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Let R be a commutative Noetherian ring, a a proper ideal of R and M a finite
R-module. It is shown that, if (R,m) is a complete local ring, then under certain
conditions a contains a regular element on DR(Hc

a(M)), where c = cd(a,M). A
non-zerodivisor characterization of relative Cohen-Macaulay modules w.r.t a is
given. We introduce the concept of relative Cohen-Macaulay filtered modules
w.r.t a and study some basic properties of such modules. In particular, we
provide a non-zerodivisor characterization of relative Cohen-Macaulay filtered
modules w.r.t a. Furthermore, a characterization of cohomological dimension
filtration of M by the associated prime ideals of its factors is established. As a
consequence, we present a cohomological dimension filtration for those modules
whose zero submodule has a primary decomposition. Finally, we bring some new
results about relative Cohen-Macaulay modules w.r.t a.
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1. INTRODUCTION

Throughout this paper, let R denote a commutative Noetherian ring with
identity and a a proper ideal of R. For any non-zero R-module M , the ith local
cohomology module of M is defined as

H i
a(M) := lim

−→
n≥1

ExtiR(R/an,M).

V(a) denotes the set of all prime ideals of R containing a. For an R-module M ,
the cohomological dimension of M with respect to a is defined as cd(a,M) :=
sup{i ∈ Z | H i

a(M) 6= 0} which is known that for a local ring (R,m) and a = m,
this is equal to the dimension of M . For unexplained notation and terminology
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about local cohomology modules, we refer the reader to [3] and [4]. The notion
of cohomological dimension filtration (abbreviated as cd-filtration) of M was
introduced by A. Atazadeh et al. [1] which is a generalization of the concept of
dimension filtration that is defined by P. Schenzel [20] in local case. For any
integer 0 ≤ i ≤ cd(a,M), let Mi denote the largest submodule of M such that
cd(a,Mi) ≤ i. Because of the maximal condition of a Noetherian R-module the
submodules Mi of M are well-defined. Moreover, it follows that Mi−1 ⊆Mi for
all 1 ≤ i ≤ cd(a,M). In the present paper, we will use the concept of relative
Cohen-Macaulay modules. An R-module M is relative Cohen-Macaulay w.r.t
a whenever H i

a(M) = 0 for all i 6= heightM (a). In other words, M is relative
Cohen-Macaulay w.r.t a if and only if grade(a,M) = cd(a,M) (see [18]). Notice
that this concept has a connection with a notion which has been studied under
the title of cohomologically complete intersection ideals in [11]. It is well-known
that heightR(a) ≤ cd(a, R) ≤ ara(a). The ideal a is called a set-theoretic com-
plete intersection ideal whenever heightR a = ara(a). A set-theoretic complete
intersection ideal is a cohomologically complete intersection ideal. Recently,
relative Cohen-Macaulay modules have also been studied in [12].

Sharp [21] and some other authors have shown that a Cohen-Macaulay
local ring R admits a canonical module if and only if it is the homomorphic
image of a Gorenstein local ring. In particular, if R is a complete Cohen-
Macaulay local ring of dimension n, then wR = HomR(Hn

m(R), E(R/m)) is a
canonical module of R. The outline of the paper is as follows.

Section 2 is devoted to discuss the main topics of this paper. We initiate
this section by showing that if (R,m) is a complete local ring and M is relative
Cohen-Macaulay w.r.t a with cd(a,M) = c > 0, and SuppR(Hc

a(M)) ⊆ V(m),
then a contains a regular element on DR(Hc

a(M)) (see Corollary 2.21). In this
horizon, we prove the following (see Theorem 2.22).

Theorem 1.1. Let (R,m) be a local ring and let M be a finite R-module
with cd(a,M) = c. Assume that x = x1, . . . , xn ∈ a is a regular sequence on
both M and DR(Hc

a(M)). Then

cd(a,M/xM) = cd(a,M)− n.

As an application of Theorem 1.1, we bring the next result (see Corol-
lary 2.23).

Corollary 1.2. Let (R,m) be a local ring and M be a finite R-module
with cd(a,M) = c > 0.

(i) Let x ∈ a be a regular element on both M and DR(Hc
a(M)). Then M is

relative Cohen-Macaulay w.r.t a if and only if M/xM is relative Cohen-
Macaulay w.r.t a.
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(ii) Let x = x1, . . . , xn ∈ a be a regular sequence on both M and DR(Hc
a(M)).

Then M is relative Cohen-Macaulay w.r.t a if and only if M/xM is
relative Cohen-Macaulay w.r.t a.

We define the cohomological deficiency modules of M as the Matlis dua-
lity of H i

a(M) for i 6= cd(a,M), denoted by Ki
a(M) and further cohomological

canonical module of M if i = cd(a,M). One of the main purposes of this
section is to introduce a new class of modules over R called relative Cohen-
Macaulay filtered modules (or relative sequentially Cohen-Macaulay modules)
w.r.t a, abbreviated by RCMF modules. This is an extension of the concept
of Cohen-Macaulay filtered modules (sequentially Cohen-Macaulay modules) in-
troduced by P. Schenzel [20] for local case. The concept of sequentially Cohen-
Macaulay modules was introduced by Stanley [22] for graded modules. It is
interesting that any relative Cohen-Macaulay R-module w.r.t a is an RCMF
R-module w.r.t a. But, any RCMF R-module w.r.t a is not necessarily a re-
lative Cohen-Macaulay R-module w.r.t a. We derive permanence properties
of RCMF modules. More precisely, basic properties of RCMF modules with
respect to passing to non-zerodivisors, localization and completion are dis-
cussed. One of the main results of this section is the following theorem (see
Theorem 2.24).

