PRIME IDEALS OF GENERALIZED PRINCIPALLY QUASI-BAER RINGS

KAMAL PAYKAN and AHMAD MOUSSAVI

Communicated by Constantin Năstăsescu

In this paper, we continue to study generalized p.q.-Baer rings. We show that the prime radical is the unique minimal prime ideal of a class of principally right primary rings. Some results are provided which enable us to generate examples of (principally) right primary rings which are not quasi-Baer. We also extend a theorem of Kist for commutative PP-rings to generalized principally quasi-Baer (e.g., completely primary) rings for which every prime ideal contains a unique minimal prime ideal without using topological arguments. Furthermore, various decompositions of generalized right p.q.-Baer rings are determined. Connections to related classes of rings are investigated.

AMS 2010 Subject Classification: Primary 16D70, 16N40; Secondary 16N60, 16P70.

Key words: generalized p.q.-Baer ring, primary ring, PP ring, annihilator, skew triangular matrix ring, minimal prime ideal, semicentral idempotent, nilpotent element.

1. INTRODUCTION

Throughout this paper all rings are associative with identity and all modules are unital. Recall from [20] that R is a *Baer* ring if the right annihilator of every nonempty subset of R is generated by an idempotent. In [20] Kaplansky introduced Baer rings to abstract various properties of AW^* -algebras and von Neumann algebras. The class of Baer rings includes the von Neumann algebras. In [14] Clark defines a ring to be *quasi-Baer* if the left annihilator of every ideal is generated, as a left ideal, by an idempotent. He then uses the quasi-Baer concept to characterize when a finite-dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. Some results on *quasi-Baer* rings can be found in *e.g.* [6–8, 30, 31, 33, 34].

A ring R is called *right (left)* PP if every principal right (left) ideal is projective (equivalently, if the right (left) annihilator of any element of R is generated as a right (left) ideal by an idempotent of R). R is called a PP ring (also called a Rickart ring [2, p. 18]), if it is both right and left PP. The concept of PP ring is not left-right symmetric by Chase [12]. A right PP ring R is Baer (so PP) when R is orthogonally finite by Small [36], and a right PP ring R is PP when R is *abelian* (idempotents are central) by Endo [16].

Birkenmeier, Kim and Park in [8] initiated the concept of principally quasi-Baer rings. A ring R is called *right principally quasi-Baer* (or simply *right p.q.-Baer*) if the right annihilator of a principal right ideal is generated by an idempotent. Equivalently, R is right p.q.-Baer if R modulo the right annihilator of any principal right ideal is projective. If R is a semiprime ring, then R is right p.q.-Baer if and only if R is left p.q.-Baer. The class of right p.q.-Baer rings includes properly the class of quasi-Baer rings. Some examples were given in [8] to show that the classes of right p.q.-Baer rings and right PP-rings are distinct.

From [25], a ring R is called generalized right (principally)quasi-Baer if for any (principal) right ideal I of R, the right annihilator of I^n is generated by an idempotent for some positive integer n, depending on I. By [25, Proposition 2.2(i)], for a semiprime ring the definition of generalized right p.q.-Baer coincides with that of right p.q.-Baer; and for a ring R with IFP (i.e., ab = 0implies arb = 0, for each $a, b, r \in R$) the definition of generalized left p.q.-Baer coincides with that of generalized left PP (i.e., rings for any $x \in R$ the left annihilator of x^n is generated by an idempotent for some positive integer n, depending on x). In [25], the authors characterize the generalized right (principally) quasi-Baer property of triangular matrix rings, 2-by-2 generalized triangular matrix rings and full matrix rings. They also prove that, for abelian rings, unlike the Baer or generalized PP condition, the generalized right (principally) quasi-Baer condition is a Morita invariant property.

Recall from [15,17] and [18], that a ring R is (principally) right primary if whenever A and B are (principal) ideals of R with AB = 0, then A =0 or $B^n = 0$ for some positive integer n. From [11], every prime ring is a right and left primary ring. Moreover (a direct sum of nilpotent rings) a nilpotent ring is (principally) left primary and (principally) right primary. By [11, Proposition 3.6 (i)], a ring R is (principally) left primary if and only if R is semicentral reduced generalized right (principally) quasi-Baer. Since principally right primary rings are indecomposable as rings (in fact, semicentral reduced), we can consider them for components in a decomposition theory for rings. For a prime ideal P of a ring R, the following definition from [4] plays a key role in the sequel:

(i)
$$O(P) = \{a \in R \mid aRs = 0 \text{ for some } s \in R \setminus P\};$$

(ii) $\overline{O}(P) = \{x \in R \mid x^n \in O(P) \text{ for some } n \in \mathbb{N}\}.$

Several authors, including [7] and [25] have obtained sheaf representations of rings whose stalks are of the form R/O(P). In this paper, we explore these connections via the sets O(P) and $\overline{O}(P)$. We generalize a result of Kist [22] for commutative PP-rings to generalized principally quasi-Baer rings without using topological arguments, by determining criteria for which every prime ideal contains a unique minimal prime (equivalently, the prime radical of R/O(P)is a prime ideal) in a generalized principally quasi-Baer ring. We deduce that in a local ring with nilpotent Jacobson radical, every prime ideal contains a unique minimal prime. Local rings with nilpotent maximal ideal are often called *completely primary* rings [23]. Moreover, for a generalized principally quasi-Baer ring, we develop conditions for which the various ideals O(P) or Pare either essential in R or split-off as direct summands.

Various decompositions of generalized p.q.-Baer rings are determined. In particular, we show that a generalized right quasi-Baer ring R with $S_{\ell}(R) = \mathbf{B}(R)$ has a ring decomposition, $R = A \oplus B$, where Soc(A) is left essential in A and $Soc(R) = (Soc(R))^n \oplus Soc(B)$ for some positive integer n.

Furthermore, we show that the prime radical is the unique minimal prime ideal of a class of principally right primary rings, and to illustrate our results, various examples of (principally) right (or left) primary rings which are not quasi-Baer are provided.

2. MINIMAL PRIME IDEALS IN GENERALIZED P.Q.-BAER RINGS

Recall from [5] that an idempotent $e \in R$ is called *left (resp. right)* semicentral if xe = exe (resp. ex = exe), for all $x \in R$. The set of left (resp. right) semicentral idempotents of R is denoted by $S_{\ell}(R)$ (resp. $S_r(R)$). A ring R with unity is said to be semicentral reduced if $S_{\ell}(R) = \{0, 1\}$. Since eis left semicentral if and only if 1 - e is right semicentral, being semicentral reduced is left-right symmetric. Thus R is semicentral reduced if and only if $S_r(R) = \{0, 1\}$. Observe $S_{\ell}(R) \cap S_r(R) = \mathbf{B}(R)$, the set of central idempotents of R, and if R is semiprime or abelian (idempotents are central), then $S_{\ell}(R) =$ $S_r(R) = \mathbf{B}(R)$.

In this section, we show that the prime radical is the unique minimal prime ideal of a class of principally right primary rings. We also give results which enable us to generate examples of (principally) right primary rings which are not (right p.q.-Baer) quasi-Baer.

For notation, let $\mathbf{P}(R)$ and nil(R) denote the prime radical and the set of nilpotent elements of R, respectively. A ring is called 2-*primal* if $\mathbf{P}(R) = nil(R)$. For more details on 2-primal rings see [4] and [3]. Given a ring R, for a nonempty subset X of R, $r_R(X)$ and $\ell_R(X)$ denote the right and left annihilators of X in R, respectively. Also $Z_{\ell}(R)$ and $Z_r(R)$ denote the left and right singular ideals of R, respectively. The left socle of R will be symbolized by Soc(R). Observe that if R is semiprime, then Soc(R) coincides with the right socle of R. Also C(R) denotes the center of R.

The notions O(P), $\overline{O}(P)$ and N(P) from [4] and [9] are fundamental to the remainder of our discussion.

Definition 2.1. For a prime ideal P of a ring R, denote:

$$N(P) = \{ y \in R \mid yRs \subseteq \mathbf{P}(R) \text{ for some } s \in R \setminus P \}.$$

Observe that $O(P) = \bigcup_{s \in R \setminus P} \ell_R(Rs) = \{a \in R \mid r_R(aR) \nsubseteq P\} \subseteq N(P) \subseteq$

P. Since $nil(R/O(P)) = \overline{O}(P)/O(P)$ is the set of all nilpotent elements in the ring R/O(P), the condition that $\overline{O}(P) = P$ gives us important information about the ring R/O(P).

