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In this paper, we continue to study generalized p.q.-Baer rings. We show that
the prime radical is the unique minimal prime ideal of a class of principally right
primary rings. Some results are provided which enable us to generate examples
of (principally) right primary rings which are not quasi-Baer. We also extend a
theorem of Kist for commutative PP-rings to generalized principally quasi-Baer
(e.g., completely primary) rings for which every prime ideal contains a unique
minimal prime ideal without using topological arguments. Furthermore, various
decompositions of generalized right p.q.-Baer rings are determined. Connections
to related classes of rings are investigated.
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1. INTRODUCTION

Throughout this paper all rings are associative with identity and all mo-
dules are unital. Recall from [20] that R is a Baer ring if the right annihilator
of every nonempty subset of R is generated by an idempotent. In [20] Kap-
lansky introduced Baer rings to abstract various properties of AW ∗-algebras
and von Neumann algebras. The class of Baer rings includes the von Neumann
algebras. In [14] Clark defines a ring to be quasi-Baer if the left annihila-
tor of every ideal is generated, as a left ideal, by an idempotent. He then
uses the quasi-Baer concept to characterize when a finite-dimensional algebra
with unity over an algebraically closed field is isomorphic to a twisted matrix
units semigroup algebra. Some results on quasi-Baer rings can be found in
e.g. [6–8,30,31,33,34].

A ring R is called right (left) PP if every principal right (left) ideal is
projective (equivalently, if the right (left) annihilator of any element of R is
generated as a right (left) ideal by an idempotent of R). R is called a PP ring
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(also called a Rickart ring [2, p. 18]), if it is both right and left PP. The concept
of PP ring is not left-right symmetric by Chase [12]. A right PP ring R is Baer
(so PP) when R is orthogonally finite by Small [36], and a right PP ring R is
PP when R is abelian (idempotents are central) by Endo [16].

Birkenmeier, Kim and Park in [8] initiated the concept of principally
quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply
right p.q.-Baer) if the right annihilator of a principal right ideal is generated
by an idempotent. Equivalently, R is right p.q.-Baer if R modulo the right
annihilator of any principal right ideal is projective. If R is a semiprime ring,
then R is right p.q.-Baer if and only if R is left p.q.-Baer. The class of right
p.q.-Baer rings includes properly the class of quasi-Baer rings. Some examples
were given in [8] to show that the classes of right p.q.-Baer rings and right
PP-rings are distinct.

From [25], a ring R is called generalized right (principally)quasi-Baer if
for any (principal) right ideal I of R, the right annihilator of In is generated
by an idempotent for some positive integer n, depending on I. By [25, Propo-
sition 2.2(i)], for a semiprime ring the definition of generalized right p.q.-Baer
coincides with that of right p.q.-Baer; and for a ring R with IFP (i.e., ab = 0
implies arb = 0, for each a, b, r ∈ R) the definition of generalized left p.q.-
Baer coincides with that of generalized left PP (i.e., rings for any x ∈ R the
left annihilator of xn is generated by an idempotent for some positive inte-
ger n, depending on x ). In [25], the authors characterize the generalized right
(principally) quasi-Baer property of triangular matrix rings, 2-by-2 generalized
triangular matrix rings and full matrix rings. They also prove that, for abe-
lian rings, unlike the Baer or generalized PP condition, the generalized right
(principally) quasi-Baer condition is a Morita invariant property.

Recall from [15,17] and [18], that a ring R is (principally) right primary
if whenever A and B are (principal) ideals of R with AB = 0, then A =
0 or Bn = 0 for some positive integer n. From [11], every prime ring is a
right and left primary ring. Moreover (a direct sum of nilpotent rings) a
nilpotent ring is (principally) left primary and (principally) right primary. By
[11, Proposition 3.6 (i)], a ring R is (principally) left primary if and only
if R is semicentral reduced generalized right (principally) quasi-Baer. Since
principally right primary rings are indecomposable as rings (in fact, semicentral
reduced), we can consider them for components in a decomposition theory for
rings. For a prime ideal P of a ring R, the following definition from [4] plays
a key role in the sequel:

(i) O(P ) = {a ∈ R | aRs = 0 for some s ∈ R \ P};

(ii) O(P ) = {x ∈ R | xn ∈ O(P ) for some n ∈ N}.
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Several authors, including [7] and [25] have obtained sheaf representations
of rings whose stalks are of the form R/O(P ). In this paper, we explore these
connections via the sets O(P ) and O(P ). We generalize a result of Kist [22] for
commutative PP-rings to generalized principally quasi-Baer rings without using
topological arguments, by determining criteria for which every prime ideal
contains a unique minimal prime (equivalently, the prime radical of R/O(P )
is a prime ideal) in a generalized principally quasi-Baer ring. We deduce that
in a local ring with nilpotent Jacobson radical, every prime ideal contains a
unique minimal prime. Local rings with nilpotent maximal ideal are often
called completely primary rings [23]. Moreover, for a generalized principally
quasi-Baer ring, we develop conditions for which the various ideals O(P ) or P
are either essential in R or split-off as direct summands.

Various decompositions of generalized p.q.-Baer rings are determined. In
particular, we show that a generalized right quasi-Baer ring R with S`(R) =
B(R) has a ring decomposition, R = A ⊕ B, where Soc(A) is left essential in
A and Soc(R) = (Soc(R))n ⊕ Soc(B) for some positive integer n.

Furthermore, we show that the prime radical is the unique minimal prime
ideal of a class of principally right primary rings, and to illustrate our results,
various examples of (principally) right (or left) primary rings which are not
quasi-Baer are provided.

2. MINIMAL PRIME IDEALS IN GENERALIZED P.Q.-BAER RINGS

Recall from [5] that an idempotent e ∈ R is called left (resp. right)
semicentral if xe = exe (resp. ex = exe), for all x ∈ R. The set of left (resp.
right) semicentral idempotents of R is denoted by S`(R) (resp. Sr(R)). A
ring R with unity is said to be semicentral reduced if S`(R) = {0, 1}. Since e
is left semicentral if and only if 1 − e is right semicentral, being semicentral
reduced is left-right symmetric. Thus R is semicentral reduced if and only if
Sr(R) = {0, 1}. Observe S`(R)∩Sr(R) = B(R), the set of central idempotents
of R, and if R is semiprime or abelian (idempotents are central), then S`(R) =
Sr(R) = B(R).

In this section, we show that the prime radical is the unique minimal
prime ideal of a class of principally right primary rings. We also give results
which enable us to generate examples of (principally) right primary rings which
are not (right p.q.-Baer) quasi-Baer.

