k-CLEAN MONOMIAL IDEALS

RAHIM RAHMATI-ASGHAR

Communicated by Vasile Brînzănescu

In this paper, we introduce the concept of k-clean monomial ideals as an extension of clean monomial ideals and present some homological and combinatorial properties of them. Using the hierarchal structure of k-clean ideals, we show that a (d-1)-dimensional simplicial complex is k-decomposable if and only if its Stanley-Reisner ideal is k-clean, where $k \leq d-1$. We prove that the classes of monomial ideals like Cohen-Macaulay ideals of codimension 2, monomial ideals of forest type without embedded prime ideal and symbolic powers of Stanley-Reisner ideals of matroid complexes are k-clean for all $k \geq 0$.

AMS 2010 Subject Classification: Primary 13F55, 13P10; Secondary 05E40.

Key words: k-clean, monomial ideal, Stanley-Reisner ideal, Cohen-Macaulay, forest type, matroid.

INTRODUCTION

Let R be a Noetherian ring and M be a finitely generated R-module. It is well known that there exists a so called prime filtration

$$\mathcal{F}: 0 = M_0 \subset M_1 \subset \ldots \subset M_{r-1} \subset M_r = M$$

that is such that $M_i/M_{i-1} \cong R/P_i$ for some $P_i \in \operatorname{Supp}(M)$. We call any such filtration of M a **prime filtration**. Set $\operatorname{Supp}(\mathcal{F}) = \{P_1, \dots, P_r\}$. Let $\operatorname{Min}(M)$ denote the set of minimal prime ideals in $\operatorname{Supp}(M)$. If I is an ideal of R then we set $\operatorname{min}(I) = \operatorname{Min}(R/I)$. Dress [7] calls a prime filtration \mathcal{F} of M clean if $\operatorname{Supp}(\mathcal{F}) = \operatorname{Min}(M)$. The module M is called clean, if M admits a clean filtration and R is clean if it is a clean module over itself.

Let $S = K[x_1, ..., x_n]$ be the polynomial ring in n indeterminate over a field K. Let Δ be a simplicial complex on the vertex set $[n] = \{1, 2, ..., n\}$. Dress [7] showed that Δ is (non-pure) shellable in the sense of Björner and Wachs [3], if and only if the Stanley-Reisner ring S/I_{Δ} is clean. The result of Dress is, in fact, the algebraic counterpart of shellability for simplicial complexes. Some subclasses of shellable complexes are k-decomposable simplicial complexes which were introduced by Billera and Provan [2] on pure simplicial complexes and then by Woodroofe [31] on not necessarily pure ones. Simon

in [25] introduced "completed clean ideal trees" as an algebraic counterpart of pure k-decomposable complexes. Actually, in the sense of Simon, the Stanley-Reisner ideal of a k-decomposable complex is completed clean ideal tree.

Let $I \subset S$ be a monomial ideal. We call I Cohen-Macaulay (clean) if the quotient ring S/I has this property. In this paper, we define the concept of k-clean monomial ideals. The class of k-clean monomial ideals are, actually, subclass of clean monomial ideals. It is the aim of this paper to study the properties of k-clean monomial ideals and describe relations between these ideals and k-decomposable simplicial complexes. Moreover, some classes of k-clean monomial ideals are introduced. Also, some results of [1,16] are extended.

In Section 2, we introduce k-clean monomial ideals. We show that kclean monomial ideals are clean and, also, every clean monomial ideal is kclean for some $k \geq 0$ (see Theorem 2.4). In Section 3, we discuss some basic properties of k-clean ideals. Some homological invariants of k-clean monomial ideals like depth and Castelnuovo-Mumford regularity are described in this section. In the fourth section, we show that a (d-1)-dimensional simplicial complex Δ is k-decomposable if and only if its associated Stanley-Reisner ideal is k-clean, where $k \leq d$ (see Theorem 4.1). The last section is devoted to presenting some examples of k-clean monomial ideals. We show that irreducible monomial ideals and monomial complete intersection ideals are k-clean, for all $k \geq 0$ (see Theorems 5.1 and 5.2). Then by showing that Cohen-Macaulay monomial ideals of codimension 2 (see Theorem 5.4) are k-clean, we improve Proposition 1.4. of [16]. In Theorem 5.6, we show that a monomial ideal of forest type which has no embedded prime ideal is k-clean, for all $k \geq 0$. Finally, in Theorem 5.9, we show that symbolic powers of Stanley-Reisner ideals of matroid complexes are k-clean for all $k \geq 0$. In this way, we improve Theorem 2.1 of [1].