LEMMA 2.2. Let R be a generalized left p.q.-Baer ring and P a prime ideal of R. Then we have:

$$O(P) = \sum_{e \in P \cap \mathcal{S}_r(R)} Re.$$

Proof. The proof is similar to that of [25, Proposition 5.3 (i)]. \Box

Definition 2.3 ([5]). A ring R is said to have a set of left (resp. right) triangulating idempotents if there exists an ordered set $\{b_1, b_2, \ldots, b_n\}$ of nonzero distinct idempotents such that:

(i)
$$1 = b_1 + b_2 + \dots + b_n;$$

- (*ii*) $b_1 \in \mathcal{S}_{\ell}(R)$ (resp. $b_1 \in \mathcal{S}_r(R)$);
- (*iii*) $b_{k+1} \in S_{\ell}(c_k R c_k)$ (resp. $b_{k+1} \in S_r(c_k R c_k)$) where $c_k = 1 (b_1 + b_2 + \dots + b_k)$ for $1 \le k \le n 1$.

A set of right triangulating idempotents of R is defined similarly, using (i), $b_1 \in S_r(R)$, and $b_{k+1} \in S_r(c_k R c_k)$. From part (iii) of the above definition, a set of left (right) triangulating idempotents is a set of pairwise orthogonal idempotents. A set $\{b_1, b_2, \ldots, b_n\}$ of left (right) triangulating idempotents is said to be complete if each $b_i R b_i$ is semicentral reduced. From [5, Proposition 1.3], R is isomorphic to a generalized upper triangular matrix ring with semicentral reduced rings on the main diagonal if and only if R has a *complete* set of left triangulating idempotents.

Observe from [5, Corollary 1.7 and Theorem 2.10] that the number of elements in a complete set of left triangulating idempotents is unique for a given ring R (which has such a set) and this is also the number of elements in

any complete set of right triangulating idempotents of R. This motivates the following definition: R has triangulating dimension n, written Tdim(R) = n, if R has a complete set of left triangulating idempotents with exactly n elements.

Note that R is semicentral reduced if and only if Tdim(R) = 1. If R has no complete set of left triangulating idempotents, then we say R has infinite *triangulating dimension*, denoted $Tdim(R) = \infty$. From [5, Proposition 2.14], if R has ACC on ideals, then $Tdim(R) < \infty$.

LEMMA 2.4 ([5, Lemma 2.8, Theorems 2.9 and 2.10]). The following are equivalent:

- (i) R has a complete set of left triangulating idempotents;
- (ii) $\{bR \mid b \in S_{\ell}(R)\}$ is a finite set;
- (iii) R has a complete set of right triangulating idempotents.

Furthermore; if $\{b_1, b_2, \ldots, b_n\}$ and $\{c_1, c_2, \ldots, c_k\}$ are complete sets of left triangulating idempotents; then k = n. Also for $b \in S_{\ell}(R)$; $bR = \sum_{i \in \Lambda} b_i R$ for a subset $\Lambda \subseteq \{1, 2, \ldots, n\}$

PROPOSITION 2.5. Let R be a generalized left p.q.-Baer ring with a complete set of left triangulating idempotents. If P is a prime ideal, then O(P) =Re for a right semicentral idempotent e of R.

Proof. By Lemma 2.2 and Lemma 2.4, $O(P) = Re_1 + Re_2 + \cdots + Re_k$, where $\{e_1, e_2, \ldots, e_k\}$ is a finite subset of $\mathcal{S}_r(R)$. Now, in this case, observe that $e_1 + e_2 - e_1e_2 \in \mathcal{S}_r(R)$ and $Re_1 + Re_2 = R(e_1 + e_2 - e_1e_2)$. By iterating this procedure, there is a right semicentral idempotent e such that O(P) = $Re_1 + \cdots + Re_k = Re$. \Box

COROLLARY 2.6. If P is a prime ideal of a principally right primary ring R, then O(P) = 0.

Proof. The result follows, from [11, Proposition 3.6 (i)], and Proposition 2.5, since a ring R is (principally) right primary if and only if R is a semicentral reduced generalized left (principally) quasi-Baer. \Box

By [22, Lemma 3.1], in a commutative ring, a minimal prime ideal has been characterized as a prime ideal P such that $\overline{O}(P) = P$. Birkenmeier, Kim and Park, in [4], derived various conditions which ensure that a prime ideal $P = \overline{O}(P)$. Observe that in [22, Lemma 3.1], Kist showed that $\overline{O}(P) = P$, for every minimal prime ideal P of any commutative ring.

By [4] a ring R satisfies condition (CZ2) if, whenever $(xy)^n = 0$, for some positive integer n, then $x^m R y^m = 0$, for some positive integer m.

THEOREM 2.7. Let R be a 2-primal principally right primary ring. If R satisfies condition (CZ2), then the prime radical P(R) is the unique minimal prime ideal of R.

Proof. Since R is 2-primal and satisfies condition (CZ2), for every minimal prime ideal P of R, we have $\overline{O}(P) = P$, by [4, Theorem 2.3 (ii)]. Hence the definition of $\overline{O}(P)$ and Corollary 2.6 imply that every minimal prime ideal of R is nil. Since R is 2-primal, the prime radical P(R) is the unique minimal prime ideal of R. \Box

Let R be a ring and α denotes an endomorphism of R with $\alpha(1) = 1$. In [13] the authors defined a skew triangular *n*-by-*n* matrix ring as the set of all triangular matrices over R with point-wise addition and a new multiplication subject to the condition $E_{ij}r = \alpha^{j-i}(r)E_{ij}$. So $(a_{ij})(b_{ij}) = (c_{ij})$, where $c_{ij} = a_{ii}b_{ij} + a_{i,i+1}\alpha(b_{i+1,j}) + \ldots + a_{ij}\alpha^{j-i}(b_{jj})$, for each $i \leq j$ and denoted it by $T_n(R, \alpha)$.

The subring of $T_n(R, \alpha)$ with constant main diagonal is denoted by $S(R, n, \alpha)$ (see [32], for more details). Also, the subring of the skew triangular matrices with constant diagonals is denoted by $T(R, n, \alpha)$ (see [13]). We can denote $A = (a_{ij}) \in T(R, n, \alpha)$ by (a_0, \ldots, a_{n-1}) . Then $T(R, n, \alpha)$ is a ring with addition pointwise and multiplication given by:

 $(a_0, \ldots, a_{n-1})(b_0, \ldots, b_{n-1}) = (a_0b_0, a_0*b_1+a_1*b_0, \ldots, a_0*b_{n-1}+\cdots+a_{n-1}*b_0),$ with $a_i*b_j = a_i\alpha^i(b_j)$, for each i and j. On the other hand, there is a ring isomorphism $\varphi: R[x;\alpha]/(x^n) \to T(R,n,\alpha)$, given by $\varphi(\sum_{i=0}^{n-1} a_ix^i) = (a_0,a_1,\ldots,$ $a_{n-1})$, with $a_i \in R, \ 0 \le i \le n-1$. So $T(R,n,\alpha) \cong R[x;\alpha]/(x^n)$, where $R[x;\alpha]$ is the skew polynomial ring with multiplication subject to the condition $xr = \alpha(r)x$ for each $r \in R$, and (x^n) is the ideal generated by x^n .

According to Krempa [21], an endomorphism α of a ring R is said to be rigid if $a\alpha(a) = 0$ implies a = 0, for $a \in R$. A ring R is said to be α -rigid if there exists a rigid endomorphism α of R. In [19], the authors introduced α -compatible rings and studied their properties. A ring R is α -compatible if for each $a, b \in R$, ab = 0 if and only if $a\alpha(b) = 0$. Basic properties of rigid and compatible endomorphisms are proved by Hashemi and the second author in [19, Lemma 2.2 and 2.1].