For notation, let P(R) and nil(R) denote the prime radical and the set
of nilpotent elements of R, respectively. A ring is called 2-primal if P(R) =
nil(R). For more details on 2-primal rings see [4] and [3]. Given a ring R,
for a nonempty subset X of R, rR(X) and `R(X) denote the right and left
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annihilators of X in R, respectively. Also Z`(R) and Zr(R) denote the left and
right singular ideals of R, respectively. The left socle of R will be symbolized
by Soc(R). Observe that if R is semiprime, then Soc(R) coincides with the
right socle of R. Also C(R) denotes the center of R.

The notions O(P ), O(P ) and N(P ) from [4] and [9] are fundamental to
the remainder of our discussion.

Definition 2.1. For a prime ideal P of a ring R, denote:

N(P ) = {y ∈ R | yRs ⊆ P(R) for some s ∈ R \ P}.

Observe that O(P ) =
⋃

s∈R\P
`R(Rs) = {a ∈ R | rR(aR) " P} ⊆ N(P ) ⊆

P . Since nil(R/O(P )) = O(P )/O(P ) is the set of all nilpotent elements in the
ring R/O(P ), the condition that O(P ) = P gives us important information
about the ring R/O(P ).

Lemma 2.2. Let R be a generalized left p.q.-Baer ring and P a prime
ideal of R. Then we have:

O(P ) =
∑

e∈P∩Sr(R)

Re.

Proof. The proof is similar to that of [25, Proposition 5.3 (i)]. �

Definition 2.3 ([5]). A ring R is said to have a set of left (resp. right) tri-
angulating idempotents if there exists an ordered set {b1, b2, . . . , bn} of nonzero
distinct idempotents such that:

(i) 1 = b1 + b2 + · · ·+ bn;

(ii) b1 ∈ S`(R) (resp. b1 ∈ Sr(R));

(iii) bk+1 ∈ S`(ckRck) (resp. bk+1 ∈ Sr(ckRck)) where ck = 1− (b1 +b2 + · · ·+
bk) for 1 ≤ k ≤ n− 1.

A set of right triangulating idempotents of R is defined similarly, using
(i), b1 ∈ Sr(R), and bk+1 ∈ Sr(ckRck). From part (iii) of the above definition,
a set of left (right) triangulating idempotents is a set of pairwise orthogonal
idempotents. A set {b1, b2, . . . , bn} of left (right) triangulating idempotents is
said to be complete if each biRbi is semicentral reduced. From [5, Proposition
1.3], R is isomorphic to a generalized upper triangular matrix ring with semi-
central reduced rings on the main diagonal if and only if R has a complete set
of left triangulating idempotents.

Observe from [5, Corollary 1.7 and Theorem 2.10] that the number of
elements in a complete set of left triangulating idempotents is unique for a
given ring R (which has such a set) and this is also the number of elements in
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any complete set of right triangulating idempotents of R. This motivates the
following definition: R has triangulating dimension n, written Tdim(R) = n, if
R has a complete set of left triangulating idempotents with exactly n elements.

Note that R is semicentral reduced if and only if Tdim(R) = 1. If R has
no complete set of left triangulating idempotents, then we say R has infinite
triangulating dimension, denoted Tdim(R) =∞. From [5, Proposition 2.14],
if R has ACC on ideals, then Tdim(R) <∞.

Lemma 2.4 ([5, Lemma 2.8, Theorems 2.9 and 2.10]). The following are
equivalent:

(i) R has a complete set of left triangulating idempotents;

(ii) {bR | b ∈ S`(R)} is a finite set;

(iii) R has a complete set of right triangulating idempotents.

Furthermore; if {b1, b2, . . . , bn} and {c1, c2, . . . , ck} are complete sets of
left triangulating idempotents; then k = n. Also for b ∈ S`(R); bR =

∑
i∈Λ

biR

for a subset Λ ⊆ {1, 2, . . . , n}

Proposition 2.5. Let R be a generalized left p.q.-Baer ring with a com-
plete set of left triangulating idempotents. If P is a prime ideal, then O(P ) =
Re for a right semicentral idempotent e of R.

Proof. By Lemma 2.2 and Lemma 2.4, O(P ) = Re1 + Re2 + · · · + Rek,
where {e1, e2, . . . , ek} is a finite subset of Sr(R). Now, in this case, observe
that e1 + e2 − e1e2 ∈ Sr(R) and Re1 + Re2 = R(e1 + e2 − e1e2). By iterating
this procedure, there is a right semicentral idempotent e such that O(P ) =
Re1 + · · ·+Rek = Re. �

Corollary 2.6. If P is a prime ideal of a principally right primary ring
R, then O(P ) = 0.

Proof. The result follows, from [11, Proposition 3.6 (i)], and Proposition
2.5, since a ring R is (principally) right primary if and only if R is a semicentral
reduced generalized left (principally) quasi-Baer. �

By [22, Lemma 3.1], in a commutative ring, a minimal prime ideal has
been characterized as a prime ideal P such that O(P ) = P . Birkenmeier, Kim
and Park, in [4], derived various conditions which ensure that a prime ideal
P = O(P ). Observe that in [22, Lemma 3.1], Kist showed that O(P ) = P , for
every minimal prime ideal P of any commutative ring.

By [4] a ring R satisfies condition (CZ2) if, whenever (xy)n = 0, for some
positive integer n, then xmRym = 0, for some positive integer m.
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Theorem 2.7. Let R be a 2-primal principally right primary ring. If R
satisfies condition (CZ2), then the prime radical P(R) is the unique minimal
prime ideal of R.

Proof. Since R is 2 -primal and satisfies condition (CZ2), for every mini-
mal prime ideal P of R, we have O(P ) = P , by [4, Theorem 2.3 (ii)]. Hence
the definition of O(P ) and Corollary 2.6 imply that every minimal prime ideal
of R is nil. Since R is 2 -primal, the prime radical P (R) is the unique minimal
prime ideal of R. �

Let R be a ring and α denotes an endomorphism of R with α(1) = 1.
In [13] the authors defined a skew triangular n-by-n matrix ring as the set of all
triangular matrices over R with point-wise addition and a new multiplication
subject to the condition Eijr = αj−i(r)Eij . So (aij)(bij) = (cij), where cij =
aiibij + ai,i+1α(bi+1,j) + . . . + aijα

j−i(bjj), for each i ≤ j and denoted it by
Tn(R,α).