1. PRELIMINARIES

Let Δ be a simplicial complex of dimension d-1 with the vertex set $[n] := \{1, 2, \ldots, n\}$. Let K be a field. The Stanley-Reisner monomial ideal of Δ is denoted by I_{Δ} and it is a squarefree monomial ideal in the polynomial ring $S = K[x_1, \ldots, x_n]$ generated by the monomials $\mathbf{x}^F = \prod_{i \in F} x_i$ which F is a non-face in Δ . The quotient ring S/I_{Δ} is called the **face ring** or **Stanley-Reiner ring** of Δ . If $\mathcal{F}(\Delta) = \{F_1, \ldots, F_r\}$ is the set of maximal faces (facets) of Δ then we set $\Delta = \langle F_1, \ldots, F_r \rangle$.

For all undefined terms or notions on simplicial complexes we refer the reader to the books [13] or [27].

Given a simplicial complex Δ on [n], the **link**, **star** and **deletion** of σ in Δ are defined, respectively, by

$$\begin{aligned} & \operatorname{link}_{\Delta}(\sigma) = \{ F \in \Delta : \sigma \cap F = \emptyset, \sigma \cup F \in \Delta \}, \\ & \operatorname{star}_{\Delta}(\sigma) = \{ F \in \Delta : \sigma \cup F \in \Delta \} \text{ and } \\ & \Delta \backslash \sigma = \{ F \in \Delta : \sigma \not\subseteq F \}. \end{aligned}$$

Moreover, the **Alexander dual** of Δ is defined as $\Delta^{\vee} = \{ F \in \Delta : [n] \setminus F \notin \Delta \}.$

Let $I \subset S$ be a squarefree monomial ideal generated by monomials of degree at least 2. Then there exists a simplicial complex Δ on [n] such that $I = I_{\Delta}$. The Alexander dual of I is defined $I^{\vee} = I_{\Delta^{\vee}}$.

Definition 1.1 ([31]). Let Δ be a simplicial complex on vertex set [n]. Then a face $\sigma \in \Delta$ is called a **shedding face** if it satisfies the following property:

no facet of $(\operatorname{star}_{\Delta}\sigma)\backslash\sigma$ is a facet of $\Delta\backslash\sigma$.

Definition 1.2 ([31]). A (d-1)-dimensional simplicial complex Δ is recursively defined to be k-decomposable if either Δ is a simplex or else has a shedding face σ with $\dim(\sigma) \leq k$ such that both $\lim_{\Delta} \sigma$ and $\Delta \setminus \sigma$ are k-decomposable.

We consider the complexes $\{\}$ and $\{\emptyset\}$ to be k-decomposable for $k \geq -1$. Also k-decomposability implies to k'-decomposability for $k' \geq k$.

A 0-decomposable simplicial complex is called **vertex-decomposable**.

We say that the simplicial complex Δ is (non-pure) **shellable** if its facets can be ordered F_1, F_2, \ldots, F_r such that, for all $r \geq 2$, the subcomplex $\langle F_1, \ldots, F_{j-1} \rangle \cap \langle F_j \rangle$ is pure of dimension $\dim(F_j) - 1$ [3]. It was shown in [31] or [18] that a (d-1)-dimensional (not necessarily pure) simplicial complex Δ is shellable if and only if it is (d-1)-decomposable.