According to [26], a ring R with an automorphism α is called α -weakly rigid if for each $a, b \in R$, aRb = 0 if and only if $aR\alpha(b) = 0$. Any compatible (and hence rigid) automorphism is weakly rigid. For any positive integer n, a ring R with an automorphism α is α -weakly rigid if and only if, the n-by-nupper triangular matrix ring $T_n(R)$ is $\overline{\alpha}$ -weakly rigid if and only if, the matrix ring $M_n(R)$ is $\overline{\alpha}$ -weakly rigid, where $\overline{\alpha}((a_{ij})) = (\alpha(a_{ij}))$ for each $(a_{ij}) \in M_n(R)$. Also if R is a semiprime α -weakly rigid ring, then the ring of polynomials R[X], for X a nonempty set of commuting indeterminates, is a semiprime $\overline{\alpha}$ -weakly rigid ring, where $\overline{\alpha}(\sum_{i=0}^n r_i x^i) = \sum_{i=0}^n \alpha(r_i) x^i$. For every prime ring R and any automorphism α , the rings $M_n(R)$, $T_n(R)$, R[X] and the power series ring R[[X]] are $\overline{\alpha}$ -weakly rigid rings.

LEMMA 2.8. Let R be an α -weakly rigid ring. Then

- (i) $S_r(R) = B(R)$ if and only if $S_r(S(R, n, \alpha)) = B(S(R, n, \alpha));$
- (ii) $S_r(R) = B(R)$ if and only if $S_r(T(R, n, \alpha)) = B(T(R, n, \alpha))$.

In particular, every central idempotent in $S(R, n, \alpha)$ (resp., $T(R, n, \alpha)$) is of the form eI_n , where $e^2 = e \in B(R)$ and I_n is the identity matrix, for some positive integer $n \ge 2$.

Proof. We only prove (i), because the proof of the other case is similar. First, assume that $S_r(R) = \mathbf{B}(R)$, we show that $S_r(S(R, n, \alpha)) = \mathbf{B}(S(R, n, \alpha))$. It is sufficient to show that $S_r(S(R, n, \alpha)) \subseteq \mathbf{B}(S(R, n, \alpha))$. We proceed by induction on n. Assume $E = \begin{pmatrix} e & a \\ 0 & e \end{pmatrix} \in S_r(S(R, 2, \alpha))$. Then $ES(R, 2, \alpha)(1 - E) = 0$. Hence we obtain the following:

(2.1)
$$eR(1-e) = 0$$

(2.2)
$$eRa = a\alpha(R(1-e)).$$

From Eq. (2.1), it implies that $e \in S_r(R)$. Hence e is a central element. Also, since R is an α -weakly rigid ring, from Eq. (2.1), we obtain

$$(2.3) \qquad \qquad e\alpha(R(1-e)) = 0.$$

By multiplying Eq. (2.2) by e, from the left, we have $eRa = ea\alpha(R(1-e))$. Now, from Eq. (2.3) and the fact that e is central, we obtain eRa = 0. Hence $a\alpha(R(1-e)) = 0$. Now the weakly rigidness of R and the fact that e is central implies that a = 0. Therefore $S_r(S(R, 2, \alpha)) \subseteq \mathbf{B}(S(R, 2, \alpha))$.

Now assume that
$$E = \begin{pmatrix} e & a_{12} & \cdots & a_{1n} \\ 0 & e & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e \end{pmatrix} \in \mathcal{S}_r(S(R, n, \alpha))$$
 and that

 I_1 is a matrix obtained by deleting the nth row and the nth column of E and I_2 is a matrix obtained by deleting the first row and the first column of E in the ring $S(R, n-1, \alpha)$. Then $I_1, I_2 \in S_r(S(R, n-1, \alpha))$. So the a_{ij} 's entries are zero and e is central, by the induction hypothesis. Then we have

(2.4)
$$eRa_{1n} = a_{1n}\alpha^{n-1}(R(1-e)).$$

Multiplying Eq.(2.4) by e from the left and using again the weakly rigidness of R, we obtain $eRa_{1n} = 0$. Now Eq.(2.4) implies that $a_{1n} = 0$. Therefore, $S_r(S(R, n, \alpha)) = \mathbf{B}(S(R, n, \alpha))$. Conversely, let $e \in S_r(R)$. Then eR(1-e) = 0. So $(eI_n)S(R, n, \alpha)((1-e)I_n) = 0$. Thus $eI_n \in S_r(S(R, n, \alpha)) = \mathbf{B}(S(R, n, \alpha))$, and hence $e \in \mathbf{B}(R)$, and the result follows. \Box

COROLLARY 2.9. Let R be an α -weakly rigid ring. Then R is semicentral reduced if and only if the ring $S(R, n, \alpha)$ (resp., $T(R, n, \alpha)$) is semicentral reduced, for some positive integer $n \geq 2$.

THEOREM 2.10. Let R be an α -weakly rigid ring with $S_r(R) = B(R)$. Then R is generalized left (resp., principally) quasi-Baer if and only if the ring $S(R, n, \alpha)$ (resp., $T(R, n, \alpha)$) is generalized left (resp., principally) quasi-Baer, for some positive integer $n \geq 2$.

Proof. We proceed by induction on *n*. First, we claim that $S(R, 2, \alpha)$ is generalized left p.q.-Baer. Assume $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ is an element in $S(R, 2, \alpha)$. Since *R* is generalized left p.q.-Baer, there is a positive integer *m* and a central idempotent *e* in $S_r(R)$ such that $\ell_R(Ra)^m = Re$. So, by [25, Lemma 2.6], $\ell_R(Ra)^m = \ell_R(Ra)^{2m}$. We show that $\ell_{S(R,2,\alpha)}(S(R,2,\alpha)A)^{2m} = S(R,2,\alpha)eI_2$. Let

$$B = \begin{pmatrix} x & x_{12} \\ 0 & x \end{pmatrix} \in \ell_{S(R,2,\alpha)}(S(R,2,\alpha)A)^{2m}$$

and

assume that $X = \begin{pmatrix} r_1 a \cdots r_{2m} a & z \\ 0 & r_1 a \cdots r_{2m} a \end{pmatrix}$ is an arbitrary element in $(S(R, 2, \alpha)A)^{2m}$ such that $\begin{pmatrix} r_i & z_i \\ 0 & r_i \end{pmatrix} \in S(R, 2, \alpha)$, and z has 2m terms, where one of them is $r_i b + z_i \alpha(a)$ and the others in the form $\alpha^j(r_i a)$. We have BX = 0, so

$$(2.5) xr_1ar_2a\cdots r_{2m}a = 0$$

and

(2.6)
$$xz + x_{12}\alpha(r_1ar_2a\cdots r_{2m}a) = 0.$$

Thus $x \in \ell_R(Ra)^{2m} = \ell_R(Ra)^m = Re$. Hence x = xe. Now by replacing x with xe in Eq. (2.6), and using the weakly rigidness of R and the fact that e is central and that $e(Ra)^m = 0$, we get

$$x_{12}\alpha(r_1ar_2a\cdots r_{2m}a)=0.$$

Thus we have $x_{12}\alpha(Ra)^{2m} = 0$. Now using again the weakly rigidness of R it implies that $x_{12}(Ra)^{2m} = 0$. So $x, x_{12} \in \ell_R(Ra)^m = Re$, and hence x = xe and $x_{12} = x_{12}e$. Then $B = BeI_2$. Therefore $\ell_{S(R,2,\alpha)}(S(R,2,\alpha)A)^{2m} \subseteq S(R,2,\alpha)eI_2$. Since e is a central element and $e \in \ell_R(Ra)^m$, we deduce that $\ell_{S(R,2,\alpha)}(S(R,2,\alpha)A)^{2m} = S(R,2,\alpha)eI_2$, and if $B \in \ell_{S(R,2,\alpha)}(S(R,2,\alpha)A)^{2m}$, then all entries of B are in $\ell_R(Ra)^m$.