Theorem 1.3. Let (R,m) be a local ring and M be a finite R-module with
the cd-filtration M = {Mi}ci=0 where c = cd(a,M).

(i) Let x ∈ a be a regular element on M , DR(Hc
a(M)), and DR(H i

a(Mi)) for
all 0 ≤ i ≤ c. Then M is an RCMF module w.r.t a if and only if M/xM
is an RCMF module w.r.t a.

(ii) Let x = x1, . . . , xn ∈ a be a regular sequence on M , DR(Hc
a(M)), and

DR(H i
a(Mi)) for all 0 ≤ i ≤ c. Then M is an RCMF module w.r.t a if

and only if M/xM is an RCMF module w.r.t a.

As another main result of this section, we provide a necessary and suffi-
cient condition for a filtration to be cd-filtration of a module by the associated
prime ideals of its factors (see Theorem 2.27).

Theorem 1.4. Let M = {Mi}ci=0 be a filtration of the finite R-module
M and cd(a,M0) = 0. The following conditions are equivalent:

(i) Ass(Mi/Mi−1) = Assi(M) for all 1 ≤ i ≤ c;
(ii) M is the cd-filtration of M .

Atazadeh et al. [1, Theorem 1.1] proved that if a finite R-module M has a
cd-filtration, then this filtration is uniquely determined by a reduced primary
decomposition of the zero submodule in M . In the present paper, without
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such a condition on M , we present a cd-filtration for all R-modules whose zero
submodule has a primary decomposition (see Corollary 2.28).

In Section 3, we study relative Cohen-Macaulayness in rings and mo-
dules. In view of [15, Proposition 2.3], it follows that if (R,m) is a Cohen-
Macaulay ring, then for a maximal Cohen-Macaulay non-zero module M , re-
lative Cohen-Macaulayness of the ring R and the module M is equivalent,
whenever SuppR(M) = Spec(R). We determine equivalency between two clas-
ses of relative Cohen-Macaulay rings and modules, “multiplication” and “se-
midualizing” modules, in Corollaries 3.2 and 3.4. Among other things, in
Proposition 3.5, comparing with [15, Proposition 5.1], we show that R is re-
lative Cohen-Macaulay w.r.t a if and only if its canonical module is relative
Cohen-Macaulay w.r.t a. Finally, as any relative Cohen-Macaulay module w.r.t
a is an RCMF module w.r.t a, if (R,m) is a relative Cohen-Macaulay local ring
w.r.t a with cd(a, R) = c, then for all 0 ≤ i ≤ c the R-modules Ki

a(R) are
either zero or i-cohomological dimensional relative Cohen-Macaulay modules
w.r.t a (see Proposition 3.6).

2. COHOMOLOGICAL DIMENSION FILTRATION
AND RELATIVE COHEN-MACAULAY FILTERED MODULES

In this section, we define and study relative Cohen-Macaulay filtered mo-
dules. As the main objective, a characterization for such modules is presen-
ted in Theorem 2.24 and also a characterization of cd-filtration is presented
in Theorem 2.27. We begin by recalling the definition of cohomological di-
mension filtration due to Atazadeh et al. in [1] and the concept of relative
Cohen-Macaulayness due to Zargar in [18].

Definition 2.1 (see [1]). Let M be a finite R-module. The increasing
filtration M = {Mi}ci=0 of submodules of M , where c = cd(a,M) is called the
cohomological dimension filtration of M if for all integer 0 ≤ i ≤ c, Mi is the
largest submodule of M such that cd(a,Mi) ≤ i.

Definition 2.2 (see [18]). A finite R-module M is called relative Cohen-
Macaulay w.r.t a if there is precisely one non-vanishing local cohomology mo-
dule ofM w.r.t a. Clearly, this is the case if and only if grade(a,M) = cd(a,M).

These definitions motivate us to introduce the following concept.

Definition 2.3. Let M be a finite R-module and M = {Mi}ci=0 be the
cohomological dimension filtration of submodules of M , where c = cd(a,M).
M is called a relative Cohen-Macaulay filtered module (relative sequentially
Cohen-Macaulay module) w.r.t a, whenever Mi = Mi/Mi−1 is either zero or
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an i-cohomological dimensional relative Cohen-Macaulay module w.r.t a for all
1 ≤ i ≤ c. Let us abbreviate this notion by RCMF.

Related to the definition of RCMF modules, we state the notion of relative
Cohen-Macaulay filtration w.r.t a which will be useful in the process.

Definition 2.4. Let M be a fininte R-module with cd(a,M) = c. An
increasing filtration C = {Ci}ci=0 of submodules of M is called a relative Cohen-
Macaulay filtration of M w.r.t a whenever Cc = M and Ci = Ci/Ci−1 is either
zero or an i-cohomological dimensional relative Cohen-Macaulay module w.r.t
a for all 1 ≤ i ≤ c.

Proposition 2.5. Let C = {Ci}ci=0 be the relative Cohen-Macaulay fil-
tration of the R-module M w.r.t a. Then C coincides with the cohomological
dimension filtration.

Proof. First, it is clear that cd(a, Ci) ≤ i for all 0 ≤ i ≤ c. Also, we have

AssR Ci = {p ∈ AssRM | cd(a, R/pi) ≤ i}

by [1, Proposition 2.6]. This implies that Ci = H0
ai(Cj) in which ai =∏

cd(a,R/pj)≤i pj for all 0 ≤ i ≤ c. Now let 0 ≤ i ≤ c and j ≥ i. Consider
the following exact sequence

0 −→ Cj −→ Cj+1 −→ Cj+1 −→ 0.