Let I be a monomial ideal of S. We denote by G(I) the set of minimal monomial generators of I. Let $\min(I)$ be the set of minimal (under inclusion) prime ideals of S containing I.

For $\mathbf{a} \in \mathbb{N}^n$, set $\mathbf{x}^{\mathbf{a}} = \prod_{\mathbf{a}(i)>0} x_i^{\mathbf{a}(i)}$ and define the **support** of \mathbf{a} by supp $(\mathbf{a}) = \{i : \mathbf{a}(i) > 0\}$. We set supp $(\mathbf{x}^{\mathbf{a}}) := \text{supp}(\mathbf{a})$. Also, we define $\bar{\mathbf{a}}$ an n-tuple in $\{0,1\}^n$ with $\bar{\mathbf{a}}(i) = 1$ if $\mathbf{a}(i) \neq 0$ and $\bar{\mathbf{a}}(i) = 0$, otherwise. Set $\nu_i(\mathbf{x}^{\mathbf{a}}) := \mathbf{a}(i)$.

Let $u, v \in S$ be two monomials. We set [u, v] = 1 if for all $i \in \text{supp}(u)$, $x_i^{a_i} \nmid v$ and $[u, v] \neq 1$, otherwise.

For the monomial $u \in S$ and the monomial ideal $I \subset S$ set

$$I^u = \langle v \in G(I) : [u, v] \neq 1 \rangle$$
 and $I_u = \langle v \in G(I) : [u, v] = 1 \rangle$.

Definition 1.3 ([23]). Let I be a monomial ideal with the minimal system of generators $\{u_1, \ldots, u_r\}$. The monomial $v = x_1^{a_1} \ldots x_n^{a_n}$ is called **shedding** if $I_v \neq 0$ and for each $u_i \in G(I_v)$ and each $l \in \text{supp}(u)$ there exists $u_j \in G(I^v)$ such that $u_j : u_i = x_l$.

Definition 1.4 ([23]). Let I be a monomial ideal minimally generated with set $\{u_1, \ldots, u_r\}$. We say I is a k-decomposable ideal if r = 1 or else has a shedding monomial v with $|\text{supp}(v)| \leq k + 1$ such that the ideals I^v and I_v are k-decomposable. (Note that since the number of minimal generators of I is finite, the recursion procedure will stop.)

A 0-decomposable monomial ideal is called **variable-decomposable**.

Theorem 1.5 ([23, Theorem 2.10]). Let Δ be a (not necessarily pure) (d-1)-dimensional simplicial complex on vertex set [n]. Then Δ is k-decomposable if and only if $I_{\Delta^{\vee}}$ is k-decomposable, where $k \leq d-1$.

Definition 1.6 ([20]). A monomial ideal I is called **weakly polymatroidal** if for every two monomials $u = x_1^{a_1} \dots x_n^{a_n} >_{lex} v = x_1^{b_1} \dots x_n^{b_n}$ in G(I) such that $a_1 = b_1, \dots, a_{t-1} = b_{t-1}$ and $a_t > b_t$, there exists j > t such that $x_t(v/x_j) \in I$.

Theorem 1.7 ([24, Theorem 4.33]). Every weakly polymatroidal ideal I is variable-decomposable.

2. k-CLEAN MONOMIAL IDEALS

In this section, we extend the concept of cleanness introduced by Dress [7]. Let $I \subset S$ be a monomial ideal. A prime filtration

$$\mathcal{F}:(0)=M_0\subset M_1\subset\ldots\subset M_{r-1}\subset M_r=S/I$$

of S/I is called **multigraded**, if all M_i are multigraded submodules of S/I, and if there are multigraded isomorphisms $M_i/M_{i-1} \cong S/P_i(-\mathbf{a}_i)$ with some $\mathbf{a}_i \in \mathbb{Z}^n$ and some multigraded prime ideals P_i .