Now suppose that
$$A = \begin{pmatrix} a & a_{12} & \cdots & a_{1n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix} \in S(R, n, \alpha)$$
, and that I_1

is a matrix obtained by deleting the nth row and the nth column of A and I_2 is a matrix obtained by deleting the first row and the first column of A in the ring $S(R, n-1, \alpha)$. Since R is also generalized left p.q.-Baer, there is a positive integer m and $e \in S_r(R)$ such that $\ell_R(Ra)^m = Re$. Thus, by [25, Lemma 2.6], $\ell_R(Ra)^m = \ell_R(Ra)^{mn}$. Let

$$B = \begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix}$$

be an element in $\ell_{S(R,n,\alpha)}(S(R,n,\alpha)A)^{mn}$, B_1 is a matrix obtained by deleting the nth row and the nth column of B, B_2 is a matrix obtained by deleting the first row and the first column of B, and

$$X = \begin{pmatrix} r_1 a \cdots r_{nm} a & y_{12} & \cdots & y_{1n} \\ 0 & r_1 a \cdots r_{nm} a & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_1 a \cdots r_{nm} a \end{pmatrix} \in (S(R, n, \alpha)A)^{mn}.$$

Then by the induction hypothesis and Lemma 2.8, for i = 1, 2, there exists $e_i^2 = e_i$ in $S(R, n-1, \alpha)$ such that $e_i = f_i I_{n-1}, f_i^2 = f_i \in R$,

$$\ell_{S(R,n-1,\alpha)}(S(R,n-1,\alpha)I_i)^{(n-1)m} = e_i S(R,n-1,\alpha)$$

and $B_i \in \ell_{S(R,n-1,\alpha)}(S(R,n-1,\alpha)I_i)^{(n-1)m}$, for each *i*. So by the hypothesis, all the entries of B_i are in $\ell_R(Ra)^m$. Thus all x_{ij} 's except x_{1n} are in $\ell_R(Ra)^{(n-1)m}$. Now we have:

(2.7)
$$xy_{1n} + x_{12}\alpha(y_{2n}) + \dots + x_{1n}\alpha^{n-1}(r_1ar_2a\cdots r_{nm}a) = 0.$$

Since x_{ij} 's except x_{1n} are in $\ell_R(Ra)^m = Re$, so $x_{1i} = x_{1i}e$ for each $1 \le i \le n-1$. Now by replacing x_{1i} with $x_{1i}e$ in Eq. (2.7), and using the fact that

e is central and using weakly rigidness of *R* and that $e(Ra)^m = 0$, we get $xy_{1n} + x_{1n}\alpha^{n-1}(r_1ar_2a\cdots r_{nm}a) = 0$. But $x \in \ell_R(Ra)^m$, so $xy_{1n} = 0$. Thus using again weakly rigidness of *R* it implies that $x_{1n} \in \ell_R(Ra)^m = \ell_R(Ra)^{mn}$. Hence all the entries of *B* are in $\ell_R(Ra)^m$. So $x_{ij} = x_{ij}e$, for each i, j. Then $B = BeI_n$. Therefore $\ell_{S(R,n,\alpha)}(S(R,n,\alpha)A)^{nm} \subseteq S(R,n,\alpha)eI_n$. Since *e* is a central element and $e \in \ell_R(Ra)^m$, we conclude that $\ell_{S(R,n,\alpha)}(S(R,n,\alpha)A)^{nm} = S(R,n,\alpha)eI_n$. Therefore $S(R,n,\alpha)$ is a generalized left p.q.-Baer ring.

Conversely, assume that $S(R, n, \alpha)$ is generalized left p.q.-Baer, we show that R is also generalized left p.q.-Baer. Let $a \in R$ and $A = aI_n$. Since $S(R, n, \alpha)$ is generalized left p.q.-Baer, $\ell_{S(R,n,\alpha)}(S(R, n, \alpha)A)^k = S(R, n, \alpha)E$ for some positive integer k and $E^2 = E = eI_n$, where $e^2 = e \in R$, by Lemma 2.8. Hence for any $r_i \in R$, where $1 \leq i \leq k$, we have $e(r_1a)(r_2a)\cdots(r_ka)I_n = 0$, since $E(S(R, n, \alpha)A)^k = 0$. It follows that $Re \subseteq \ell_R(Ra)^k$. Conversely if $b \in \ell_R(Ra)^k$, then we have $b(r_1a)(r_2a)\cdots(r_ka) = 0$, for any $r_i \in R$. Thus $bI_n \in \ell_{S(R,n,\alpha)}(S(R, n, \alpha)A)^k = S(R, n, \alpha)E$. It follows that $b \in eR$. Therefore $\ell_R(Ra)^k = Re$, and R is generalized left p.q.-Baer, and the proof is complete. \Box

Now we give results which enable us to generate examples of (principally) right primary rings which are not (right p.q.-Baer) quasi-Baer.

THEOREM 2.11. Let R be an α -weakly rigid ring. Then R is (resp., principally) right primary if and only if $S(R, n, \alpha)$ is a (resp., principally) right primary if and only if $R[x; \alpha]/\langle x^n \rangle$ is a (resp., principally) right primary, for some positive integer $n \geq 2$.

Proof. The result follows from Corollary 2.9 and Theorem 2.10.

COROLLARY 2.12. A ring R is (resp., principally) right primary if and only if S(R,n) is a (resp., principally) right primary if and only if $R[x]/\langle x^n \rangle$ is a (resp., principally) right primary, for some positive integer $n \geq 2$.

The next example allows us to construct numerous examples of generalized left p.q.-Baer rings which are not principally right primary.

Example 2.13. Let R be a nonprime left p.q.-Baer with $S_r(R) = \mathbf{B}(R)$ (e.g., the ring in [8, Example 1.5 (i)]). For each $n \ge 2$, the rings S(R, n) and $R[x]/\langle x^n \rangle$ are generalized left p.q.-Baer, by Theorem 2.10, but they are not principally right primary, since R is not semicentral reduced.

Using the above results we can give the following examples to illustrate Theorem 2.7.

Example 2.14. Let D be a domain with an automorphism α . Then the rings $S(D, n, \alpha)$ and $D[x; \alpha]/\langle x^n \rangle$ are principally right primary, by The-

 \square

orem 2.11. On the other hand, [4, Theorem 2.9] and [28, Theorem 2.12], yields that $S(D, n, \alpha)$ and $D[x; \alpha]/\langle x^n \rangle$ are 2-primal and it is straightforward to show that $S(D, n, \alpha)$ and $D[x; \alpha]/\langle x^n \rangle$ satisfy condition (*CZ2*). Hence by Theorem 2.7, the prime radical is the unique minimal prime ideal of $S(D, n, \alpha)$ and $D[x; \alpha]/\langle x^n \rangle$.

For a ring R and an (R, R)-bimodule M, let $T(R, M) = \{(a, x) | a \in R, x \in M\}$ with the multiplication defined by $(a_1, x_1)(a_2, x_2) = (a_1a_2, a_1x_2 + x_1a_2)$. Then T(R, M) is a ring which is called the *trivial extension (also called the split-null extension)* of R by M. Notice that T(R, M) is isomorphism to the ring of matrices $\begin{pmatrix} a & x \\ 0 & a \end{pmatrix}$, where $a \in R, x \in M$ and the usual matrix operations are used.

Example 2.15. Let D be a commutative domain and $M = \bigoplus_{i \in I} D_i$ for a nonempty index set I, where $D_i = D$ for each i. It is easy to show that R := T(D, M) is a principally primary ring which is not p.q.-Baer. Since R is commutative, by Theorem 2.7, $\mathbf{P}(R)$ is the unique minimal prime ideal of T(D, M). In particular, by [29, Theorem 2.2, Theorem 3.15 and Theorem 4.13(3)] the polynomial ring R[x], the power series ring R[[x]], the Laurent polynomial ring $R[x; x^{-1}]$, the Laurent series ring $R[[x; x^{-1}]]$ and the monoid ring R[S], for every commutative, torsion-free, and cancellative monoid S, are commutative principally primary rings. Therefore, the prime radical for each of these rings is the unique minimal ideal prime.

Example 2.16. Assume that R is a 2-primal principally right primary ring such that it satisfies condition (CZ2). From [3, Proposition 2.2], subrings of 2primal rings are 2-primal. Since the condition (CZ2) is inherited by subrings, we see that if $e \in R$ is an idempotent, so the subring eRe of R is 2-primal and satisfies condition (CZ2). On the other hand by [11, Proposition 3.4], the ring eRe is principally right primary. Hence, by Theorem 2.7, $\mathbf{P}(eRe)$ is the unique minimal prime ideal of eRe.

PROPOSITION 2.17. Let R be a principally right primary ring. Let P be a nonzero prime ideal.

- (1) If X is a nonzero right ideal of R, then $r_R(X) \subseteq P$.
- (2) P is left essential in R.
- (3) Let K be a nonzero left ideal of R such that $\ell_R(K) \neq 0$. Then:
 - (i) $K \subseteq P$;
 - (ii) if $\ell_R(\ell_R(K)) \neq 0$, then $\ell_R(K) \subseteq P$ and P is right essential in R;
 - (iii) if $\ell_R(\ell_R(K)) = 0$, then $K[\ell_R(K)]$ is a nonzero nilpotent ideal of R.