The subring of Tn(R,α) with constant main diagonal is denoted by
S(R,n, α) (see [32], for more details). Also, the subring of the skew trian-
gular matrices with constant diagonals is denoted by T (R,n, α) (see [13]). We
can denote A = (aij) ∈ T (R,n, α) by (a0, . . . , an−1). Then T (R,n, α) is a ring
with addition pointwise and multiplication given by:

(a0, . . . , an−1)(b0, . . . , bn−1) = (a0b0, a0∗b1+a1∗b0, . . . , a0∗bn−1+· · ·+an−1∗b0),

with ai ∗ bj = aiα
i(bj), for each i and j. On the other hand, there is a ring

isomorphism ϕ : R[x;α]/(xn)→ T (R,n, α), given by ϕ(
n−1∑
i=0

aix
i) = (a0, a1, . . . ,

an−1), with ai ∈ R, 0 ≤ i ≤ n− 1. So T (R,n, α) ∼= R[x;α]/(xn), where
R[x;α] is the skew polynomial ring with multiplication subject to the condition
xr = α(r)x for each r ∈ R, and (xn) is the ideal generated by xn.

According to Krempa [21], an endomorphism α of a ring R is said to be
rigid if aα(a) = 0 implies a = 0, for a ∈ R. A ring R is said to be α-rigid
if there exists a rigid endomorphism α of R. In [19], the authors introduced
α-compatible rings and studied their properties. A ring R is α-compatible if
for each a, b ∈ R, ab = 0 if and only if aα(b) = 0. Basic properties of rigid
and compatible endomorphisms are proved by Hashemi and the second author
in [19, Lemma 2.2 and 2.1].

According to [26], a ring R with an automorphism α is called α-weakly
rigid if for each a, b ∈ R, aRb = 0 if and only if aRα(b) = 0. Any compatible
(and hence rigid) automorphism is weakly rigid. For any positive integer n,
a ring R with an automorphism α is α-weakly rigid if and only if, the n-by-n
upper triangular matrix ring Tn(R) is α-weakly rigid if and only if, the matrix
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ringMn(R) is α-weakly rigid, where α((aij)) = (α(aij)) for each (aij) ∈Mn(R).
Also if R is a semiprime α-weakly rigid ring, then the ring of polynomials R[X],
for X a nonempty set of commuting indeterminates, is a semiprime α-weakly

rigid ring, where α(
n∑
i=0

rix
i) =

n∑
i=0

α(ri)x
i. For every prime ring R and any

automorphism α, the rings Mn(R), Tn(R), R[X] and the power series ring
R[[X]] are α-weakly rigid rings.

Lemma 2.8. Let R be an α-weakly rigid ring. Then

(i) Sr(R) = B(R) if and only if Sr(S(R,n, α)) = B(S(R,n, α));

(ii) Sr(R) = B(R) if and only if Sr(T (R,n, α)) = B(T (R,n, α)).

In particular, every central idempotent in S(R,n, α) (resp., T (R,n, α)) is
of the form eIn, where e2 = e ∈ B(R) and In is the identity matrix, for some
positive integer n ≥ 2.

Proof. We only prove (i), because the proof of the other case is similar.
First, assume that Sr(R) = B(R), we show that Sr(S(R,n, α)) = B(S(R,n, α)).
It is sufficient to show that Sr(S(R,n, α)) ⊆ B(S(R,n, α)). We proceed by in-

duction on n. Assume E =

(
e a
0 e

)
∈ Sr(S(R, 2, α)). Then ES(R, 2, α)(1−

E) = 0. Hence we obtain the following:

eR(1− e) = 0(2.1)

eRa = aα(R(1− e)).(2.2)

From Eq. (2.1), it implies that e ∈ Sr(R). Hence e is a central element. Also,
since R is an α-weakly rigid ring, from Eq. (2.1), we obtain

eα(R(1− e)) = 0.(2.3)

By multiplying Eq. (2.2) by e, from the left, we have eRa = eaα(R(1 − e)).
Now, from Eq. (2.3) and the fact that e is central, we obtain eRa = 0. Hence
aα(R(1− e)) = 0. Now the weakly rigidness of R and the fact that e is central
implies that a = 0. Therefore Sr(S(R, 2, α)) ⊆ B(S(R, 2, α)).

Now assume that E =


e a12 · · · a1n

0 e · · · a2n
...

...
. . .

...
0 0 · · · e

 ∈ Sr(S(R,n, α)) and that

I1 is a matrix obtained by deleting the nth row and the nth column of E and
I2 is a matrix obtained by deleting the first row and the first column of E in
the ring S(R,n − 1, α). Then I1, I2 ∈ Sr(S(R,n − 1, α)). So the aij ’s entries
are zero and e is central, by the induction hypothesis. Then we have

eRa1n = a1nα
n−1(R(1− e)).(2.4)
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Multiplying Eq.(2.4) by e from the left and using again the weakly rigidness
of R, we obtain eRa1n = 0. Now Eq.(2.4) implies that a1n = 0. Therefore,
Sr(S(R,n, α)) = B(S(R,n, α)). Conversely, let e ∈ Sr(R). Then eR(1−e) = 0.
So (eIn)S(R,n, α)((1− e)In) = 0. Thus eIn ∈ Sr(S(R,n, α)) = B(S(R,n, α)),
and hence e ∈ B(R), and the result follows. �

Corollary 2.9. Let R be an α-weakly rigid ring. Then R is semicen-
tral reduced if and only if the ring S(R,n, α) (resp., T (R,n, α)) is semicentral
reduced, for some positive integer n ≥ 2.

Theorem 2.10. Let R be an α-weakly rigid ring with Sr(R) = B(R).
Then R is generalized left (resp., principally) quasi-Baer if and only if the ring
S(R,n, α) (resp., T (R,n, α)) is generalized left (resp., principally) quasi-Baer,
for some positive integer n ≥ 2.

Proof. We proceed by induction on n. First, we claim that S(R, 2, α) is

generalized left p.q.-Baer. Assume A =

(
a b
0 a

)
is an element in S(R, 2, α).

Since R is generalized left p.q.-Baer, there is a positive integer m and a central
idempotent e in Sr(R) such that `R(Ra)m = Re. So, by [25, Lemma 2.6],
`R(Ra)m = `R(Ra)2m. We show that `S(R,2,α)(S(R, 2, α)A)2m = S(R, 2, α)eI2.
Let

B =

(
x x12

0 x

)
∈ `S(R,2,α)(S(R, 2, α)A)2m

and

assume that X =

(
r1a · · · r2ma z

0 r1a · · · r2ma

)
is an arbitrary element in

(S(R, 2, α)A)2m such that

(
ri zi
0 ri

)
∈ S(R, 2, α), and z has 2m terms, where

one of them is rib+ziα(a) and the others in the form αj(ria). We have BX = 0,
so

xr1ar2a · · · r2ma = 0(2.5)

and

xz + x12α(r1ar2a · · · r2ma) = 0.(2.6)

Thus x ∈ `R(Ra)2m = `R(Ra)m = Re. Hence x = xe. Now by replacing x
with xe in Eq. (2.6), and using the weakly rigidness of R and the fact that e
is central and that e(Ra)m = 0, we get

x12α(r1ar2a · · · r2ma) = 0.
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Thus we have x12α(Ra)2m = 0. Now using again the weakly rigidness of
R it implies that x12(Ra)2m = 0. So x, x12 ∈ `R(Ra)m = Re, and hence
x = xe and x12 = x12e. Then B = BeI2. Therefore `S(R,2,α)(S(R, 2, α)A)2m ⊆
S(R, 2, α)eI2. Since e is a central element and e ∈ `R(Ra)m, we deduce that
`S(R,2,α)(S(R, 2, α)A)2m = S(R, 2, α)eI2, and if B ∈ `S(R,2,α)(S(R, 2, α)A)2m,
then all entries of B are in `R(Ra)m.