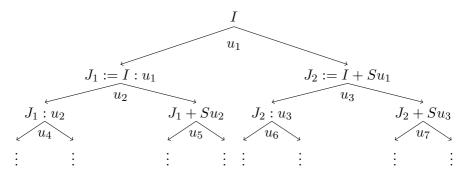
A multigraded prime filtration \mathcal{F} of S/I is called **clean** if $\operatorname{Supp}(\mathcal{F}) \subseteq \min(I)$.

Definition 2.1. Let $I \subset S$ be a monomial ideal. A non unit monomial $u \notin I$ is called a **cleaner** monomial of I if $\min(I + Su) \subseteq \min(I)$.

Definition 2.2. Let $I \subset S$ be a monomial ideal. We say that I is k-clean whenever I is a prime ideal or I has no embedded prime ideals and there exists a cleaner monomial $u \notin I$ with $|\operatorname{supp}(u)| \leq k+1$ such that both I:u and I+Su are k-clean.

We recall the concept of ideal tree from [25]:

Let $I \subset S$ be a k-clean monomial ideal. By the definition, there are cleaner monomials u_1, u_2, \ldots with $|\text{supp}(u_i)| \leq k+1$ decomposing I. Therefore we obtain the rooted, finite, directed and binary tree \mathcal{T} :



 \mathcal{T} is called the **ideal tree** of I and the number of all cleaner monomials appeared in \mathcal{T} is called the **length** of \mathcal{T} . We denote the length of \mathcal{T} by $l(\mathcal{T})$.

We define the k-clean monomial ideal I by

$$l(I) = \min\{l(\mathcal{T}) : \mathcal{T} \text{ is an ideal tree of } I\}.$$

Example 2.3. Consider the monomial ideal

$$I = (x_1x_2x_4, x_1x_2x_5, x_1x_2x_6, x_1x_3x_5, x_1x_3x_6, x_1x_4x_5, x_2x_3x_6, x_2x_4x_5, x_2x_5x_6, x_3x_4x_5, x_3x_4x_6)$$

and

$$J = (x_1 x_2, x_1 x_3, x_1 x_4)$$

of the polynomial ring $S = K[x_1, \ldots, x_6]$. I and J are, respectively, 1-clean and 0-clean and have ideal trees \mathcal{T}_1 and \mathcal{T}_2 such that the cleaner monomials appeared in \mathcal{T}_1 and \mathcal{T}_2 are, respectively, $x_2x_3, x_1x_4, x_1x_5, x_2x_4, x_2x_5, x_2, x_1, x_3x_6, x_3$ and x_1 .

Theorem 2.4. Every k-clean monomial ideal I is clean. Also, every clean monomial ideal is k-clean for some $k \geq 0$.

Proof. Let I be a k-clean monomial ideal. We use induction on the k-cleanness length of I. Let I be not prime and there exists a cleaner monomial $u \notin I$ of multidegree \mathbf{a} with $|\operatorname{supp}(u)| \le k+1$ such that both I:u and I+Su are k-clean. By induction, I:u and I+Su are clean. Let

$$\mathcal{F}_1: I + Su = J_0 \subset J_1 \subset \ldots \subset J_r = S$$

and

$$\mathcal{F}_2: 0 = \frac{L_0}{I:u} \subset \frac{L_1}{I:u} \subset \ldots \subset \frac{L_s}{I:u} = \frac{S}{I:u}.$$

be clean prime filtrations and let $(L_i/I:u)/(L_{i-1}/I:u) \cong S/Q_i(-\mathbf{a}_i)$ where Q_i are prime ideals. It is known that the multiplication map $\varphi: S/I: u(-\mathbf{a}) \xrightarrow{\cdot u} I + Su/I$ is an isomorphism. Restricting φ to $L_i/I:u$ yields a monomorphism $\varphi_i: L_i/I:u \xrightarrow{\cdot u} I + Su/I$. Set $H_i/I:=\varphi_i(L_i/I:u)$. Hence $H_i/I\cong (L_i/I:u)(-\mathbf{a})$. It follows that

$$\frac{H_i}{H_{i-1}} \cong \frac{H_i/I}{H_{i-1}/I} \cong \frac{(L_i/I:u)(-\mathbf{a})}{(L_{i-1}/I:u)(-\mathbf{a})} \cong \frac{S}{Q_i}(-\mathbf{a} - \mathbf{a}_i).$$