As Cj+1 is either zero or (j + 1)-cohomological dimensional relative Cohen-
Macaulay module w.r.t a, it follows that H0

ai(Cj) ∼= H0
ai(Cj+1). Thus Ci =

H0
ai(Cj) for all j ≥ i. Also since M = Cc, the proof will be completed by [1,

Proposition 2.3]. �

Remark 2.6. Let M = {Mi}ci=0 be the cd-filtration of M where c =
cd(a,M). Let 1 ≤ i ≤ c. Considering the exact sequence 0 −→ Mi−1 −→
Mi −→Mi/Mi−1 −→ 0, we have

cd(a,Mi) = max{cd(a,Mi−1), cd(a,Mi/Mi−1)}

by [6, Corollary 2.3 (i)]. Thus cd(a,Mi) = cd(a,Mi/Mi−1) for all 1 ≤ i ≤ c.

Now recall that the finiteness dimension of M relative to a, fa(M), is
defined by

fa(M) := inf{i ∈ N0 : H i
a(M) is not finitely generated}.

Another formulation is the b-finiteness dimension of M relative to a which is
defined by

fba (M) := inf{i ∈ N0 : b *
√

(0 :R H i
a(M))}.
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Moreover, the b-minimum a-adjusted depth of M , denoted by λba(M), is defined
by

λba(M) := inf{depthMp + height(a + p)/p : p ∈ Spec(R) \V(b)},
where b is the second ideal of R without assuming b ⊆ a in general. By
convention, the infimum of the empty set of integers is interpreted by ∞.

Lemma 2.7. Let M be a relative Cohen-Macaulay R-module w.r.t a with
cd(a,M) > 0. Then

cd(a,M) = cd(a, R/p) for all p ∈ AssR(M).

Proof. First, note that we have fa(M) = cd(a,M) as M is relative Cohen-
Macaulay w.r.t a and so cd(a,M) ≤ λaa(M) by [4, Theorem 9.3.7]. Let p ∈
AssR(M). If p ∈ AssR(M) ∩V(a), then

cd(a,M) ≤ λaa(M) ≤ depthMp + height(a + p)/p.

That is cd(a,M) ≤ 0 which is a contradiction. Thus p ∈ AssR(M) \ V(a).
Now, by the Independence Theorem [4, Theorem 4.2.1], we have

cd(a,M) ≤ λaa(M) ≤ depthMp + height(a + p)/p
= height(a + p)/p
≤ cd((a + p)/p, R/p)
= cd(a, R/p)
≤ cd(a,M).

Therefore cd(a,M) = cd(a, R/p). �

Here several examples of RCMF modules are provided. In order to prove
part (e), we bring the following remark.

Remark 2.8. Let R −→ R′ be a faithfully flat ring homomorphism and M
be an R-module. Then by using the Flate Base Change Theorem [4, Theorem
4.3.2] we get cd(a,M) = cd(aR′,M⊗RR

′) and grade(a,M) = grade(aR′,M⊗R

R′).

Example 2.9. (a) Any relative Cohen-Macaulay module w.r.t a is an
RCMF module w.r.t a.

(b) Let M be an R-module with cd(a,M) = 1. Then M is an RCMF module
w.r.t a.

(c) Let R = k[X,Y ]/(XY ) and a = (x) be an ideal of R in which x is the
image of X in R. Then R is RCMF w.r.t a.

(d) Let R be a ring with cd(a, R) = c. Let Ni, 0 ≤ i ≤ c be a family of
R-modules such that either Ni = 0 or Ni is i-cohomological dimensional
relative Cohen-Macaulay module w.r.t a. Then M = ⊕c

i=0Ni is an RCMF
module w.r.t a over R.
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(e) Let R[[x]] be the formal power series ring in one variable x over the ring
R. Then a finite R-module M is an RCMF module w.r.t a if and only if
M [[x]] is an RCMF module over the ring R[[x]] w.r.t aR[[x]].

Proof. (a) Let M be a relative Cohen-Macaulay R-module w.r.t a with

cd(a,M) = c. We can assume that c > 0. Since cd(a,M) = cd(a, R/p) for all

p ∈ AssR(M) by Lemma 2.7, we have Mc = M , and Mi = 0 for all 0 ≤ i < c.

It follows that M is an RCMF module w.r.t a.

To prove part (b), let M0 ⊆M1 = M be the cd-filtration of M . We show

thatM/M0 is relative Cohen-Macaulay w.r.t a. By Remark 2.6, cd(a,M/M0) =

cd(a,M) = 1. On the other hand, since cd(a,Γa(M)) ≤ 0, we have Γa(M0) =

Γa(M) as M0 is the largest submodule of M with cd(a,M0) ≤ 0. Therefore

considering the following exact sequence

0 −→ H0
a (M0) −→ H0

a (M) −→ H0
a (M/M0) −→ H1

a (M0) −→ · · · ,

we get H0
a (M/M0) = 0 and so grade(a,M/M0) = 1 as desired.

For part (c), as it is seen in [24, Example 2.3], cd(a, R) = 1 6= 0 =

heightR(a). Hence R is not relative Cohen-Macaulay w.r.t a. On the other

hand, R is RCMF w.r.t a as (a) holds. This example shows that being RCMF

w.r.t a does not lead to relative Cohen-Macaulayness w.r.t a necessarily.