Now suppose that A =


a a12 · · · a1n

0 a · · · a2n
...

...
. . .

...
0 0 · · · a

 ∈ S(R,n, α), and that I1

is a matrix obtained by deleting the nth row and the nth column of A and I2

is a matrix obtained by deleting the first row and the first column of A in the
ring S(R,n−1, α). Since R is also generalized left p.q.-Baer, there is a positive
integer m and e ∈ Sr(R) such that `R(Ra)m = Re. Thus, by [25, Lemma 2.6],
`R(Ra)m = `R(Ra)mn. Let

B =


x x12 · · · x1n

0 x · · · x2n
...

...
. . .

...
0 0 · · · x


be an element in `S(R,n,α)(S(R,n, α)A)mn, B1 is a matrix obtained by deleting
the nth row and the nth column of B, B2 is a matrix obtained by deleting the
first row and the first column of B, and

X =


r1a · · · rnma y12 · · · y1n

0 r1a · · · rnma · · · y2n
...

...
. . .

...
0 0 · · · r1a · · · rnma

 ∈ (S(R,n, α)A)mn.

Then by the induction hypothesis and Lemma 2.8, for i = 1, 2, there
exists e2

i = ei in S(R,n− 1, α) such that ei = fiIn−1, f2
i = fi ∈ R,

`S(R,n−1,α)(S(R,n− 1, α)Ii)
(n−1)m = eiS(R,n− 1, α)

and Bi ∈ `S(R,n−1,α)(S(R,n − 1, α)Ii)
(n−1)m, for each i. So by the hypot-

hesis, all the entries of Bi are in `R(Ra)m. Thus all xij ’s except x1n are in
`R(Ra)(n−1)m. Now we have:

xy1n + x12α(y2n) + · · ·+ x1nα
n−1(r1ar2a · · · rnma) = 0.(2.7)

Since xij ’s except x1n are in `R(Ra)m = Re, so x1i = x1ie for each 1 ≤ i ≤
n − 1. Now by replacing x1i with x1ie in Eq. (2.7), and using the fact that
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e is central and using weakly rigidness of R and that e(Ra)m = 0, we get
xy1n + x1nα

n−1(r1ar2a · · · rnma) = 0. But x ∈ `R(Ra)m, so xy1n = 0. Thus
using again weakly rigidness of R it implies that x1n ∈ `R(Ra)m = `R(Ra)mn.
Hence all the entries of B are in `R(Ra)m. So xij = xije, for each i, j. Then
B = BeIn. Therefore `S(R,n,α)(S(R,n, α)A)nm ⊆ S(R,n, α)eIn. Since e is a
central element and e ∈ `R(Ra)m, we conclude that `S(R,n,α)(S(R,n, α)A)nm =
S(R,n, α)eIn. Therefore S(R,n, α) is a generalized left p.q.-Baer ring.

Conversely, assume that S(R,n, α) is generalized left p.q.-Baer, we show
that R is also generalized left p.q.-Baer. Let a ∈ R and A = aIn. Since
S(R,n, α) is generalized left p.q.-Baer, `S(R,n,α)(S(R,n, α)A)k = S(R,n, α)E
for some positive integer k and E2 = E = eIn, where e2 = e ∈ R, by Lemma
2.8. Hence for any ri ∈ R, where 1 ≤ i ≤ k, we have e(r1a)(r2a) · · · (rka)In = 0,
since E(S(R,n, α)A)k = 0. It follows that Re ⊆ `R(Ra)k. Conversely if
b ∈ `R(Ra)k, then we have b(r1a)(r2a) · · · (rka) = 0, for any ri ∈ R. Thus
bIn ∈ `S(R,n,α)(S(R,n, α)A)k = S(R,n, α)E. It follows that b ∈ eR. The-

refore `R(Ra)k = Re, and R is generalized left p.q.-Baer, and the proof is
complete. �

Now we give results which enable us to generate examples of (principally)
right primary rings which are not (right p.q.-Baer) quasi-Baer.

Theorem 2.11. Let R be an α-weakly rigid ring. Then R is (resp., prin-
cipally) right primary if and only if S(R,n, α) is a ( resp., principally) right
primary if and only if R[x;α]/〈xn〉 is a (resp., principally) right primary, for
some positive integer n ≥ 2.

Proof. The result follows from Corollary 2.9 and Theorem 2.10. �

Corollary 2.12. A ring R is (resp., principally) right primary if and
only if S(R,n) is a (resp., principally) right primary if and only if R[x]/〈xn〉
is a (resp., principally) right primary, for some positive integer n ≥ 2.

The next example allows us to construct numerous examples of generali-
zed left p.q.-Baer rings which are not principally right primary.

Example 2.13. Let R be a nonprime left p.q.-Baer with Sr(R) = B(R)
(e.g., the ring in [8, Example 1.5 (i)]). For each n ≥ 2, the rings S(R,n) and
R[x]/〈xn〉 are generalized left p.q.-Baer, by Theorem 2.10, but they are not
principally right primary, since R is not semicentral reduced.

Using the above results we can give the following examples to illustrate
Theorem 2.7.

Example 2.14. Let D be a domain with an automorphism α. Then
the rings S(D,n, α) and D[x;α]/〈xn〉 are principally right primary, by The-
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orem 2.11. On the other hand, [4, Theorem 2.9] and [28, Theorem 2.12], yields
that S(D,n, α) and D[x;α]/〈xn〉 are 2-primal and it is straightforward to show
that S(D,n, α) and D[x;α]/〈xn〉 satisfy condition (CZ2). Hence by Theorem
2.7, the prime radical is the unique minimal prime ideal of S(D,n, α) and
D[x;α]/〈xn〉.

For a ring R and an (R,R)-bimodule M , let T (R,M) = {(a, x)|a ∈ R, x ∈
M} with the multiplication defined by (a1, x1)(a2, x2) = (a1a2, a1x2 + x1a2).
Then T (R,M) is a ring which is called the trivial extension (also called the split-
null extension) of R by M . Notice that T (R,M) is isomorphism to the ring of

matrices

(
a x
0 a

)
, where a ∈ R, x ∈ M and the usual matrix operations are

used.

