a part from the
P (ν −m) partitions of ν with at least one mi). Continuing this way, we see
that the number of n-color partitions of ν with at least k mi’s is P (ν − km).
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It follows that the number of mi’s in an n-color partition of ν with exactly
k mi’s is P (ν − km) − P (ν − km − m). If we let X be the number of mi’s
in an n-color partition of ν, and let fk be the relative frequency with which
X = k, k = 0, 1, 2, · · · ,

[
ν
m

]
, then

fk =
P (ν − km)− P (ν − km−m)

P (ν)
,

and

[ νm ]∑
k=0

fk = 1.

Thus, the mean of number of mi’s is

µ = E(X) =

[ νm ]∑
k=0

fkk

= 0

(
P (ν)− P (ν −m)

P (ν)

)
+ 1

(
P (ν −m)− P (ν − 2m)

P (ν)

)
+ 2

(
P (ν − 2m)− P (ν − 3m)

P (ν)

)
+ · · ·

=
P (ν −m) + P (ν − 2m) + P (ν − 3m) + · · ·

P (ν)

and

E(X2) =

[ νm ]∑
k=0

fkk
2

= 0

(
P (ν)− P (ν −m)

P (ν)

)
+ 1

(
P (ν −m)− P (ν − 2m)

P (ν)

)
+ 4

(
P (ν − 2m)− P (ν − 3m)

P (ν)

)
+ · · ·

=
P (ν −m) + 3P (ν − 2m) + 5P (ν − 3m) + · · ·

P (ν)
.

So, σ2 = E(X2)− (E(X))2.

4. CENTRAL TENDENCIES USING COMPOSITIONS

Let c(ν) denote the number of compositions of ν. From [5], we have,
c(ν) = 2ν−1. We first prove a proposition.

Proposition 4.1. Let c(ν) denote the number of compositions of ν. Then

c(ν) = c(ν−1)+c(ν−2)+c(ν−3)+· · ·+c(0), where, c(0) = 1 and c(ν < 0) = 0.
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Analytical Proof:

c(ν − 1) + c(ν − 2) + c(ν − 3) + · · ·+ c(1) + c(0)

= 2ν−2 + 2ν−3 + 2ν−4 + · · ·+ 1 + 1

=
2ν−2

(
1−

(
1
2

)ν−1)
1− 1

2

+ 1

= 2ν−1 = c(ν).

Combinatorial Proof:

It can be seen easily, there are c(ν − 1) compositions with 1 as a last
part: simply delete the last part 1 from these compositions and we obtain the
compositions of ν − 1 (and the process is reversible). In the same way, we see
that the number of compositions of ν with 2 as a last part is c(ν − 2) (delete
the last part 2 from c(ν) compositions of ν with the last part 2). Continuing
this way, we see that

c(ν) = c(ν − 1) + c(ν − 2) + · · ·+ c(0)

If h be the last part in a composition of ν and let fk be the relative
frequency with which h = k, k = 1, 2, · · · , ν, then

fk =
c(ν − k)

c(ν)
, clearly,

ν∑
k=1

fk = 1.

Thus,

µ = E(h) =

ν∑
k=1

fkk =
c(ν − 1) + 2c(ν − 2) + · · · νc(0)

c(ν)
,

E(h2) =
ν∑
k=1

fkk
2 =

c(ν − 1) + 4c(ν − 2) + · · · ν2c(0)

c(ν)
.

and

σ2 = E(h2)− (E(h))2.

4.1. ALMOST EXACT CALCULATIONS

In order to approximate µ, σ and fk, we will make use of the exact
formula

c(ν) = 2ν−1.
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Thus

µ = E(h) =
1

c(ν)

ν∑
k=1

kc(ν − k)

=
1

2ν−1

(
ν−1∑
k=1

k2ν−k−1 + ν

)

≈ 1

2ν−1

(∫ ν−1

1
x2ν−x−1dx+ ν

)
=

∫ ν−1

1
x2−xdx+

ν

2ν−1

=

∫ ν−1

1
x2−xdx+

ν

2ν−1

=

[
−x2−x

ln 2

]ν−1
1

+

∫ ν−1

1

2−x

ln 2
dx+

ν

2ν−1

=
1

2ν−1

[
2ν−2 − ν + 1

ln 2
+

2ν−2 − 1

(ln 2)2
+ ν

]
.

And

E(h2) =
1

c(ν)

ν∑
k=1

k2c(ν − k)

=
1

2ν−1

(
ν−1∑
k=1

k22ν−k−1 + ν2

)

≈ 1

2ν−1

(∫ ν−1

1
x22ν−x−1dx+ ν2

)
=

∫ ν−1

1
x22−xdx+

ν2

2ν−1

=

[
−x22−x

ln 2

]ν−1
1

+

∫ ν−1

1

2x2−x

ln 2
dx+

ν2

2ν−1

=

[
−x22−x

ln 2

]ν−1
1

+
2

ln 2

[
−x2−x

ln 2

]ν−1
1

+
2

(ln 2)2

∫ ν−1

1
2−xdx+

ν2

2ν−1

=
1

2ν−1

[
2ν−2 − (ν − 1)2

ln 2
+

2ν−1 − 2(ν − 1)

(ln 2)2
+

2ν−1 − 2

(ln 2)3
+ ν2

]
.

So,

σ2 = E(h2)− (E(h))2.
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5. GRAPHICAL ILLUSTRATION

For the illustration, Figure 1a shows the variation in exact mean and
approximate mean for compositions and Figure 1b shows the variation in exact
variance and approximate variance for compositions calculated in Section 4.1.

(a) (b)

Fig. 1

From Figures 1a and 1b, we see that the mean µ = E(h) and variance
σ2 (both exact and approximated values) increase steeply for 1 ≤ ν ≤ 10, then
these become almost constant for any large value of ν.

6. CONCLUSION

The paper gives a new direction to study partition theory and their sta-
tistical behavior (such as statistical distributions). A very obvious problem
arising here is: As there is no exact formula to calculate the colored partiti-
ons, it would be interesting to use generating functions of colored partitions to
study the statistical distributions and central tendencies of their parts.
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