Therefore we obtain the following prime filtration induced from \mathcal{F}_2 :

$$\mathcal{F}_3: I = H_0 \subset H_1 \subset \ldots \subset H_s = I + Su.$$

By adding \mathcal{F}_1 to \mathcal{F}_3 we obtain the following prime filtration

$$\mathcal{F}: I = H_0 \subset H_1 \subset \ldots \subset H_s = I + Su \subset J_1 \subset \ldots \subset J_r = S.$$

Finally, $\operatorname{Supp}(\mathcal{F}) = \operatorname{Supp}(\mathcal{F}_1) \cup \operatorname{Supp}(\mathcal{F}_2) \subset \min(I + Su) \cup \min(I : u) \subseteq \min(I)$ and therefore I is clean.

To prove the second assertion, suppose that I is a clean monomial ideal. If I is prime then we are done. Suppose that I is not prime and let

$$\mathcal{F}:(0)=M_0\subset M_1\subset\ldots\subset M_{r-1}\subset M_r=S/I$$

be a clean prime filtration of S/I with $M_i/M_{i-1} \cong S/P_i(-\mathbf{a}_i)$. We use induction on the length of the prime filtration \mathcal{F} . Since that $\mathrm{Ass}(S/I) \subseteq \mathrm{Supp}(\mathcal{F}) \subseteq \min(I)$, we have $\mathrm{Ass}(S/I) = \min(I)$. Hence I has no embedded prime ideal. It follows from Proposition 10.1. of [15] that there is a chain of monomial ideals $I = I_0 \subset I_1 \subset \ldots \subset I_r = S$ and monomials u_i of multidegree \mathbf{a}_i such that $I_i = I_{i-1} + Su_i$ and $I_{i-1} : u_i = P_i$. Since that $I + Su_1$ has a clean filtration, it is k-clean, by induction hypothesis, where $|\mathrm{supp}(u_1)| \leq k+1$. On the other hand, $I + Su_1/I \cong S/P_1$. Therefore $\min(I + Su_1) = \{P_1\} \subset \min(I)$. This means that I is k-clean. \square

3. SOME PROPERTIES OF k-CLEAN MONOMIAL IDEALS

Theorem 3.1. Let $I \subset S$ be k-clean. Then for all monomial $u \in S$, I : u is k-clean.

Proof. We use induction on the k-cleanness length of I. If I is prime then I:u is prime, too and we have nothing to prove. Assume that I is not prime. Suppose v is a cleaner monomial of I with $|\mathrm{supp}(v)| \leq k+1$ and I:v and I+(v) are k-clean. We consider two cases:

Case 1. Let v|u. Then I: u = (I:v): u/v and by induction hypothesis I: u is k-clean.

Case 2. Let $v \nmid u$. We show that $v/\gcd(u,v)$ is a cleaner monomial of I:u. We have

$$(I:u)+(\frac{v}{\gcd(u,v)})=(I+(v)):u \ \text{ and } \ (I:u):\frac{v}{\gcd(u,v)}=(I:v):\frac{u}{\gcd(u,v)}.$$

By induction, $(I:u)+(\frac{v}{\gcd(u,v)})$ and $(I:u):\frac{v}{\gcd(u,v)}$ are k-clean. Since $\min(I+(v))\subset\min(I)$, by some elementary computations, we obtain that $\min((I+(v)):u)\subset\min(I:u)$. Therefore $v/\gcd(u,v)$ is a cleaner monomial of I:u. \square

Theorem 3.2. The radical of each k-clean monomial ideal is k-clean.

Proof. Let $I=(\mathbf{x}^{\mathbf{a}_1},\ldots,\mathbf{x}^{\mathbf{a}_r})$ be a k-clean monomial ideal with cleaner monomial $u=\mathbf{x}^{\mathbf{b}}$ with $|\mathrm{supp}(u)| \leq k+1$. We use induction on the k-cleanness length of I. Denote the radical of I by \sqrt{I} . By induction hypothesis, $\sqrt{I+Su}$ and $\sqrt{I:u}$ are k-clean. Let $v=\mathbf{x}^{\mathrm{supp}(u)}$ and let w be the product of variables x_i with $i\in\mathrm{supp}(u)$ and $\mathbf{a}_j(i)>\mathbf{b}(i)>0$ for some $1\leq j\leq r$. $\sqrt{I}+Sv$ is k-clean, because $\sqrt{I}+Sv=\sqrt{I+Su}$. Also, $\sqrt{I}:v=(\sqrt{I:u}):w$ and so $\sqrt{I}:v$ is k-clean, by Theorem 3.1. On the other hand, $\min(\sqrt{I}+Sv)\subset\min(\sqrt{I+Su})=\min(I+Su)\subset\min(I)=\min(\sqrt{I})$ and so v is a cleaner monomial of \sqrt{I} . \square

Let $u = x_{i_1}^{a_1} \dots x_{i_t}^{a_t} \in S$. The **polarization** of u is defined by $u^p = x_{i_1 1} \dots x_{i_1 a_1} \dots x_{i_t 1} \dots x_{i_t a_t}.$

If $I \subset S$ is a monomial ideal. The polarization of I is a monomial ideal of $S^p = K[x_{ij} : x_{ij} | u^p \text{ for some } u \in G(I)]$ given by $I^p = (u^p : u \in G(I))$.

Define the K-algebra homomorphism $\pi: S^p \to S$ by $\pi(x_{ij}) = x_i$.

Theorem 3.3. Let I be a monomial ideal with no embedded prime ideal. If I^p is k-clean then I is k-clean, too.

Proof. We use induction on the k-cleanness length of I^p . If I is a prime ideal then we have nothing to prove. Suppose that I is not prime. Let u be a cleaner monomial of I^p with $|\text{supp}(u)| \leq k+1$ and let $I^p: u$ and $I^p+(u)$ be k-clean. We claim that $\pi(u)$ is a cleaner monomial of I. Note that

$$I: \pi(u) = \pi(I^p: u)$$
 and $I + (\pi(u)) = \pi(I^p + (u))$.

By induction hypothesis, $I : \pi(u)$ and $I + (\pi(u))$ are k-clean. Since $|\operatorname{supp}(\pi(u))| \le |\operatorname{supp}(u)| \le k+1$, it remains to show that $\pi(u)$ is a cleaner monomial of I. Let $P \in \min(I + (\pi(u)))$. Hence there exists $Q \in \min(I^p + (u))$ such that $P = \pi(Q)$. Since $Q \in \min(I^p)$, it follow that $P \in \min(I)$, as desired. \square

Lemma 3.4. Let $I \subset S$ be a k-clean monomial ideal with cleaner monomial u. Then u^p is a cleaner monomial of I^p .

Proof. Let $Q \in \min(I^p + (u^p))$. Then $Q \in \operatorname{Ass}(S^p/I^p + (u^p))$. By Corollary 2.6 of [9], $\pi(Q) \in \operatorname{Ass}(S/I + (u)) = \min(I + (u)) \subset \min(I)$. Again, by Proposition 2.3 of [9], $Q \in \min(I^p)$, as desired. \square

The following theorem describes projective dimension and Castelnuovo-Mumford regularity of k-clean monomial ideals.

Theorem 3.5. Let $I \subset S$ be a k-clean monomial ideal with the cleaner monomial u. Then

- (i) $pd(S/I) = max\{pd(S/I + (u)), pd(S/I : u)\};$
- (ii) $reg(S/I) = max{reg(S/I + (u)), reg(S/I : u) + deg(u)}.$

Proof. (i) