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In the paper, we give new oscillation criteria for forced sub-linear differential
equations with “oscillatory potentials”under the assumption that corresponding
linear homogeneous equation is nonoscillatory.
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1. INTRODUCTION

The concept of the principal solution was introduced in 1936 by W. Leig-
hton and M. Morse [12] in studying positiveness of certain quadratic functional
associated with

(1.1) (r(t)x′)′ + p(t)x = 0, t ≥ t0.

Since then the principal and nonprincipal solutions have been used successfully
in connection with oscillation and asymptotic theory of (1.1) and related equa-
tions, see for instance [1, 4, 6, 8, 12, 17, 19, 23] and the references cited therein.
For some extensions to Hamiltonian systems, half-linear differential equations,
dynamic equations and impulsive differential equations, we refer in particular
to [3, 5, 6, 13,24].

We recall that a nontrivial solution x1 of (1.1) is said to be principal
(“small”or “recessive”) if for every solution x2 of (1.1) such that x1 6= cx2,
c ∈ R,

lim
t→∞

x1(t)

x2(t)
= 0.

It is well known that a principal solution x1 of (1.1) exists uniquely up to a
multiplication by a nonzero constant if and only if (1.1) is nonoscillatory. A
solution x2 that is linearly independent of x1 is called a nonprincipal (“large”or
“dominant”) solution. For other characterizations of principal and nonprincipal
solutions of (1.1), see [8, Theorem 6.4], [11, Theorem 5.59].
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In 1999, Wong [23], by employing a nonprincipal solution of (1.1), obtai-
ned the following oscillation criterion for

(1.2) (r(t)x′)′ + p(t)x = f(t).

For extensions of the theorem to impulsive differential equations and dynamic
equations on time scales, see [13,24].

Theorem 1.1 (Wong’s theorem). Suppose that (1.1) is nonoscillatory.
Let z be a positive solution of (1.1) satisfying

(1.3)

∫ ∞
a

1

r(s)z2(s)
ds <∞

for some a sufficiently large, i.e, a nonprincipal solution. If

(1.4) lim
t→∞

H(t) = − lim
t→∞

H(t) =∞,

where

(1.5) H(t) :=

∫ t

a

1

r(s)z2(s)

(∫ s

a
z(τ)f(τ)dτ

)
ds,

then Eq. (1.2) is oscillatory.

The aim of our work is to extend the above theorem to Emden-Fowler
sub-linear equation

(1.6) (r(t)x′)′ + q(t)|x|γ−1x = f(t), t ≥ t0,

where γ ∈ (0, 1) and r, q, f are continuous functions on [t0,∞) with r > 0.

By a solution of (1.6) defined on an interval [t1,∞), t1 ≥ t0, we mean a
function x, (rx′)′ ∈ C[t1,∞), satisfying (1.6). We note that the assumption of
r, q, f being continuous is not sufficient to ensure the existence of extendable
solutions of (1.6) on [T,∞), see [20]. However, as usual in the oscillation theory
we only consider solutions of (1.6) which are extendable to [T,∞) and nontri-
vial in the neighborhood of infinity. Such a solution is called oscillatory if it has
arbitrarily large zeros, otherwise it is called nonoscillatory. Eq. (1.6) is called
oscillatory (nonoscillatory) if all solutions are oscillatory (nonoscillatory).

Usually, nonlinear results require the potential function a(t) in an Emden-
Fowler equation

x′′ + a(t)|x|α−1x = f(t), α > 0

to be non-negative, see [21]. Fortunately, we are able to take the potential q to
be an oscillatory function in (1.6). On the other hand, letting γ → 1− in (1.6)
results in (1.1) with p(t) = q(t), and thus our result extends Theorem 1.1 by a
limiting process γ → 1 in (1.6).
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We note that the oscillation of the solutions of Eq. (1.6) with γ > 0 has
been studied by many authors, see for instance [2,7,9,10,14–16,18,20–23], but
to the best of our knowledge there is only one paper in the literature similar to
Theorem 1.1 for such nonlinear equations, especially for (1.6) in which Özbekler
et al. [25] obtained some oscillation results for the nonlinear equations of the
form

(1.7) (r(t)x′)′ + p(t)F (x)− q(t)G(x) = f(t)

motivated by the less general equation

(1.8) (r(t)x′)′ + p(t)|x|β−1x− q(t)|x|γ−1x = f(t), β > 1 > γ > 0

under the assumption that corresponding linear homogeneous equation

(r(t)x′)′ + [p(t)− q(t)]x = 0

is nonoscillatory. In Eq. (1.7) (and Eq. (1.8)), r is assumed to be a positive
function, the potential functions p, q are non-negative and no sign restriction
is imposed on the forcing term f . Moreover, the nonlinear terms in Eq. (1.7)
satisfy

(A) xF (x) > 0 and xG(x) > 0 for x 6= 0;

(B) (a) lim
|x|→∞

x−1F (x) > 1, lim
|x|→0

x−1F (x) < 1,

(b) lim
|x|→∞

x−1G(x) < 1, lim
|x|→0

x−1G(x) > 1.

Note that two special cases of Eq. (1.8) are Emden-Fowler super-linear (q(t) =
0) and sub-linear (p(t) = 0) equations. However, the results presented in [25]
do not give any information about the oscillatory behavior of Eq. (1.8) in the
case the potentials p(t) and q(t) are oscillatory.

In 2000, Agarwal and Grace [31] studied the super-linear equation

(1.9) x(n) + q(t)|x|α−1x = f(t),

with α > 1 and q(t) < 0 by the method of general means, and then Ou and
Wong [30] extend their results to more general equation

x(n) + q(t)Φ(x) = f(t), q(t) ≥ 0 (q(t) < 0)

imposing some conditions on Φ. As far as the oscillatory potentials are consi-
dered, El-Sayed [7] (n = 2 and α = 1), Wong [23] (n = 2 and α = 1), Nasr [29]
(n = 2 and α > 1), Sun [28] (n = 2 and α > 1), Sun and Agarwal [26, 27]
(α > 1) studied the oscillation of Eq. (1.9).
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In 2004, Sun and Wong [32] presented the oscillation criteria for Eq. (1.9)
in the sub-linear case, i.e. the case α ∈ (0, 1) by the method similar to that of
Agarwal and Grace [31] without assuming any sign condition on the potential
function q(t).

In the case where the potential q(t) is non-positive in Eq (1.6), an os-
cillation criterion was given [25, Corollary 2.4], but it appears to us nothing
has been known about the oscillation of Emden-Fowler sub-linear Eq. (1.6) in
case of oscillatory potential q(t). In this paper, we will establish an oscilla-
tion theorem for Eq. (1.6) under the assumption that the corresponding linear
equation

(1.10) (r(t)x′)′ + q(t)x = 0

is nonoscillatory. The results obtained in this paper are analogue to those
given in [23] and [25]. Examples are provided to emphasize the main results
and we impose some open problems for such critical cases of Eq. (1.6) and
related equations.

2. MAIN RESULTS

Associated with equation (1.6) we assume that the linear Eq. (1.10) is
nonoscillatory. Since q(t) ≥ −q−(t), equation

(2.1) (r(t)y′)′ − q−(t)y = 0

is nonoscillatory by Sturm comparison theorem, where q−(t) = max{−q(t), 0}.
Denote by z(t), t ∈ [a,∞), a positive nonprincipal solution of (2.1) i.e.,

z(t) satisfies

(2.2)

∫ ∞
a

ds

r(s)z2(s)
<∞.

Define

(2.3) H±(t) :=

∫ t

a

1

r(s)z2(s)

(∫ s

a
[f(τ)± (1− γ)q−(τ)] z(τ)dτ

)
ds.

The main result of this paper is the following theorem.