(4) If P is a minimal prime ideal and Q is a prime ideal of R such that $Q \neq P$, then $l_R(Q) = 0$. Hence Q is right essential in R.

Proof. The result follows from Corollary 2.6 and [7, Lemma 3.3]. \Box

PROPOSITION 2.18. Let R be a principally right primary ring and P be a nonzero prime ideal. If K is a nonzero principal left ideal of R, then exactly one of the following conditions is satisfied:

- (1) $\ell_R(K) = 0; or$
- (2) $K \subseteq P$ and K is a nilpotent ideal of R.

Proof. Assume that $\ell_R(K) \neq 0$. By Proposition 2.17(3), we have $K \subseteq P$. On the other hand, by [11, Proposition 3.6 (i)], R is a semicentral reduced generalized left p.q.-Baer. Hence $\ell_R(K^n) = 0$ or $\ell_R(K^n) = R$, for some positive integer n. Thus K is a nilpotent ideal of R, since $\ell_R(K) \neq 0$. \Box

Remark 2.19. For any domain D, the rings T(D, n) and S(D, n) are not quasi-Baer but they are 2-primal (see *e.g.*, [27]) and principally right primary, by Corollary 2.12.

By the following result, nonzero prime ideals of a principally right primary ring R, are left essential in R.

PROPOSITION 2.20. Let R be a principally right primary ring. Then:

- (1) If P is a nonzero prime ideal of R, then P is left essential in R.
- (2) If R is 2-primal and P is a minimal prime ideal of R, then the prime radical P(R) is right essential in P.

Proof. (1) Since R is right primary, by Corollary 2.6, O(P) = 0. Now, assume that P is not left essential in R. Then there exists a nonzero left ideal I such that $P \cap I = 0$. Hence PI = 0. So $P \subseteq O(P)$, a contradiction.

(2) This is a consequence of Corollary 2.6 and [4, Proposition 3.1(ii)].

PROPOSITION 2.21. Let R be a generalized left p.q.-Baer ring with a complete set of triangulating idempotents and P be a prime ideal. Then R/O(P)is a generalized left p.q.-Baer ring.

Proof. By Proposition 2.5, O(P) = Re for some right semicentral idempotent e. Since eR(1-e) = 0, $R/O(P) \simeq (1-e)R(1-e)$. Hence R/O(P) is generalized left p.q.-Baer by [25, Theorem 4.7]. \Box

Remark 2.22. For a prime ideal P of a ring R, let

 $S_P = \{e \in R \mid e \text{ is a left semicentral idempotent such that } e \notin P\}.$

By [7, Proposition 2.4], S_P is a right denominator set. By [37, Proposition 1.4], $R[S_P^{-1}]$ is a right ring of fractions of R. In [25, Theorem 5.6], the authors proved

that, when R is a generalized right quasi-Baer ring, $O(P) \neq 0$ for every minimal prime ideal P. Then R has a nontrivial representation as a subdirect product of the right ring of fractions $R[S_P^{-1}]$, where P ranges through all minimal prime ideals.

3. PRIME IDEALS CONTAINING A UNIQUE MINIMAL PRIME IDEAL

In [9], Birkenmeier, Kim and Park showed that if $\overline{O}(P) = P$ for every minimal prime ideal P of a right p.q.-Baer ring R, then every prime ideal of R contains a unique minimal prime ideal. In this section, we investigate the condition, every prime ideal contains a unique minimal prime ideal, in a generalized left p.q.-Baer ring. We derive some conditions which ensure that a prime ideal $P = \overline{O}(P)$ in the class of generalized left p.q.-Baer rings. There exists a large class of generalized left p.q.-Baer rings which are neither p.q.-Baer nor PP, but for every minimal prime ideal P of these rings, $\overline{O}(P) = P$.

LEMMA 3.1. Let P and Q be prime ideals of a generalized left p.q.-Baer ring R, such that $Q \subseteq P$. Then O(P) = O(Q).

Proof. By definition it is clear that $O(P) \subseteq O(Q)$ and by Lemma 2.2, $O(Q) \subseteq O(P)$. \Box

By an adaptation of [9, Theorem 1.4], in the following Theorem 3.2, part (2) generalizes a result of Kist [22] for commutative PP rings and avoids the topological argument of his proof. Observe that in [22] Kist showed that $\overline{O}(P) = P$ for each minimal prime ideal P in the case of commutative rings.

THEOREM 3.2. Let R be a generalized left p.q.-Baer ring such that $\overline{O}(P) = P$ for every minimal prime ideal P of R. Then:

- (1) R is 2-primal.
- (2) Every prime ideal of R contains a unique minimal prime ideal.
- (3) For every prime ideal P of R, the ring R/O(P) is 2-primal and P(R/O(P)) is a completely prime ideal.
- (4) For a prime ideal P of R, every prime ideal of R/O(P) which properly contains P(R/O(P)) is right essential in R/O(P).

Proof. (1) It follows by [4, Lemma 2.1(i), (ii)].

(2) Let Q be a prime ideal of R which contains minimal prime ideals P_1 and P_2 . By Lemma 3.1, $O(P_1) = O(Q)$ and $O(P_2) = O(Q)$. So $\overline{O}(P_1) = \overline{O}(P_2)$. By the assumption $P_1 = \overline{O}(P_1) = \overline{O}(P_2) = P_2$.

(3) The proof is similar to that of [9, Theorem 1.4(iii)] with use of Lemma 2.2 and Lemma 3.1.

(4) This part follows from [4, Lemma 3.4]. \Box

The following result gives an explicit description of the unique minimal prime ideal of generalized left p.q.-Baer rings.

COROLLARY 3.3. Let R be a 2-primal generalized left p.q.-Baer ring which satisfies in condition (CZ2) and P is a prime ideal of R. Then $\overline{O}(P)$ is the unique minimal prime ideal of R such that $\overline{O}(P) \subseteq P$ and $\overline{O}(P)$ is completely prime.

Proof. Since R is 2-primal and satisfies (CZ2) condition, by [4, Theorem 2.3 (ii)] for every minimal prime ideal P in R, $\overline{O}(P) = P$. Therefore by Theorem 3.2, for every prime ideal P of R there exists a unique minimal prime ideal $Q \subseteq P$. So by Lemma 3.1, O(P) = O(Q) and hence $\overline{O}(P) = \overline{O}(Q)$. Thus $\overline{O}(Q) = Q$ implies that $\overline{O}(P) = Q$. Therefore $\overline{O}(P)$ is the unique minimal prime ideal of R such that $\overline{O}(P) \subseteq P$. Moreover, since $\overline{O}(P) = \overline{O}(Q) = Q$ is an ideal of R, by [4, Proposition 1.1 (iii)] $\overline{O}(P)$ is completely prime and the proof is complete. \Box

Recall from [1] that a ring R satisfies the IFP (insertion of factors property) if and only if $r_R(x)$ is an ideal of R for all $x \in R$. Note that by [8, Proposition 1.14], every right p.q.-Baer ring R with IFP is reduced p.q.-Baer, and hence it is 2-primal and satisfies condition (CZ2). Furthermore for every prime ideal P of a reduced ring R, we have $O(P) = \overline{O}(P)$. So we have the following.

COROLLARY 3.4. [9, Corollary 1.7] Let R be a right p.q.-Baer ring with IFP and P a prime ideal of R. Then O(P) is the unique minimal prime ideal of R contained in P and O(P) is a completely prime ideal.

If M_R is an indecomposable *R*-module of finite length, then $End(M_R)$ is a local ring, and its unique maximal ideal is nilpotent. Local rings with nilpotent maximal ideal are often called *completely primary* rings [23]. For instance, group algebras of finite *p*-groups over fields of characteristic *p* are another class of such completely primary rings.

COROLLARY 3.5. Let R be a completely primary ring. If P is a prime ideal of R, then $\overline{O}(P)$ is the unique minimal prime ideal of R contained in P and $\overline{O}(P)$ is a completely prime ideal.

Proof. We first show that R is generalized left p.q.-Baer. For every $a \in R$, if $Ra \neq R$ then $(Ra)^n = 0$ for some $n \in \mathbb{N}$. So $\ell_R(Ra)^n = R$ and if Ra = R then $\ell_R(Ra) = 0$. So R is generalized left p.q.-Baer. Now it follows immediately from [4, Corollary 2.7(i)] and Corollary 3.3. \Box

The following example shows that there exists a large class of generalized p.q.-Baer rings which are neither p.q.-Baer nor PP, but $\overline{O}(P) = P$ for every

minimal prime ideal P of R. Hence by Corollary 3.3, every prime ideal of R contains a unique minimal prime ideal.