Example 2.15. Let D be a commutative domain and M =
⊕
i∈I

Di for a

nonempty index set I, where Di = D for each i. It is easy to show that
R := T (D,M) is a principally primary ring which is not p.q.-Baer. Since
R is commutative, by Theorem 2.7, P(R) is the unique minimal prime ideal
of T (D,M). In particular, by [29, Theorem 2.2, Theorem 3.15 and Theorem
4.13(3)] the polynomial ring R[x], the power series ring R[[x]], the Laurent
polynomial ring R[x;x−1], the Laurent series ring R[[x;x−1]] and the monoid
ring R[S], for every commutative, torsion-free, and cancellative monoid S, are
commutative principally primary rings. Therefore, the prime radical for each
of these rings is the unique minimal ideal prime.

Example 2.16. Assume that R is a 2-primal principally right primary ring
such that it satisfies condition (CZ2). From [3, Proposition 2.2], subrings of 2-
primal rings are 2-primal. Since the condition (CZ2) is inherited by subrings,
we see that if e ∈ R is an idempotent, so the subring eRe of R is 2-primal and
satisfies condition (CZ2). On the other hand by [11, Proposition 3.4], the ring
eRe is principally right primary. Hence, by Theorem 2.7, P(eRe) is the unique
minimal prime ideal of eRe.

Proposition 2.17. Let R be a principally right primary ring. Let P be
a nonzero prime ideal.

(1) If X is a nonzero right ideal of R, then rR(X) ⊆ P .

(2) P is left essential in R.

(3) Let K be a nonzero left ideal of R such that `R(K) 6= 0. Then:

(i) K ⊆ P ;

(ii) if `R(`R(K)) 6= 0, then `R(K) ⊆ P and P is right essential in R;

(iii) if `R(`R(K)) = 0, then K[`R(K)] is a nonzero nilpotent ideal of R.
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(4) If P is a minimal prime ideal and Q is a prime ideal of R such that
Q 6= P , then lR(Q) = 0. Hence Q is right essential in R.

Proof. The result follows from Corollary 2.6 and [7, Lemma 3.3]. �

Proposition 2.18. Let R be a principally right primary ring and P be a
nonzero prime ideal. If K is a nonzero principal left ideal of R, then exactly
one of the following conditions is satisfied:

(1) `R(K) = 0; or

(2) K ⊆ P and K is a nilpotent ideal of R.

Proof. Assume that `R(K) 6= 0. By Proposition 2.17(3), we have K ⊆ P .
On the other hand, by [11, Proposition 3.6 (i)], R is a semicentral reduced
generalized left p.q.-Baer. Hence `R(Kn) = 0 or `R(Kn) = R, for some positive
integer n. Thus K is a nilpotent ideal of R, since `R(K) 6= 0. �

Remark 2.19. For any domain D, the rings T (D,n) and S(D,n) are not
quasi-Baer but they are 2-primal (see e.g., [27]) and principally right primary,
by Corollary 2.12.

By the following result, nonzero prime ideals of a principally right primary
ring R, are left essential in R.

Proposition 2.20. Let R be a principally right primary ring. Then:

(1) If P is a nonzero prime ideal of R, then P is left essential in R.

(2) If R is 2-primal and P is a minimal prime ideal of R, then the prime
radical P(R) is right essential in P .

Proof. (1) Since R is right primary, by Corollary 2.6, O(P ) = 0. Now,
assume that P is not left essential in R. Then there exists a nonzero left ideal
I such that P ∩ I = 0. Hence PI = 0. So P ⊆ O(P ), a contradiction.

(2) This is a consequence of Corollary 2.6 and [4, Proposition 3.1(ii)]. �

Proposition 2.21. Let R be a generalized left p.q.-Baer ring with a com-
plete set of triangulating idempotents and P be a prime ideal. Then R/O(P )
is a generalized left p.q.-Baer ring.

Proof. By Proposition 2.5, O(P ) = Re for some right semicentral idem-
potent e. Since eR(1 − e) = 0, R/O(P ) ' (1 − e)R(1 − e). Hence R/O(P ) is
generalized left p.q.-Baer by [25, Theorem 4.7]. �

Remark 2.22. For a prime ideal P of a ring R, let

SP = {e ∈ R | e is a left semicentral idempotent such that e 6∈ P}.

By [7, Proposition 2.4], SP is a right denominator set. By [37, Proposition 1.4],
R[S−1

P ] is a right ring of fractions of R. In [25, Theorem 5.6], the authors proved
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that, when R is a generalized right quasi-Baer ring, O(P ) 6= 0 for every minimal
prime ideal P . Then R has a nontrivial representation as a subdirect product
of the right ring of fractions R[S−1

P ], where P ranges through all minimal prime
ideals.

3. PRIME IDEALS CONTAINING A UNIQUE MINIMAL PRIME IDEAL

In [9], Birkenmeier, Kim and Park showed that if O(P ) = P for every
minimal prime ideal P of a right p.q.-Baer ring R, then every prime ideal
of R contains a unique minimal prime ideal. In this section, we investigate
the condition, every prime ideal contains a unique minimal prime ideal, in a
generalized left p.q.-Baer ring. We derive some conditions which ensure that
a prime ideal P = O(P ) in the class of generalized left p.q.-Baer rings. There
exists a large class of generalized left p.q.-Baer rings which are neither p.q.-Baer
nor PP, but for every minimal prime ideal P of these rings, O(P ) = P .

Lemma 3.1. Let P and Q be prime ideals of a generalized left p.q.-Baer
ring R, such that Q ⊆ P . Then O(P ) = O(Q).

Proof. By definition it is clear that O(P ) ⊆ O(Q) and by Lemma 2.2,
O(Q) ⊆ O(P ). �

By an adaptation of [9, Theorem 1.4], in the following Theorem 3.2,
part (2) generalizes a result of Kist [22] for commutative PP rings and avoids
the topological argument of his proof. Observe that in [22] Kist showed that
O(P ) = P for each minimal prime ideal P in the case of commutative rings.

Theorem 3.2. Let R be a generalized left p.q.-Baer ring such that O(P ) =
P for every minimal prime ideal P of R. Then:

(1) R is 2-primal.

(2) Every prime ideal of R contains a unique minimal prime ideal.

(3) For every prime ideal P of R, the ring R/O(P ) is 2-primal and P(R/O(P ))
is a completely prime ideal.

(4) For a prime ideal P of R, every prime ideal of R/O(P ) which properly
contains P(R/O(P )) is right essential in R/O(P ).

Proof. (1) It follows by [4, Lemma 2.1(i), (ii)].
(2) Let Q be a prime ideal of R which contains minimal prime ideals P1

and P2. By Lemma 3.1, O(P1) = O(Q) and O(P2) = O(Q). So O(P1) = O(P2).
By the assumption P1 = O(P1) = O(P2) = P2.