Part (d) follows by Proposition 2.5 as M admits a filtration Mi = ⊕i
j=0Nj

such that Mi/Mi−1 ∼= Ni, is either zero or an i-cohomological dimensional

relative Cohen-Macaulay module w.r.t a for all 1 ≤ i ≤ c. One can prove this

by definitions and the fact that cd(a,⊕i
j=0Nj) = i for all 0 ≤ i ≤ c.

For the last part, apply Remark 2.8 as R[[x]] is isomorphic to the I-adic

completion of R[x], where I = (x) and R[x] is faithfully flat over R. �

Definition 2.10. Let (R,m, k) be a local ring, a an ideal of R and M be a

finite R-module with cd(a,M) = c. For i 6= c, the ith cohomological deficiency

module of M is defined by

Ki
a(M) := DR(H i

a(M)) = HomR(H i
a(M), ER(k)).

The module K(M) := Kc
a(M) is called the cohomological canonical module of

M . Note that Ki
a(M) = 0 for all i < 0 or i > c.

According to the above definition, we bring the following property about

cohomological canonical module of R.

Lemma 2.11. Let (R,m) be a relative Cohen-Macaulay local ring w.r.t a

with cd(a, R) = c. Then Kc
a(R) is a faithful relative Cohen-Macaulay R-module

w.r.t a of finite injective dimension of type one.
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Proof. Firstly, in [18, Theorem 4.3 (ii), (iii)], it is shown that Kc
a(R) is

relative Cohen-Macaulay w.r.t a of finite injective dimension of type one. Next,

as R is a relative Cohen-Macaulay ring w.r.t a, we have AnnRH
c
a(R) = 0

by [14, Theorem 3.3]. Hence AnnRK
c
a(R) = 0 because the annihilators of an

R-module and its Matlis dual are equal by [4, Remarks 10.2.2]. This completes

the proof. �

In the next proposition, we provide a cohomological result of RCMF

modules.

Proposition 2.12. Let M be an RCMF module w.r.t a withM = {Mi}ci=0

its cd-filtration, where c = cd(a,M). Then for all 1 ≤ i ≤ c,

H i
a(M) ∼= H i

a(Mi) ∼= H i
a(Mi),

whereMi = Mi/Mi−1 for all 1 ≤ i ≤ c. In particular, it follows that Ki
a(M) ∼=

Ki
a(Mi) for all 1 ≤ i ≤ c.

Proof. Let 1 ≤ i ≤ c. By using the short exact sequence

0 −→Mi−1 −→Mi −→Mi −→ 0

and since cd(a,Mi−1) ≤ i − 1, we have an isomorphism H i
a(Mi) ∼= H i

a(Mi).

Now, as Mi = Mi/Mi−1 is relative Cohen-Macaulay w.r.t a, it yields isomor-

phisms Hj
a (Mi) ∼= Hj

a (Mi−1) for all j < i. By induction, it follows that

H i
a(M) = H i

a(Mc) ∼= H i
a(Mc−1) ∼= . . . ∼= H i

a(Mi+1) ∼= H i
a(Mi),

which completes the first part of the assertion. Now by virtue of Definition 2.10,

we obtain Ki
a(M) ∼= Ki

a(Mi) for all 1 ≤ i ≤ c as desired. �

We will provide the definitions and results which are needed in the pro-

cess. The following definition is a generalization of the concept of a-filter

regular M -sequences which has been stated in [5].

Definition 2.13. (see [23]) A sequence x1, . . . , xn of elements of R is called

an a-filter regular M -sequence if xi /∈ p for all

p ∈ AssR(M/(x1, . . . , xi−1)M) \V(a) for all 1 ≤ i ≤ n.

By definition, it deduces that every regular M -sequence is an a-filter

regular M -sequence and any R-filter regular M -sequence is a poor regular M -

sequence.

Remark 2.14. (i) Let n be a positive integer. By definition, we can find n

elements of a which form an a-filter regular M -sequence as follows. If
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AssR(M) ⊆ V(a), then choose y1 ∈ a arbitrarily. If not, since a *
∪p∈AssR(M)\V(a)p, there exists y1 ∈ a such that y1 /∈ p for all p ∈
AssR(M)\V(a). Again, if AssR(M/y1M) ⊆ V(a), then choose y2 ∈ a ar-

bitrarily. If not, since a * ∪p∈AssR(M/y1M)\V(a)p, there exists y2 ∈ a such

that y2 /∈ p for all p ∈ AssR(M/y1M) \ V(a). Proceeding the same way,

we can find y1, . . . , yn ∈ a which form an a-filter regular M -sequence.

(ii) For any positive integer n, there are n elements of R which form a poor

regular M -sequence.

Definition 2.15. (see [16] and [17]) For a ring R, let ER be the injective

hull of the direct sum ⊕m∈Max(R)R/m of all simple R-modules and DR(−) be

the functor HomR(−, ER). (Note that DR(−) is a natural generalization of

Matlis duality functor to non-local rings.)

Lemma 2.16. Let M be a finite dimensional finite R-module and n be

a positive integer such that ExtjR(R/a, DR(Ht
a(M))) = 0 for all t > n and

all j ∈ N0. Then for any a-filter regular M -sequence x1, . . . , xi with i > n,

ExtjR(R/a, DR(H i
(x1,...,xi)

(M))) = 0 for all j ∈ N0. In particular, it holds for

n = cd(a,M).

Proof. In the the proof of [13, Lemma 3.3], it is used the fact that for

every exact sequence of R-modules, the finiteness of sided modules lead to the

finiteness of the middle one. Thus the same method of the proof works exactly

replacing “finite modules” by “zero modules”. �

Applying Lemma 2.16, we obtain the following result which is needed for

Corollary 2.21.

Lemma 2.17. Let n be a positive integer such that ExtjR(R/a, DR(Ht
a(M))) =

0 for all t > n and all j ∈ N0. Then HomR(R/a, DR(Hn
a (M))) = 0. In parti-

cular, it holds for n = cd(a,M).

Proof. By Grothendieck’s Vanishing Theorem [4, Theorem 6.1.2], we may

assume that n ≤ dimM . In view of Remark 2.14(i) and using Lemma 2.16,

we can trace the same method of the proof of [13, Theorem 3.4] by replacing

“finite modules” by “zero modules” to get the assertion. �

Notice that the assumption “complete local” in [13, Lemma 3.3 and The-

orem 3.4] is due to show the finiteness properties of local cohomology modules.

But we eliminated it in Lemma 2.17 because we do not need this assumption

for vanishing of local cohomology modules.
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Definition 2.18. (see [10]) AnR-moduleM is called a-cofinite if SuppR(M)

⊆ V(a) and ExtjR(R/a,M) is finite for all j ≥ 0.

Remark 2.19. (see [7, Theorem 2.1]) For a finite R-module M and a non-

negative integer c if H i
a(M) is a-cofinite for all i < c, then HomR(R/a, Hc

a(M))

is finite.

Lemma 2.20. Let (R,m) be a complete local ring, c a non-negative integer.

Let H i
a(M) = 0 for all i < c and SuppR(M/aM) ⊆ V(m). If HomR(R/a, DR

(Hc
a(M))) = 0, then a contains a regular element on DR(Hc

a(M)).

Proof. By assumption, H i
a(M) is a-cofinite for all i < c. Thus HomR

(R/a, Hc
a(M)) is finite by Remark 2.19. As SuppR(M/aM) ⊆ V(m), then

SuppR(HomR(R/a, Hc
a(M))) ⊆ V(m) and so HomR(R/a, Hc

a(M)) is Artinian.

Thus Hc
a(M) is Artinian by [4, Theorem 7.1.2]. Now, as R is a complete lo-

cal ring, DR(Hc
a(M)) is finite by [4, Theorem 10.2.12]. Also, since HomR(R/a,

DR(Hc
a(M))) = 0 by our assumption, a contains a regular element on

DR(Hc
a(M)) as required. �

Motivated by [11, Lemma 4.3], we are particularly interested to prove the

existence of a regular element on DR(Hc
a(M)) as follows.

Corollary 2.21. Let (R,m) be a complete local ring and M be a relative

Cohen-Macaulay R-module w.r.t a with cd(a,M) = c > 0 and SuppR(M/aM) ⊆
V(m). Then a contains a regular element on DR(Hc

a(M)).

Proof. It is straightforward by using Lemma 2.17 and Lemma 2.20. �

Now, we consider the behaviour of cohomological dimension of an R-

module under non-zerodivisors.

Theorem 2.22. Let (R,m) be a local ring and M be a finite R-module

with cd(a,M) = c > 0. If x = x1, . . . , xn ∈ a be a regular sequence on both M

and DR(Hc
a(M)), then

cd(a,M/xM) = cd(a,M)− n.

Proof. We prove by induction on the length of regular sequence x. Let

n = 1 and R̂ be the m-adic completion of R. In view of the Flat Base

Change Theorem [4, Theorem 4.3.2] as R̂ is faithfully flat over R, we have

cdR(a,M) = cd
R̂

(aR̂, M̂) and cdR(a,M/x1M) = cd
R̂

(aR̂, M̂/x1M̂). Thus we

may assume that R is a complete local ring. Let cd(a,M) = c. It is clear

that cd(a,M/x1M) ≤ c. We claim that c− 1 ≤ cd(a,M/x1M). Suppose that
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cd(a,M/x1M) < c − 1. Then the multiplication map by x1 on Hc
a(M) is in-

jective. As Hc
a(M) is a-torsion, we get Hc

a(M) = 0 which is a contradiction.

Thus c− 1 ≤ cd(a,M/x1M) ≤ c. Now, we show that Hc
a(M/x1M) = 0. From

the exact sequence

Hc
a(M)

x1−→ Hc
a(M) −→ Hc

a(M/x1M) −→ 0,

we obtain the following exact sequence

DR(Hc
a(M/x1M)) −→ DR(Hc

a(M))
x1−→ DR(Hc

a(M)) −→ 0.

Since x1 is regular element on DR(Hc
a(M)), we get DR(Hc

a(M/x1M)) = 0.

Since the annihilators of Hc
a(M/x1M) and its Matlis dual are equal by [4,

Remark 10.2.2], it deduces that Hc
a(M/x1M) = 0. Therefore cd(a,M/x1M) =

c− 1, as desired. Now, assume that the assertion holds for sequences of length

n− 1. Then the claim will be proved by using inductive hypothesis. �

We end this section by an effective application of the above theorem which

is needed in Theorem 2.24.

Corollary 2.23. Let (R,m) be a local ring and M be a finite R-module

with cd(a,M) = c > 0.

(i) Let x ∈ a be a regular element on both M and DR(Hc
a(M)). Then M is

relative Cohen-Macaulay w.r.t a if and only if M/xM is relative Cohen-

Macaulay w.r.t a.

(ii) Let x = x1, . . . , xn ∈ a be a regular sequence on both M and DR(Hc
a(M)).