Recall that in [22, Lemma 3.1], Kist showed that $\overline{O}(P) = P$, for every minimal prime ideal P of any commutative ring.

Example 3.6. (i) Every commutative generalized p.q.-Baer ring is 2-primal and satisfies condition (CZ2). So by Corollary 3.3, for every minimal prime ideal P of R, $\overline{O}(P) = P$. In particular, let n be an integer positive such that $p^2|n$ for some prime number p. Then, the ring of integers modulo n, \mathbb{Z}_n and the polynomial ring, $\mathbb{Z}_n[x]$, are commutative generalized p.q.-Baer rings which are neither PP nor p.q.-Baer.

(*ii*) Let R be a reduced p.q.-Baer ring and A be one of the rings $R[x]/\langle x^n \rangle$ or S(R, n). Then, the ring A is a 2-primal generalized p.q.-Baer ring which satisfies the (CZ2) condition. Hence by Corollary 3.3, $\overline{O}(P)$ is a unique minimal prime ideal of A contained in P and $\overline{O}(P)$ is completely prime for every prime ideal P of A.

(*iii*) Let T be a commutative generalized p.q.-Baer ring with zero characteristic which is not p.q.-Baer. Let $S = \prod_{i=1}^{\infty} T_i$ where for each i, $T_i = T$. Let R be the subring of S generated by $\bigoplus_{i=1}^{\infty} T_i$ and $1 \in S$. Then, by [25, Lemma 4.9], R is a generalized p.q.-Baer ring which is 2-primal and satisfies the (CZ2) condition, but it is neither generalized quasi-Baer, p.q.-Baer nor PP.

(*iv*) Assume that R is a 2-primal generalized left p.q.-Baer ring which satisfies condition the (CZ2). By [25, Theorem 4.7], the ring eRe is a generalized left p.q.-Baer ring, for every idempotent $e \in R$. Hence by Corollary 3.3, $\overline{O}(P)$ is a unique minimal prime ideal of eRe such that $\overline{O}(P) \subseteq P$ and $\overline{O}(P)$ is completely prime for every prime ideal P of eRe.

4. DECOMPOSITIONS OF GENERALIZED P.Q.-BAER RINGS

In this section, various decompositions of generalized p.q.-Baer rings are determined. We consider the essentiality and splitting-off of O(P) or P where P is a prime ideal of R.

Recall from [10] that a ring R is called *principally right FI-extending* if every principal right ideal is essential as a right R-module in a right ideal of R generated by an idempotent. Observe from [8, Corollary 1.11] that if Ris semiprime, then R is right p.q.-Baer if and only if R is principally right FI-extending.

PROPOSITION 4.1. Let R be a generalized right (principally) quasi-Baer ring with $S_{\ell}(R) = B(R)$. Then for every (principal) ideal I of R, there exists a positive integer n such that the ideal I^n is left essential in an ideal of R generated by a central idempotent.

Proof. There exists a central idempotent $c \in S_{\ell}(R)$ and a positive integer n such that $r_R(I^n) = cR$. Put e = 1-c, then $e \in S_r(R)$ and $r_R(I^n) = (1-e)R$, $I^n \subseteq Re$, as $I^n \subseteq \ell_R(r_R(I^n)) = \ell_R(cR) = R(1-c)$. Also assume that J is a left ideal in Re such that $I^n \cap J = 0$. Then $I^n J = 0$. So $J \subseteq r_R(I^n) = (1-e)R$. Consequently, $J \subseteq (1-e)R \cap eR = 0$. Therefore J = 0 and thus I^n is left essential in eR. \Box

THEOREM 4.2. Let R be a generalized right quasi-Baer ring with $S_{\ell}(R) = B(R)$. Then there exists a positive integer n such that $R = A \oplus B$ (ring direct sum), where Soc(A) is left essential in A and

$$Soc(R) = (Soc(R))^n \oplus Soc(B).$$

Proof. By Proposition 4.1, there exists a central idempotent $e \in R$ and a positive integer n such that $(Soc(R))^n$ is left essential in eR. Now assume that A = eR and B = (1 - e)R. Then we have $R = A \oplus B$, $(Soc(R))^n = Soc(A)$ and $Soc(R) = (Soc(R))^n \oplus Soc(B)$, and the proof is complete. \Box

COROLLARY 4.3. [6, Proposition 2.3] Let R be a semiprime quasi-Baer ring. Then $R = A \oplus B$ (ring direct sum), where Soc(A) is right and left essential in A and Soc(B) = 0.

Proof. This result is a consequence of [8, Proposition 1.17] and Theorem 4.2. \Box

LEMMA 4.4. Let R be a generalized right p.q.-Baer ring. If P is a prime ideal of R, then:

$$\overline{O}(P) = \{ a \in R \mid a^k Re = 0 \text{ for some } e \in \mathcal{S}_{\ell}(R) \setminus P, \text{ positive integer } k \}.$$

Proof. Let $a \in \overline{O}(P)$. Then there exists a positive integer k such that $a^k \in O(P)$. So there exists $b \in R \setminus P$ such that $a^k R b = 0$. Since R is generalized right p.q.-Baer, there exists $e \in S_{\ell}(R)$ and a positive integer n, such that $r_R(a^k R)^n = eR$. Since b = eb, $e \in R \setminus P$, as $b \in R \setminus P$. Hence $a^{nk}Re = 0$. Thus $\overline{O}(P) \subseteq \{a \in R \mid a^k R e = 0 \text{ for some } e \in S_{\ell}(R) \setminus P$, positive integer $k\}$. The reverse containment is obvious. \Box

Now we derive a condition which ensures that for a prime ideal $P, \overline{O}(P)$ is an ideal of R. Observe that for every prime ideal P of R, $nil(R/O(P)) = \overline{O}(P)/P$. Therefore if $\overline{O}(P)$ is an ideal of R, then nil(R/O(P)) is an ideal of the ring R/O(P).

Proof. The proof is similar to that of [9, Proposition 2.1] with the use of Lemma 4.4. \Box

PROPOSITION 4.6. Let P be a prime ideal of a generalized left p.q.-Baer ring R. Then P is left essential in R or P = Re for some idempotent $e \in R$.

Proof. Let P be a prime ideal of R that is not left essential. Then there exists a nonzero element $a \in R$ such that $P \cap Ra = 0$. Since R is generalized left p.q.-Baer, there exists a positive integer n such that $\ell_R(Ra)^n = Re$ for some idempotent $e \in R$. It is clear that $P \subseteq \ell_R(Ra)^n$. Let $x \in \ell_R(Ra)^n$. So $x(Ra)^n = 0$, and since $a \notin P$, we have $x \in P$. Hence $P = \ell_R(Ra)^n = Re$. \Box

PROPOSITION 4.7. Let P be a prime ideal of a generalized left p.q.-Baer ring R. Then N(P) is left essential in P or O(P) = Re for some idempotent $e \in R$.

Proof. Assume N(P) is not left essential in P. Then there exists a nonzero principal left ideal Ra of R such that $Ra \subseteq P$ and $N(P) \cap Ra = 0$. Since R is generalized left p.q.-Baer, there exists a positive integer n such that $\ell_R(Ra)^n =$ Re for some idempotent $e \in S_r(R)$. Thus $O(P) \subseteq N(P) \subseteq \ell_R(Ra)^n = Re$. If $e \notin P$, then $aRe \subseteq P(R)$. Thus $a \in N(P)$, a contradiction. Hence $e \in P$. Since eR(1-e) = 0, it follows that $e \in O(P)$. Therefore O(P) = Re. \Box

LEMMA 4.8. Let P be a prime ideal in a generalized right p.q.-Baer ring R. If nil(R) is an ideal, then either:

- (i) O(P) is right essential in P; or
- (ii) $\overline{O}(P) \subseteq eR \subseteq P$ for some left semicentral $e \in R$. If e is central, then $\overline{O}(P) = eR$.

Proof. Assume $\overline{O}(P)$ is not right essential in P. Then there exists a nonzero principal right ideal X = aR of R such that $X \subseteq P$ and $\overline{O}(P) \cap X = 0$. There exists an idempotent $e \in R$ such that $r_R(X^n) = eR$ for some positive integer n. Since $\overline{O}(P) \cap X^n = 0$ so $X^n \overline{O}(P) = 0$, it follows that $\overline{O}(P) \subseteq$ $r_R(X^n) = eR$. We have $a^n Re = 0$, since $X^n e = 0$. So, if $e \in R \setminus P$, then $a^n \in O(P)$. Hence $a \in \overline{O}(P)$. Then $a \in \overline{O}(P) \cap X = 0$, a contradiction. So $e \in P$. Then $eR \subseteq P$. Therefore $\overline{O}(P) \subseteq eR \subseteq P$. Since $e \in S_\ell(R)$, (1 - e)Re = 0. If e is central, then $e \in O(P)$, since $1 - e \in R \setminus P$. Hence $eR \subseteq \overline{O}(P)$. It follows that $\overline{O}(P) = eR$, and the result follows. \Box

Let I be an ideal of a ring R and P a prime ideal of R. Observe that $I \cap P$ is a prime ideal of I. Define

$$O_I(P) = \{x \in I \mid xIs = 0 \text{ for some } s \in I \setminus P\}.$$

THEOREM 4.9. Let R be an abelian generalized right p.q.-Baer ring. If nil(R) is an ideal and P is a prime ideal of R, then either:

- (i) $\overline{O}(P)$ is right essential in R; or
- (ii) $R = T \oplus P(\text{ring direct sum})$ for some ideal T of R, and O(P) = P.

Proof. We use the method in the proof of [9, Theorem 2.4]. Assume P is not right essential in R. Then there exists a principal right ideal $X \neq 0$ such that $P \cap X = 0$. There exists an idempotent $e \in R$ such that $r_R(X^n) = eR$ for some positive integer n. Since $X^n P = 0$, $P \subseteq eR$. Observe $(1-e)Re = 0 \subseteq P$. If $1-e \in P$ then $1-e \in eR$, therefore e = 1. Since $X^n e = 0$, $X^n = 0 \subseteq P$. Thus $X \subseteq P$, it follows that $X \cap P = X = 0$, a contradiction. Thus $e \in P$ yields P = eR. Since PR(1-e) = 0, it follows that O(P) = P = eR. Now, put T = (1-e)R. Then, we have $R = T \oplus P$.

Now assume P is right essential in R. If $\overline{O}(P)$ is not right essential in P, Lemma 4.8 yields $\overline{O}(P) = eR$ and $\overline{O}(P) \subseteq P$, where e is a central idempotent. Let S = (1 - e)R. Since e is a central idempotent, by [25, Theorem 4.7] the ring S is also a generalized right p.q.-Baer ring. Since $R = eR \oplus S$, it follows that $P = \overline{O}(P) \oplus (S \cap P) = \overline{O}(P) \oplus P_1$, where $P_1 = S \cap P$ is a prime ideal of S. Since $\overline{O}_S(P_1) \subseteq \overline{O}(P) = eR$, $\overline{O}_S(P_1) = 0$. We claim that the ring S is a prime ring. Let X, Y be principal right ideals of S such that XY = 0. Since Sis generalized right p.q.-Baer ring, $r_S(X^n) = fS$ for some central idempotent $f \in S$ and positive integer n, so $Y \subseteq r_S(X^n) = fS$. If $f \in S \setminus P_1$, since $X^nSf = 0$ then $X \subseteq \overline{O}_S(P_1) = 0$. Hence X = 0. If $f \in P_1$ so $1 - f \in S \setminus P_1$. Since fS(1 - f) = 0 it follows that $f \in \overline{O}_S(P_1) = 0$. So f = 0 and hence Y = 0. Thus the ring S is a prime ring so $P_1 = S \cap P = 0$. It follows that $\overline{O}(P) = P$, a contradiction. Therefore $\overline{O}(P)$ is right essential in P and hence

PROPOSITION 4.10. Let R be a generalized left p.q.-Baer ring. If every essential left ideal of R is an essential extension of an ideal of R (e.g., if R has essential left socle), then the left singular ideal $Z_{\ell}(R)$ is nil.

Proof. Let $x \in Z_{\ell}(R)$, then $\ell_R(x)$ is left essential in R. So there exists an ideal I of R such that $I \subseteq \ell_R(x)$ and I is a left essential in R. Since R is generalized left p.q.-Baer, there exists an idempotent $e \in R$ such that $\ell_R(Rx)^n = Re$ for some positive integer n. Since 0 = Ix = IRx, we have $I(Rx)^n = 0$ and that $I \subseteq \ell_R(Rx)^n = Re$. We show that $x^n = 0$. Assume to the contrary that $x^n \neq 0$. So $e \neq 1$ and $I \cap R(1-e) \subseteq Re \cap R(1-e) = 0$. So $I \cap R(1-e) = 0$ and $R(1-e) \neq 0$, a contradiction, since I is left essential. Therefore $x^n = 0$, and the result follows. \Box

A ring R is called *orthogonally finite* if there are no infinite sets of ortho-

gonal idempotents in R. By [24, Proposition 6.59] for any ring R, the following are equivalent:

- (1) R satisfies ACC on right direct summands;
- (2) R satisfies DCC on left direct summands;
- (3) R has no infinite set of nonzero orthogonal idempotents.

PROPOSITION 4.11. Let R be a generalized left p.q.-Baer ring with IFP. If R is orthogonally finite, then for every right annihilator L there exists an idempotent $e \in R$ such that $L = eR \oplus (L \cap (1-e)R)$ and $L \cap (1-e)R$ is nil.

Proof. If L is nil then there is nothing to prove. Assume to the contrary that L is not nil. So there exists some $x \in L$ which is not nilpotent. Since R is generalized left p.q.-Baer, $\ell_R(Rx)^n = Rf$ for some positive integer n and some idempotent $f \neq 1$. Since R satisfy IFP, it is easy to show that $\ell_R(Rx)^n = \ell_R(x^n)$. Thus $\ell_R(L) \subseteq \ell_R(x^n) = Rf$ and hence $(1 - f)R = r_R(Rf) \subseteq r_R(\ell_R(L)) = L$. So L has a nonzero idempotent element. Now let e be a nonzero idempotent in L such that $r_R(e)$ is minimal among all right annihilators of idempotent elements of L. Then, by a similar argument as that in [24, Theorem 7.55], one can show that $L \cap (1 - e)R$ is nil. Since $R = eR \oplus (1 - e)R$ and $eR \subseteq L$, it is easy to show that $L = eR \oplus (L \cap (1 - e)R)$. \Box

PROPOSITION 4.12. Let R be a commutative generalized p.q.-Baer ring. Then R/nil(R) is a commutative p.q.-Baer ring.

Proof. Let $\overline{R} = R/nil(R)$ and $\overline{0} \neq \overline{x} \in \overline{R}$. Since R/nil(R) is a reduced ring, $\ell_{\overline{R}}(\overline{x}) = \ell_{\overline{R}}(\overline{x}^k)$ for every positive integer k. Since R is generalized p.q.-Baer, there exists a positive integer n such that $\ell_R(x^n) = Re$ for some idempotent $e \in R$. We show that $\ell_{\overline{R}}(\overline{x}) = \overline{Re}$. Let $\overline{r} \in \ell_{\overline{R}}(\overline{x})$, then $rx \in nil(R)$. So there is a positive integer m such that $(rx)^m = 0$. So $r^m \in \ell_R(x^m) = \ell_R(x^n)$ by [25, Lemma 2.6]. Since $\ell_R(x^n) = Re, r^m e = r^m$, which implies that $r^m(1-e) = 0$. So $(r(1-e))^m = 0$ and that $r(1-e) \in nil(R)$. Thus $(r-re) \in nil(R)$. Therefore $\overline{r} \ \overline{e} = \overline{r}$, it follows that $\ell_{\overline{R}}(\overline{x}) \subseteq \overline{Re}$. Also since $ex^n = 0$, it implies that $(ex)^n = 0$. So $ex \in nil(R)$ and this means $\overline{e} \in \ell_{\overline{R}}(\overline{x})$, so $\overline{Re} \subseteq \ell_{\overline{R}}(\overline{x})$, and the proof is complete. \Box

The final result of this paper provides a lattice connection between the generalized right p.q.-Baer and generalized right quasi-Baer conditions.

THEOREM 4.13. Let R be a generalized right p.q.-Baer ring. If R satisfies any of the following conditions, then R is generalized right quasi-Baer.