(3) The proof is similar to that of [9, Theorem 1.4(iii)] with use of Lemma
2.2 and Lemma 3.1.

(4) This part follows from [4, Lemma 3.4]. �
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The following result gives an explicit description of the unique minimal
prime ideal of generalized left p.q.-Baer rings.

Corollary 3.3. Let R be a 2-primal generalized left p.q.-Baer ring which
satisfies in condition (CZ2) and P is a prime ideal of R. Then O(P ) is the
unique minimal prime ideal of R such that O(P ) ⊆ P and O(P ) is completely
prime.

Proof. Since R is 2-primal and satisfies (CZ2) condition, by [4, Theo-
rem 2.3 (ii)] for every minimal prime ideal P in R, O(P ) = P . Therefore by
Theorem 3.2, for every prime ideal P of R there exists a unique minimal prime
ideal Q ⊆ P . So by Lemma 3.1, O(P ) = O(Q) and hence O(P ) = O(Q). Thus
O(Q) = Q implies that O(P ) = Q. Therefore O(P ) is the unique minimal
prime ideal of R such that O(P ) ⊆ P . Moreover, since O(P ) = O(Q) = Q is
an ideal of R, by [4, Proposition 1.1 (iii)] O(P ) is completely prime and the
proof is complete. �

Recall from [1] that a ring R satisfies the IFP (insertion of factors pro-
perty) if and only if rR(x) is an ideal of R for all x ∈ R. Note that by [8, Pro-
position 1.14], every right p.q.-Baer ring R with IFP is reduced p.q.-Baer, and
hence it is 2-primal and satisfies condition (CZ2). Furthermore for every prime
ideal P of a reduced ring R, we have O(P ) = O(P ). So we have the following.

Corollary 3.4. [9, Corollary 1.7] Let R be a right p.q.-Baer ring with
IFP and P a prime ideal of R. Then O(P ) is the unique minimal prime ideal
of R contained in P and O(P ) is a completely prime ideal.

If MR is an indecomposable R-module of finite length, then End(MR)
is a local ring, and its unique maximal ideal is nilpotent. Local rings with
nilpotent maximal ideal are often called completely primary rings [23]. For
instance, group algebras of finite p-groups over fields of characteristic p are
another class of such completely primary rings.

Corollary 3.5. Let R be a completely primary ring. If P is a prime
ideal of R, then O(P ) is the unique minimal prime ideal of R contained in P
and O(P ) is a completely prime ideal.

Proof. We first show that R is generalized left p.q.-Baer. For every a ∈ R,
if Ra 6= R then (Ra)n = 0 for some n ∈ N. So `R(Ra)n = R and if Ra = R then
`R(Ra) = 0. So R is generalized left p.q.-Baer. Now it follows immediately
from [4, Corollary 2.7(i)] and Corollary 3.3. �

The following example shows that there exists a large class of generalized
p.q.-Baer rings which are neither p.q.-Baer nor PP, but O(P ) = P for every
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minimal prime ideal P of R. Hence by Corollary 3.3, every prime ideal of R
contains a unique minimal prime ideal.

Recall that in [22, Lemma 3.1], Kist showed that O(P ) = P , for every
minimal prime ideal P of any commutative ring.

Example 3.6. (i) Every commutative generalized p.q.-Baer ring is 2-primal
and satisfies condition (CZ2). So by Corollary 3.3, for every minimal prime
ideal P of R, O(P ) = P . In particular, let n be an integer positive such that
p2|n for some prime number p. Then, the ring of integers modulo n, Zn and
the polynomial ring, Zn[x], are commutative generalized p.q.-Baer rings which
are neither PP nor p.q.-Baer.

(ii) Let R be a reduced p.q.-Baer ring and A be one of the rings R[x]/〈xn〉
or S(R,n). Then, the ring A is a 2-primal generalized p.q.-Baer ring which sa-
tisfies the (CZ2) condition. Hence by Corollary 3.3, O(P ) is a unique minimal
prime ideal of A contained in P and O(P ) is completely prime for every prime
ideal P of A.

(iii) Let T be a commutative generalized p.q.-Baer ring with zero cha-

racteristic which is not p.q.-Baer. Let S =
∞∏
i=1

Ti where for each i, Ti = T . Let

R be the subring of S generated by
∞⊕
i=1

Ti and 1 ∈ S. Then, by [25, Lemma

4.9], R is a generalized p.q.-Baer ring which is 2-primal and satisfies the (CZ2)
condition, but it is neither generalized quasi-Baer, p.q.-Baer nor PP.

(iv) Assume that R is a 2-primal generalized left p.q.-Baer ring which
satisfies condition the (CZ2). By [25, Theorem 4.7 ], the ring eRe is a genera-
lized left p.q.-Baer ring, for every idempotent e ∈ R. Hence by Corollary 3.3,
O(P ) is a unique minimal prime ideal of eRe such that O(P ) ⊆ P and O(P )
is completely prime for every prime ideal P of eRe.

4. DECOMPOSITIONS OF GENERALIZED P.Q.-BAER RINGS

In this section, various decompositions of generalized p.q.-Baer rings are
determined. We consider the essentiality and splitting-off of O(P ) or P where
P is a prime ideal of R.

Recall from [10] that a ring R is called principally right FI-extending if
every principal right ideal is essential as a right R-module in a right ideal of
R generated by an idempotent. Observe from [8, Corollary 1.11] that if R
is semiprime, then R is right p.q.-Baer if and only if R is principally right
FI-extending.

Proposition 4.1. Let R be a generalized right (principally) quasi-Baer
ring with S`(R) = B(R). Then for every (principal) ideal I of R, there exists
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a positive integer n such that the ideal In is left essential in an ideal of R
generated by a central idempotent.

Proof. There exists a central idempotent c ∈ S`(R) and a positive integer
n such that rR(In) = cR. Put e = 1−c, then e ∈ Sr(R) and rR(In) = (1−e)R,
In ⊆ Re, as In ⊆ `R(rR(In)) = `R(cR) = R(1−c). Also assume that J is a left
ideal in Re such that In ∩ J = 0. Then InJ = 0. So J ⊆ rR(In) = (1 − e)R.
Consequently, J ⊆ (1 − e)R ∩ eR = 0. Therefore J = 0 and thus In is left
essential in eR. �

Theorem 4.2. Let R be a generalized right quasi-Baer ring with S`(R) =
B(R). Then there exists a positive integer n such that R = A⊕B (ring direct
sum), where Soc(A) is left essential in A and

Soc(R) = (Soc(R))n ⊕ Soc(B).