Then M is relative Cohen-Macaulay w.r.t a if and only if M/xM is

relative Cohen-Macaulay w.r.t a.

Proof. (i) As cd(a,M/xM) = cd(a,M)−1 by Theorem 2.22, and grade(a,

M/xM) = grade(a,M)− 1, the assertion follows easily.

Part (ii) follows by part (i) and using induction on n. �

We are now in a position to bring a non-zerodivisor characterization of

RCMF modules.

Theorem 2.24. Let (R,m) be a local ring and M be a finite R-module

with the cd-filtration M = {Mi}ci=0 where cd(a,M) = c.

(i) Let x ∈ a be a regular element on M , DR(Hc
a(M)), and DR(H i

a(Mi)) for

all 0 ≤ i ≤ c. Then M is an RCMF module w.r.t a if and only if M/xM

is an RCMF module w.r.t a.

(ii) Let x = x1, . . . , xn ∈ a be a regular sequence on M , DR(Hc
a(M)), and

DR(H i
a(Mi)) for all 0 ≤ i ≤ c. Then M is an RCMF module w.r.t a if
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and only if M/xM is an RCMF module w.r.t a.

Proof. For part (i), let Mi = Mi/Mi−1. First, as x ∈ a is an M -regular

element, we show that M0 = 0. By the notion of [1, Proposition 2.3], we know

that M0 = H0
a0(M) where a0 =

∏
cd(a,R/pj)=0 pj . Let cd(a, R/pj) = 0. Then

we have H0
a (R/pj) 6= 0 and so there exists r ∈ R \ pj and n ∈ N such that

ran ⊆ pj . Thus a ⊆ pj that is impossible because pj ∈ AssR(M). Therefore

{pj | cd(a, R/pj) = 0} = φ and hence H0
a0(M) = H0

R(M) = 0. That is,

M0 = 0 as we claimed. Now, let 1 ≤ i ≤ c. Then AssR(Mi) ⊆ AssR(M)

by [1, Proposition 2.6]. Therefore x is also Mi-regular element for all i ≥ 1.

Also, it is easy to see that Mi ∩ xM = xMi and xMi ∩Mi−1 = xMi−1 for all

1 ≤ i ≤ c. (Note that if m ∈ M and xm ∈ Mi, then m ∈ Mi because x is a

non-zerodivisor on Mi. Hence xM ∩Mi ⊆ xMi.) Now, let M be an RCMF

module w.r.t a. Then we have

Mi/xMi
∼= Mi/(xMi +Mi−1) ∼= (Mi/xMi)/(Mi−1/(xMi ∩Mi−1))

∼= (Mi/(Mi ∩ xM))/(Mi−1/(xM ∩Mi−1))
∼= ((Mi, xM)/xM)/((Mi−1, xM)/xM).

Therefore as x isMi-regular element, {(Mi+1, xM)/xM}c−1i=0 is a relative

Cohen-Macaulay filtration of M/xM w.r.t a by Corollary 2.23. Notice that

H i
a(Mi) ∼= H i

a(Mi) for all i. Therefore by virtue of Proposition 2.5, M/xM is

an RCMF module w.r.t a. Moreover, by Theorem 2.22, M/xM is a (c − 1)-

cohomological dimensional RCMF module w.r.t a. Conversely, suppose that

M/xM is an RCMF module w.r.t a. Then the cohomological dimension filtra-

tion {M ′i}
c−1
i=0 of M/xM has the property that M′i = M ′i/M

′
i−1 is either zero

or i-cohomological dimensional relative Cohen-Macaulay module w.r.t a. Let

Mi+1 denote the preimage of M ′i in M ,Mi+1 := Mi+1/Mi for 0 ≤ i ≤ c−1, and

M0 := 0. Since AssRM′i ⊆ AssRM by [1, Proposition 2.6], it deduces that

AssRMi ⊆ AssRM and so x is an Mi-regular element. By the isomorphisms

as we mentioned in above,Mi/xMi
∼= M ′i−1/M

′
i−2 for all 1 ≤ i ≤ c, as all Mi’s

contain xM (here put M ′−1 := 0). Thus Mi/xMi is relative Cohen-Macaulay

w.r.t a and cd(a,Mi/xMi) = cd(a,M ′i−1/M
′
i−2) for all 1 ≤ i ≤ c. Now, by

Theorem 2.22 and Corollary 2.23, Mi is i-cohomological dimensional relative

Cohen-Macaulay module w.r.t a as x is non-zerodivisor on Mi. Therefore M

is RCMF module w.r.t a.

Part (ii) follows by part (i) and applying the induction on n. �

Another property of RCMF modules is about localization behaviour. It

is clear that if M is a relative Cohen-Macaulay R-module w.r.t a and p ∈
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SuppR(M) ∩ V(a), then Mp is relative Cohen-Macaulay Rp-module w.r.t aRp

and cd(a,M) = cd(aRp,Mp).

Proposition 2.25. Let M be an RCMF R-module w.r.t a. Then Mp is

an RCMF Rp-module w.r.t aRp for any prime ideal p ∈ SuppR(M) ∩V(a).