(i) For any nonzero right ideal I of R, $I \cap C(R)$ is a nonzero finitely generated right ideal of C(R) such that for every positive integer n, $I^n \cap C(R) \subseteq (I \cap C(R))^n$. (ii) R is right Noetherian with $S_{\ell}(R) = B(R)$.

Proof. Let I be a nonzero right ideal of R. If $r_R(I^n) = 0$, for some positive integer n, then we are done. So we assume that $r_R(I^n) \neq 0$ for every positive integer n.

(i) By the hypothesis, $I \cap C(R)$ is a nonzero finitely generated right ideal of C(R). Since by [25, Proposition 2.2(iii)] C(R) is generalized p.q.-Baer, by [25, Proposition 2.8], $r_{C(R)}(I \cap C(R))^n = eC(R)$ for some idempotent $e \in C(R)$ and positive integer n. Now we prove $r_R(I^n) = eR$. If $I^n e \neq 0$ then $I^n e$ is a nonzero right ideal of R so by hypothesis $0 \neq I^n e \cap C(R) \subseteq (I \cap C(R))^n$. Let $0 \neq x \in I^n e \cap C(R)$. Then x = ye for some $y \in I^n$. Since $x \in (I \cap C(R))^n$, xe = 0. Hence x = 0, which is a contradiction. It follows that $eR \subseteq r_R(I^n)$, and then $r_R(I^n) = R \cap r_R(I^n) = (eR \oplus (1-e)R) \cap r_R(I^n) = eR \oplus ((1-e)R) \cap r_R(I^n))$. Now assume $(1-e)R \cap r_R(I^n) \neq 0$. Then $(1-e)R \cap r_R(I^n)$ is a nonzero right ideal of R. Thus, by hypothesis, $0 \neq (1-e)R \cap r_R(I^n) \cap C(R) = (1-e)R \cap r_{C(R)}(I^n) \subseteq (1-e)R \cap r_{C(R)}(I \cap C(R))^n = (1-e)R \cap eR = 0$; which is also a contradiction. Hence $(1-e)R \cap r_R(I^n) = 0$, it follows that $r_R(I^n) = eR$. Therefore R is a generalized right quasi-Baer ring.

(*ii*) Assume that I is a nonzero right ideal of R, since R is a right Noetherian so by [25, Proposition 2.8] $r_R(I^k) = eR$, for some idempotent $e \in R$ and positive integer k. Thus R is generalized right quasi-Baer. \Box

Acknowledgements. The authors sincerely thank the anonymous reviewers for their careful reading, constructive comments and fruitful suggestions to improve the quality of the first draft.

REFERENCES

- H.E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363–368.
- [2] S.K. Berberian, *Baer* *-*Rings*. Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- [3] G.F. Birkenmeier, H.E. Heatherly and E.K. Lee, Completely prime ideal and associated radicals. Proceedings of Biennial Ohio State-Denison Conference 1992, (World Scientific, 1993) 102–129.
- [4] G.F. Birkenmeier, J.Y. Kim and J.K. Park, A characterization of minimal prime ideals. Glasg. Math. J. 40 (1998), 223–236.
- [5] G.F. Birkenmeier, H.E. Heatherly, J.Y. Kim and J.K. Park, *Triangular matrix representations*. J. Algebra 230 (2000), 558–595.
- [6] G.F. Birkenmeier and J.K. Park, Self-adjoint ideals in Baer *-rings. Comm. Algebra 28 (2000), 4259–4268.
- [7] G.F. Birkenmeier, J.Y. Kim and J.K. Park, A sheaf representation of quasi-Baer rings. J. Pure Appl. Algebra 146 (2000), 3, 209–223.
- [8] G.F. Birkenmeier, J.Y. Kim and J.K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001), 2, 639–660.

- G.F. Birkenmeier, J.Y. Kim and J.K. Park, Prime ideals of principally quasi-Baer rings. Acta Math. Hungar. 98 (2003), 3, 217–225.
- [10] G.F. Birkenmeier, J.K. Park and S.T. Rizvi, *Principally quasi-Baer ring hulls*. In: D.V. Huynk *et. al* (Eds), *Advances in ring theory*. Trends Math., Basel: Birkhäuser, 47–61, (2010).
- G.F. Birkenmeier, J.Y. Kim and J.K. Park, Right primary and nilary rings and ideals. J. Algebra 378 (2013), 133–152.
- [12] S.A. Chase, Generalization of triangular matrices. Nagoya Math. J. 18 (1961), 13–25.
- [13] J. Chen, X. Yang and Y. Zhou, On strongly clean matrix and triangular matrix rings. Comm. Algebra 34 (2006), 3659–3674.
- [14] W.E. Clark, Twisted matrix units semigroup algebras. Duke Math. J. 34 (1967), 417– 424.
- [15] R.P. Dilworth, Noncommutative residuated lattices. Trans. Amer. Math. Soc. 46 (1939), 426–444.
- [16] S. Endo, Note on p.p.-rings. Nagoya Math. J. 17 (1960), 167–170.
- [17] C. Gorton, Generalized Primary Rings. Ph.D. Dissertation, University of Louisiana at Lafayette, 2006.
- [18] C. Gorton and H.E. Heatherly, Generalized primary rings and ideals. Math. Pannon. 17 (2006), 17–28.
- [19] E. Hashemi and A. Moussavi, *Polynomial extensions of quasi-Baer rings*. Acta Math. Hungar. **107** (2005), 3, 207–224.
- [20] I. Kaplansky, Rings of Operators. Benjamin, New York 1965.
- [21] J. Krempa, Some examples of reduced rings. Algebra Colloq. 3 (1996), 3, 289–300.
- [22] J. Kist, Minimal prime ideals in commutative semigroups. Proc. Lond. Math. Soc. 13 (1963), 31–50.
- [23] T.Y. Lam, A First Course in Noncommutative Rings. Grad. Texts in Math. 131. Springer-Verlag, Berlin-Heidelberg-New York, 1991.
- [24] T.Y. Lam, Lectures on Modules and Rings. Grad. Texts in Math. 189, Springer, New York, 1999.
- [25] A. Moussavi, H. Haj Seyyed Javadi and E. Hashemi, *Generalized quasi-Baer rings*. Comm. Algebra **33** (2005), 7, 2115–2129.
- [26] A.R. Nasr-Isfahani and A. Moussavi, On weakly rigid rings. Glasg. Math. J. 51 (2009), 3, 425–440.
- [27] A.R. Nasr-Isfahani and A. Moussavi, On a quotient of polynomial rings. Comm. Algebra 38 (2010), 2, 567–575.
- [28] A.R. Nasr-Isfahani, On skew triangular matrix rings. Comm. Algebra 39 (2011), 11, 4461–4469.
- [29] K. Paykan and A. Moussavi, Quasi-Armendariz generalized power series rings. J. Algebra Appl. 15 (2016), 4, 1650086 (38 pages).
- [30] K. Paykan and A. Moussavi, Baer and quasi-Baer properties of skew generalized power series rings. Comm. Algebra 44 (2016), 4, 1615–1635.
- [31] K. Paykan and A. Moussavi, Semiprimeness, quasi-Baerness and prime radical of skew generalized power series rings. Comm. Algebra 45 (2017), 6, 2306–2324.
- [32] K. Paykan, Some new results on skew triangular matrix rings with constant diagonal. Vietnam J. Math. 45 (2017), 4, 575–584.
- [33] K. Paykan and A. Moussavi, Study of skew inverse Laurent series rings. J. Algebra Appl. 16 (2017), 11, 1750221, (33 pages).

- [34] P. Pollingher and A. Zaks, On Baer and quasi-Baer rings. Duke Math. J. 37 (1970), 127–138.
- [35] C.E. Rickart, Banach algebras with an adjoint operation. Ann. of Math. 47 (1946), 528–550.
- [36] L. W. Small, Semihereditary rings. Bull. Amer. Math. Soc. 73 (1967), 656–658.
- [37] B. Stenström, Rings of Quotients. Berlin, Springer, 1975.

Received 17 August 2016

Tarbiat Modares University, Faculty of Mathematical Sciences Department of Pure Mathematics, Tehran, Iran k.paykan@gmail.com

Tarbiat Modares University, Faculty of Mathematical Sciences Department of Pure Mathematics, Tehran, Iran moussavi.a@gmail.com