Theorem 2.1. Suppose that (1.10) is nonoscillatory and let z(t) be a
positive solution of (2.1) satisfying (2.2), i.e. a nonprincipal solution. If

(2.4) lim
t→∞
H−(t) = − lim

t→∞
H+(t) =∞,

where H± is given by (2.3), then Eq. (1.6) is oscillatory.
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Proof. Suppose that there is a nonoscillatory solution x(t) of (1.6). We
may assume that x(t) 6= 0 on [a,∞) for some a ≥ t0 sufficiently large. The
change of variables x = z(t)w, where z(t) is a positive nonprincipal solution
of (2.1), transforms (1.6) into

(2.5) (r(t)z2w′)′ =
{
f(t)− q(t)|x|γ−1x− q−(t)x

}
z, t ≥ a,

Integration of (2.5) leads to

w(t) =

∫ t

a

1

r(s)z2(s)

∫ s

a

{
f(τ)− q(τ)|x|γ−1x− q−(τ)x

}
z(τ)dτds

+c1

∫ t

a

ds

r(s)z2(s)
+ c2(2.6)

where c1 = r(a)z2(a)w′(a) and c2 = w(a) are constants.
If x(t) > 0 on [a,∞), then using (2.6) we obtain

w(t)≤
∫ t

a

1

r(s)z2(s)

∫ s

a

{
f(τ)− γq−(τ)[x− 1

γ
xγ ]−(1− γ)q−(τ)x

}
z(τ)dτds

+c1

∫ t

a

ds

r(s)z2(s)
+ c2.(2.7)

Define a function W (u) : (0,∞)→ R by

W (u) := u− 1

γ
uγ , γ ∈ (0, 1).

It is not difficult to see that

(2.8) min
u∈(0,∞)

W (u) = 1− 1/γ.

Using (2.8) in (2.7) yields

(2.9) w(t) ≤ H+(t) + c1

∫ t

a

ds

r(s)z2(s)
+ c2,

and similarly, if x(t) < 0 on [a,∞), then again using (2.8), (2.6) turns out

w(t) =

∫ t

a

1

r(s)z2(s)

∫ s

a

{
f(τ) + γq−(τ)[|x| − 1

γ
|x|γ ]

+(1− γ)q−(τ)|x|
}
z(τ)dτds+ c1

∫ t

a

ds

r(s)z2(s)
+ c2

≥ H−(t) + c1

∫ t

a

ds

r(s)z2(s)
+ c2(2.10)

Note that (2.2), (2.4), (2.9) and (2.10) imply that

(2.11) lim
t→∞

w(t) = − lim
t→∞

w(t) = +∞.
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Because z(t) is positive, (2.11) implies that x(t) cannot have a definite sign on
[a,∞), a contradiction. �

Remark 1. Theorem 2.1 is exciting because it reduces to Theorem 1.1 for
the linear Eq. (1.2) with p(t) = q(t) by letting γ → 1− in (1.6).

Remark 2. In case when the potential q(t) is positive, Theorem 2.1 is of
particular interest. In this case q−(t) = 0 and Eq. (2.1) turns out to be

(2.12) (r(t)y′)′ = 0.

It is clear that Eq. (2.12) is nonoscillatory and has two linearly independent
solutions y1(t) = 1 and

y2(t) =

∫ t

r−1(s) ds.

We note that the integral ∫ ∞
r−1(t) dt

determines the (non)principal solutions. Accordingly, we define

(2.13) H0(t) :=

∫ t

a
r−1(s)

∫ s

a
f(τ) dτ ds

and

(2.14) H1(t) :=

∫ t

a
r−1(s)

(∫ s

a
r−1(k)dk

)−2 ∫ s

a
f(τ)

∫ τ

a
r−1(k) dk dτ ds.

Proposition 1. If∫ ∞
r−1(t) dt <∞ and lim

t→∞
H0(t) = − lim

t→∞
H0(t) =∞

or ∫ ∞
r−1(t) dt =∞ and lim

t→∞
H1(t) = − lim

t→∞
H1(t) =∞

is satisfied, then Eq. (1.6) is oscillatory.

3. CONCLUDING REMARKS

Özbekler et al. [25, Corollary 2.4] presented an oscillation criterion ana-
logous to Theorem 2.1 for Eq. (1.6) with non-positive potential, i.e., q−(t) =
−q(t).
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Theorem 3.1 ( [25]). Let z(t) be a positive solution of Eq. (1.10) sa-
tisfying (2.2), i.e., a nonprincipal solution. If

(3.1) lim
t→∞
N−(t) = − lim

t→∞
N+(t) =∞,

where

N±(t) :=

∫ t

a

1

r(s)z2(s)

(∫ s

a

[
f(τ)± (1− γ)γγ/(1−γ)q(τ)

]
z(τ)dτ

)
ds,

then Eq. (1.6) is oscillatory.

However, this oscillation result is little weaker than the one we obtained
in Theorem 2.1. We note that H+(t) > N+(t) and H−(t) < N−(t), since
γγ/(1−γ) < 1 for any γ ∈ (0, 1), and hence we conclude that condition (2.4) of
Theorem 2.1 implies condition (3.1) of Theorem 3.1.

Consider a slightly more general equation than (1.6)

(3.2) (r(t)x′)′ + q(t)F(x) = f(t), t ≥ t0,

where r, q, f are defined as previously and the function F ∈ C(R,R) satisfies
the following conditions:

(i) xF(x) > 0 for x 6= 0;

(ii) lim
|x|→∞

x−1F(x) < 1, lim
|x|→0

x−1F(x) > 1.

Using (i) and (ii), it is easy to find positive constants γ0, δ0 such that

(3.3) max
x≤0

[x−F(x)] = δ0, min
x≥0

[x−F(x)] = −γ0.

In what follows, we define

(3.4) N1(t) :=

∫ t

a

1

r(s)z2(s)

(∫ s

a

[
f(τ)− δ0q−(τ)

]
z(τ)dτ

)
ds.

and

(3.5) N2(t) :=

∫ t

a

1

r(s)z2(s)

(∫ s

a

[
f(τ) + γ0q−(τ)

]
z(τ)dτ

)
ds,

Theorem 3.2. Suppose that (1.10) is nonoscillatory and let z(t) be a
positive solution of (2.1) satisfying (2.2), i.e. a nonprincipal solution. If

(3.6) lim
t→∞
N1(t) = − lim

t→∞
N2(t) =∞,

where H is given by (2.3), then Eq. (1.6) is oscillatory.
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Proof. Suppose that there is a nonoscillatory solution x(t) of (3.2). We
may assume that x(t) 6= 0 on [a,∞) for some a ≥ t0 sufficiently large. The
change of variables x = z(t)w, where z(t) is a positive nonprincipal solution
of (2.1), transforms (3.2) into

(3.7) (r(t)z2w′)′ =
{
f(t)− q(t)F(x)− q−(t)x

}
z, t ≥ a,

Integration of (3.7) leads to

w(t) =

∫ t

a

1

r(s)z2(s)

∫ s

a

{
f(τ)− q(τ)F(x)− q−(τ)x

}
z(τ)dτds

+k1

∫ t

a

ds

r(s)z2(s)
+ k2(3.8)

where k1 = r(a)z2(a)w′(a) and k2 = w(a) are constants.

If x(t) > 0 on [a,∞), then using (3.3) and (3.8) we obtain

w(t) ≤ N2(t) + k1

∫ t

a

ds

r(s)z2(s)
+ k2.(3.9)

Similarly, if x(t) < 0 on [a,∞), then again using (3.3) and (3.8) we get

w(t) ≥ N1(t) + k1

∫ t

a

ds

r(s)z2(s)
+ k2.(3.10)

Note that (2.2), (3.6), (3.9) and (3.10) imply that

(3.11) lim
t→∞

w(t) = − lim
t→∞

w(t) = +∞.

Because z(t) is positive, (3.11) implies that x(t) cannot have a definite sign on
[a,∞), so we obtain a similar contradiction as in the proof of Theorem 2.1. �

If we take F(x) = |x|γ−1x where γ ∈ (0, 1), then it can be easily calculated
that

δ0 = γ0 = (1− γ)γγ/(1−γ) > 0.

Finally, we pose an open problem concerning a possible extension of Theo-
rems 2.1 or 3.2. Consider the Emden-Fowler super-linear equation

(3.12) (r(t)x′)′ + p(t)|x|β−1x = f(t), β > 1

where the potential function p(t) has no definite sign. Suppose the unforced
equation

(r(t)z′)′ + p(t)z = 0

is nonoscillatory. Find the conditions on the forcing term f(t) which will
determine the oscillatory character of Eq. (3.12).
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[5] O. Došlý, Principal solutions and transformations of linear Hamiltonian systems. Arch.
Math. (Brno) 28 (1992), 1–2, 113–120.
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