Proof. Let M = {Mi}ci=0 denote the cd-filtration of M , where c =

cd(a,M). Let p ∈ V(a). Consider the filtration {Mi ⊗R Rp}ci=0. We claim

that this is a cd-filtration of Mp. First, as

cd(a,M) = max{cd(a,Mc−1), cd(a,M/Mc−1)},

and

cd(aRp,Mp) = max{cd(aRp, (Mc−1)p), cd(aRp, (M/Mc−1)p)},
andM/Mc−1 is relative Cohen-Macaulay w.r.t a, we have cd(aRp, (M/Mc−1)p) =

cd(a,M/Mc−1) = c and cd(aRp, (Mc−1)p) ≤ cd(a,M) = c. Thus cd(aRp,Mp) =

c. Further, Mi/Mi−1 ⊗R Rp is either zero or a relative Cohen-Macaulay Rp-

module w.r.t aRp of cohomological dimension i for all 1 ≤ i ≤ c. Therefore in

view of Proposition 2.5, the claim is proved. �

We can also show that passage to completion preserves the property of

RCMF, as illustrated below.

Proposition 2.26. Let M be a finite RCMF R-module w.r.t a. Then M̂

is an RCMF R̂-module w.r.t aR̂, wherêis the a-adic completion.

Proof. Let {Mi}ci=0 denote the relative Cohen-Macaulay filtration of M ,

where c = cd(a,M). Then {M̂i}ci=0 is a relative Cohen-Macaulay filtration of

the R̂-module M̂ w.r.t aR̂ by Flate Base Change Theorem [4, Theorem 4.3.2].

Thus by Proposition 2.5, M̂ is an RCMF module over R̂ w.r.t aR̂. �

The other main result of this section is a characterization of the cd-

filtration of M in terms of associated prime ideals of its factors. For all i, set

AssiR(M) = {p ∈ AssR(M) | cd(a, R/p) = i}.

Theorem 2.27. Let M = {Mi}ci=0 be a filtration of the finite R-module

M and cd(a,M0) = 0. The following conditions are equivalent:

(i) AssR(Mi/Mi−1) = AssiR(M) for all 1 ≤ i ≤ c;
(ii) M is the cd-filtration of M .

Proof. By virtue of [1, Proposition 2.6 (iii)], we only have to prove the

implication (i)⇒ (ii). First, we claim that

AssR(Mi−1) ∩AssR(Mi/Mi−1) = φ for all 1 ≤ i ≤ c.
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Contrarily, assume that for some 1 ≤ i ≤ c, there is p ∈ AssR(Mi−1) ∩
AssR(Mi/Mi−1). Then cd(a,Mi−1) ≥ i by (i). If i > 1, by hypothesis,

AssR(Mi−1/Mi−2) = Assi−1R (M) and so p /∈ AssR(Mi−1/Mi−2). Thus, con-

sidering the exact sequence 0 −→ Mi−2 −→ Mi−1 −→ Mi−1/Mi−2 −→ 0,

we have p ∈ AssR(Mi−2). As cd(a, R/p) = i, we have cd(a,Mi−2) ≥ i. By

repeating this descending process,

cd(a,M0), cd(a,M1), . . . , cd(a,Mi−2), cd(a,Mi−1)

are all not less than i. Hence cd(a,M0) ≥ i > 0 which is a contradiction.

Now, consider the exact sequence 0 −→ Mc−1 −→ M −→ M/Mc−1 −→ 0,

we have cd(a,Mc−1) ≤ c − 1 as AssR(Mc−1) ∩ AssR(M/Mc−1) = φ. Now,

let N be the largest submodule of M such that cd(a, N) ≤ c − 1 and p ∈
AssR(N/Mc−1). Since AssR(N/Mc−1) ⊆ AsscR(M), we have cd(a, R/p) = c.

But p ∈ SuppR(N/Mc−1) ⊆ SuppR(N) and so cd(a, R/p) ≤ cd(a, N) ≤ c − 1

which is impossible. Therefore AssR(N/Mc−1) = φ and Mc−1 is the largest

submodule of M such that cd(a,Mc−1) ≤ c−1. Now, descendingly, we proceed

this method to prove that M is the cd-filtration of M . �

We end this section by a consequence of the above theorem which gives

us a cd-filtration for certain modules.

Corollary 2.28. (compare [1, Proposition 2.3]) Let ∩ni=1Ni be a redu-

ced primary decomposition of (0) in M , where Ni is pi-primary, and Mi =

∩cd(a,R/pj)>iNj for all 0 ≤ i ≤ c = cd(a,M). Assume that cd(a,∩cd(a,R/pj)>0Nj)

= 0. Then {Mi}ci=0 is the cd-filtration of M .

Proof. Let 1 ≤ i ≤ c. It is easy to see that Mi−1 = Mi ∩ Li, where

Li is the intersection of all Nj ’s such that cd(a, R/pj) = i. By rewriting

the indices, let Li = N1 ∩ . . . ∩ Nm. By Theorem 2.27, we need to show

that AssR(Mi/Mi−1) = {p1, . . . , pm}. First, we note that AssR(Mi/Mi−1) =

AssR(Mi + Li/Li) ⊆ AssR(M/Li). Also, AssR(M/Li) = AssR(⊕n
j=1M/Nj) =

{p1, . . . , pm}. Thus, it is enough to show that {p1, . . . , pm} ⊆ AssR(Mi/Mi−1).

We have Mi−1 = Li ∩ Li+1 ∩ . . . ∩ Lc and Mi = Li+1 ∩ Li+2 ∩ . . . ∩ Lc. Let

1 ≤ r ≤ m. We show that pr ∈ AssR(Mi/Mi−1). As (0) = ∩nj=1Nj , is a reduced

primary decomposition, it deduces that

(1) Mi−1 $ (N1 ∩ . . . ∩ N̂r ∩ . . . ∩Nm) ∩ Li+1 ∩ . . . ∩ Lc.

For convenience, we denote the right side of (1) by A for the rest. So there exists

x ∈ A such that x /∈Mi−1. Notice that (Mi−1 : x) = (Nr : x). Now, as Nr is pr-

primary, there exists t > 0 such that pr
tM ⊆ Nr. Hence pr

tx ⊆Mi−1. Suppose
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that s ≥ 0 is the least integer such that pr
s+1x ⊆Mi−1 and pr

s *Mi−1. This

implies that there exists y ∈ pr
sx such that y /∈ Mi−1. Now, it is easy to see

that pr = (Mi−1 : y), i.e., pr ∈ AssR(Mi/Mi−1). This completes the proof. �

3. RELATIVE COHEN-MACAULAYNESS IN RINGS AND MODULES

In this section, we prove some results concerning relative Cohen-Macaulay

rings and modules. We begin by determining two classes of modules for which

relative Cohen-Macaulayness is equivalent for rings and modules.

Definition 3.1. (see [8]) An R-module M is called multiplication if for

every submodule N of M there exists an ideal a of R such that N = aM .

Moreover, if AnnRM = 0, then M is called faithful multiplication.

Corollary 3.2. Let M be a faithful multiplication R-module. Then M

is relative Cohen-Macaulay w.r.t a if and only if R is relative Cohen-Macaulay

w.r.t a.

Proof. Using [2, Theorem 2.2 (b)], we have Supp(M) = Spec(R). Thus

cd(a,M) = cd(a, R) by [6, Theorem 2.2]. On the other hand, grade(a,M) =

grade(a, R) by [2, Theorem 2.2 (a)]. Therefore grade(a,M) = cd(a,M) if and

only if grade(a, R) = cd(a, R) as required. �

Definition 3.3. (see [9] and [25]) The R-module M is semidualizing if it

satisfies the following:

(i) M is finitely generated,

(ii) The homotopy map χR
M : R −→ HomR(M,M), defined by r 7→ [s 7→ rs],

is an isomorphism, and

(iii) ExtiR(M,M) = 0 for all i > 0.

Corollary 3.4. Let M be a semidualizing R-module. Then M is relative

Cohen-Macaulay w.r.t a if and only if R is relative Cohen-Macaulay w.r.t a.

Proof. The assertion easily follows by [19, Proposition 2.1.16] and [19,

Theorem 2.2.6]. �
Comparing with [15, Proposition 5.1], we prove the following result on ca-

nonical modules by getting benefit from the concept of semidualizing

modules.

Proposition 3.5. Let (R,m) be a local ring and wR be its canonical

module. Then R is relative Cohen-Macaulay w.r.t a if and only if wR is relative

Cohen-Macaulay w.r.t a.
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Proof. As the canonical modules are semidualizing, we have grade(a, wR) =

grade(a, R) by [19, Theorem 2.2.6]. On the other hand, SuppR(wR) = Spec(R)

by [19, Proposition 2.1.16] and so cd(a, wR) = cd(a, R) by [6, Theorem 2.2].

Therefore grade(a, R) = cd(a, R) if and only if grade(a, wR) = cd(a, wR), as

required. �

Next result is about the cohomological deficiency modules of a relative

Cohen-Macaulay ring.

Proposition 3.6. Let (R,m) be a relative Cohen-Macaulay local ring

w.r.t a with cd(a, R) = c. Then for all 0 ≤ i ≤ c, the R-modules Ki
a(R) are

either zero or i-cohomological dimensional relative Cohen-Macaulay modules

w.r.t a.

Proof. By assumption and Example 2.9(a), we deduce that the quo-

tient ideal Ii := ai/ai−1 in the cd-filtration {ai}ci=0 is either zero or an i-

cohomological dimensional relative Cohen-Macaulay ideal w.r.t a for all 1 ≤
i ≤ c . In view of Proposition 2.12, it follows that Ki

a(R) ∼= Ki
a(Ii) for all

0 ≤ i ≤ c. Since Ii is either zero or an i-cohomological dimensional relative

Cohen-Macaulay ideal w.r.t a, we have Ki
a(Ii) is either zero or the cohomolo-

gical canonical module of Ii. But the cohomological canonical module of Ii is

relative Cohen-Macaulay module w.r.t a by [18, Theorem 4.3 (i)]. Thus the

assertion follows. �

At the end, we give some results about relative Cohen-Macaulay rings

under some mild assumptions.

Proposition 3.7. Let f : R −→ R′ be a faithfully flat homomorphism of

Noetherian rings. Then R is relative Cohen-Macaulay w.r.t a if and only if R′

is relative Cohen-Macauly ring w.r.t aR′.

Proof. As H i
a(R) ⊗R R′ ∼= H i

aR′(R
′) for all i ≥ 0, we get cd(a, R) =

cd(aR′, R′) and grade(a, R) = grade(aR′, R′). Therefore the assertion fol-

lows. �

Corollary 3.8. Let f : R −→ R′ be a faithfully flat homomorphism

of Noetherian local rings and R be a relative Cohen-Macaulay w.r.t a. Then

H i
a(R

′) 6= 0 if and only if (0 :R H i
aR′(R

′)) = 0.

Proof. Apply Proposition 3.7 and [14, Theorem 3.3].

Example 3.9. Let a ⊆ Jac(R). Then R̂, the a-adic completion of R,

is relative Cohen-Macaulay ring w.r.t aR̂ if and only if R is relative Cohen-

Macauly ring w.r.t a.
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Example 3.10. The polynomial ring R[x] is relative Cohen-Macaulay ring

w.r.t aR[x] if and only if R is relative Cohen-Macaulay ring w.r.t a.
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