Proof. By Proposition 4.1, there exists a central idempotent e ∈ R and a
positive integer n such that (Soc(R))n is left essential in eR. Now assume that
A = eR and B = (1 − e)R. Then we have R = A ⊕ B, (Soc(R))n = Soc(A)
and Soc(R) = (Soc(R))n ⊕ Soc(B), and the proof is complete. �

Corollary 4.3. [6, Proposition 2.3] Let R be a semiprime quasi-Baer
ring. Then R = A ⊕ B (ring direct sum), where Soc(A) is right and left
essential in A and Soc(B) = 0.

Proof. This result is a consequence of [8, Proposition 1.17] and Theo-
rem 4.2. �

Lemma 4.4. Let R be a generalized right p.q.-Baer ring. If P is a prime
ideal of R, then:

O(P ) = {a ∈ R | akRe = 0 for some e ∈ S`(R) \ P, positive integer k}.

Proof. Let a ∈ O(P ). Then there exists a positive integer k such that
ak ∈ O(P ). So there exists b ∈ R\P such that akRb = 0. Since R is generalized
right p.q.-Baer, there exists e ∈ S`(R) and a positive integer n, such that
rR(akR)n = eR. Since b = eb, e ∈ R \ P , as b ∈ R \ P . Hence ankRe = 0.
Thus O(P ) ⊆ {a ∈ R | akRe = 0 for some e ∈ S`(R) \ P, positive integer k}.
The reverse containment is obvious. �

Now we derive a condition which ensures that for a prime ideal P , O(P )
is an ideal of R. Observe that for every prime ideal P of R, nil(R/O(P )) =
O(P )/P . Therefore if O(P ) is an ideal of R, then nil(R/O(P )) is an ideal of
the ring R/O(P ).
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Proposition 4.5. Let R be a generalized right p.q.-Baer ring. If nil(R)
is an ideal, then for every prime ideal P of R, O(P ) is an ideal of R and so
nil(R/O(P )) is an ideal of R/O(P ).

Proof. The proof is similar to that of [9, Proposition 2.1] with the use of
Lemma 4.4. �

Proposition 4.6. Let P be a prime ideal of a generalized left p.q.-Baer
ring R. Then P is left essential in R or P = Re for some idempotent e ∈ R.

Proof. Let P be a prime ideal of R that is not left essential. Then there
exists a nonzero element a ∈ R such that P ∩ Ra = 0. Since R is generalized
left p.q.-Baer, there exists a positive integer n such that `R(Ra)n =Re for
some idempotent e ∈ R. It is clear that P ⊆ `R(Ra)n. Let x ∈ `R(Ra)n. So
x(Ra)n = 0, and since a /∈ P , we have x ∈ P . Hence P = `R(Ra)n=Re. �

Proposition 4.7. Let P be a prime ideal of a generalized left p.q.-Baer
ring R. Then N(P ) is left essential in P or O(P ) = Re for some idempotent
e ∈ R.

Proof. Assume N(P ) is not left essential in P . Then there exists a nonzero
principal left ideal Ra of R such that Ra ⊆ P and N(P ) ∩Ra = 0. Since R is
generalized left p.q.-Baer, there exists a positive integer n such that `R(Ra)n =
Re for some idempotent e ∈ Sr(R). Thus O(P ) ⊆ N(P ) ⊆ `R(Ra)n = Re.
If e 6∈ P , then aRe ⊆ P (R). Thus a ∈ N(P ), a contradiction. Hence e ∈ P .
Since eR(1− e) = 0, it follows that e ∈ O(P ). Therefore O(P ) = Re. �

Lemma 4.8. Let P be a prime ideal in a generalized right p.q.-Baer ring
R. If nil(R) is an ideal, then either:

(i) O(P ) is right essential in P ; or

(ii) O(P ) ⊆ eR ⊆ P for some left semicentral e ∈ R. If e is central, then
O(P ) = eR.

Proof. Assume O(P ) is not right essential in P . Then there exists a
nonzero principal right ideal X = aR of R such that X ⊆ P and O(P )∩X = 0.
There exists an idempotent e ∈ R such that rR(Xn) = eR for some positive
integer n. Since O(P ) ∩ Xn = 0 so XnO(P ) = 0, it follows that O(P ) ⊆
rR(Xn) = eR. We have anRe = 0, since Xne = 0. So, if e ∈ R \ P , then
an ∈ O(P ). Hence a ∈ O(P ). Then a ∈ O(P ) ∩ X = 0, a contradiction.
So e ∈ P . Then eR ⊆ P . Therefore O(P ) ⊆ eR ⊆ P . Since e ∈ S`(R),
(1 − e)Re = 0. If e is central, then e ∈ O(P ), since 1 − e ∈ R \ P . Hence
eR ⊆ O(P ). It follows that O(P ) = eR, and the result follows. �

Let I be an ideal of a ring R and P a prime ideal of R. Observe that
I ∩ P is a prime ideal of I. Define

OI(P ) = {x ∈ I | xIs = 0 for some s ∈ I \ P}.
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Theorem 4.9. Let R be an abelian generalized right p.q.-Baer ring. If
nil(R) is an ideal and P is a prime ideal of R, then either:

(i) O(P ) is right essential in R; or

(ii) R = T ⊕ P (ring direct sum) for some ideal T of R, and O(P ) = P .

Proof. We use the method in the proof of [9, Theorem 2.4]. Assume P is
not right essential in R. Then there exists a principal right ideal X 6= 0 such
that P ∩X = 0. There exists an idempotent e ∈ R such that rR(Xn) = eR for
some positive integer n. Since XnP = 0, P ⊆ eR. Observe (1− e)Re = 0 ⊆ P .
If 1 − e ∈ P then 1 − e ∈ eR, therefore e = 1. Since Xne = 0, Xn = 0 ⊆ P .
Thus X ⊆ P , it follows that X ∩ P = X = 0, a contradiction. Thus e ∈ P
yields P = eR. Since PR(1 − e) = 0, it follows that O(P ) = P = eR. Now,
put T = (1− e)R. Then, we have R = T ⊕ P .

Now assume P is right essential in R. If O(P ) is not right essential in P ,
Lemma 4.8 yields O(P ) = eR and O(P ) ⊆ P , where e is a central idempotent.
Let S = (1 − e)R. Since e is a central idempotent, by [25, Theorem 4.7] the
ring S is also a generalized right p.q.-Baer ring. Since R = eR ⊕ S, it follows
that P = O(P )⊕ (S ∩ P ) = O(P )⊕ P1, where P1 = S ∩ P is a prime ideal of
S. Since OS(P1) ⊆ O(P ) = eR, OS(P1) = 0. We claim that the ring S is a
prime ring. Let X,Y be principal right ideals of S such that XY = 0. Since S
is generalized right p.q.-Baer ring, rS(Xn) = fS for some central idempotent
f ∈ S and positive integer n, so Y ⊆ rS(Xn) = fS. If f ∈ S \ P1, since
XnSf = 0 then X ⊆ OS(P1) = 0. Hence X = 0. If f ∈ P1 so 1− f ∈ S \ P1.
Since fS(1 − f) = 0 it follows that f ∈ OS(P1) = 0. So f = 0 and hence
Y = 0. Thus the ring S is a prime ring so P1 = S ∩ P = 0. It follows that
O(P ) = P , a contradiction. Therefore O(P ) is right essential in P and hence
O(P ) is right essential in R, and the proof is complete. �

Proposition 4.10. Let R be a generalized left p.q.-Baer ring. If every
essential left ideal of R is an essential extension of an ideal of R (e.g., if R
has essential left socle), then the left singular ideal Z`(R) is nil.

Proof. Let x ∈ Z`(R), then `R(x) is left essential in R. So there exists
an ideal I of R such that I ⊆ `R(x) and I is a left essential in R. Since
R is generalized left p.q.-Baer, there exists an idempotent e ∈ R such that
`R(Rx)n = Re for some positive integer n. Since 0 = Ix = IRx, we have
I(Rx)n = 0 and that I ⊆ `R(Rx)n = Re. We show that xn = 0. Assume to
the contrary that xn 6= 0. So e 6= 1 and I ∩R(1− e) ⊆ Re ∩R(1− e) = 0. So
I ∩ R(1 − e) = 0 and R(1 − e) 6= 0, a contradiction, since I is left essential.
Therefore xn = 0, and the result follows. �

A ring R is called orthogonally finite if there are no infinite sets of ortho-
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gonal idempotents in R. By [24, Proposition 6.59] for any ring R, the following
are equivalent:

(1) R satisfies ACC on right direct summands;

(2) R satisfies DCC on left direct summands;

(3) R has no infinite set of nonzero orthogonal idempotents.

Proposition 4.11. Let R be a generalized left p.q.-Baer ring with IFP .
If R is orthogonally finite, then for every right annihilator L there exists an
idempotent e ∈ R such that L = eR⊕ (L ∩ (1− e)R) and L ∩ (1− e)R is nil.

Proof. If L is nil then there is nothing to prove. Assume to the con-
trary that L is not nil. So there exists some x ∈ L which is not nilpo-
tent. Since R is generalized left p.q.-Baer, `R(Rx)n = Rf for some posi-
tive integer n and some idempotent f 6= 1. Since R satisfy IFP, it is easy
to show that `R(Rx)n = `R(xn). Thus `R(L) ⊆ `R(xn) = Rf and hence
(1 − f)R = rR(Rf) ⊆ rR(`R(L)) = L. So L has a nonzero idempotent ele-
ment. Now let e be a nonzero idempotent in L such that rR(e) is minimal
among all right annihilators of idempotent elements of L. Then, by a simi-
lar argument as that in [24, Theorem 7.55], one can show that L ∩ (1 − e)R
is nil. Since R = eR ⊕ (1 − e)R and eR ⊆ L, it is easy to show that
L = eR⊕ (L ∩ (1− e)R). �

Proposition 4.12. Let R be a commutative generalized p.q.-Baer ring.
Then R/nil(R) is a commutative p.q.-Baer ring.

Proof. Let R = R/nil(R) and 0 6= x ∈ R. Since R/nil(R) is a re-
duced ring, `R(x) = `R(xk) for every positive integer k. Since R is gene-
ralized p.q.-Baer, there exists a positive integer n such that `R(xn) = Re
for some idempotent e ∈ R. We show that `R(x) = Re. Let r ∈ `R(x),
then rx ∈ nil(R). So there is a positive integer m such that (rx)m = 0. So
rm ∈ `R(xmn) = `R(xn) by [25, Lemma 2.6]. Since `R(xn) = Re, rme = rm,
which implies that rm(1−e) = 0. So (r(1−e))m = 0 and that r(1−e) ∈ nil(R).
Thus (r − re) ∈ nil(R). Therefore r e = r, it follows that `R(x) ⊆ Re. Also
since exn = 0, it implies that (ex)n = 0. So ex ∈ nil(R) and this means
e ∈ `R(x), so Re ⊆ `R(x), and the proof is complete. �

The final result of this paper provides a lattice connection between the
generalized right p.q.-Baer and generalized right quasi-Baer conditions.

Theorem 4.13. Let R be a generalized right p.q.-Baer ring. If R satisfies
any of the following conditions, then R is generalized right quasi-Baer.

(i) For any nonzero right ideal I of R, I∩C(R) is a nonzero finitely generated
right ideal of C(R) such that for every positive integer n, In ∩ C(R) ⊆
(I ∩ C(R))n.
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(ii) R is right Noetherian with S`(R) = B(R).

Proof. Let I be a nonzero right ideal of R. If rR(In) = 0, for some positive
integer n, then we are done. So we assume that rR(In) 6= 0 for every positive
integer n.

(i) By the hypothesis, I ∩ C(R) is a nonzero finitely generated right
ideal of C(R). Since by [25, Proposition 2.2(iii)] C(R) is generalized p.q.-
Baer, by [25, Proposition 2.8], rC(R)(I ∩C(R))n = eC(R) for some idempotent
e ∈ C(R) and positive integer n. Now we prove rR(In) = eR. If Ine 6= 0 then
Ine is a nonzero right ideal of R so by hypothesis 0 6= Ine∩C(R) ⊆ (I∩C(R))n.
Let 0 6= x ∈ Ine∩C(R). Then x = ye for some y ∈ In. Since x ∈ (I ∩C(R))n,
xe = 0. Hence x = 0, which is a contradiction. It follows that eR ⊆ rR(In), and
then rR(In) = R∩rR(In) = (eR⊕(1−e)R)∩rR(In) = eR⊕((1−e)R)∩rR(In)).
Now assume (1− e)R ∩ rR(In) 6= 0. Then (1− e)R ∩ rR(In) is a nonzero right
ideal of R. Thus, by hypothesis, 0 6= (1 − e)R ∩ rR(In) ∩ C(R) = (1 − e)R ∩
rC(R)(I

n) ⊆ (1 − e)R ∩ rC(R)(I ∩ C(R))n = (1 − e)R ∩ eR = 0; which is also
a contradiction. Hence(1 − e)R ∩ rR(In) = 0, it follows that rR(In) = eR.
Therefore R is a generalized right quasi-Baer ring.

(ii) Assume that I is a nonzero right ideal of R, since R is a right Noether-
ian so by [25, Proposition 2.8] rR(Ik) = eR, for some idempotent e ∈ R and
positive integer k. Thus R is generalized right quasi-Baer. �
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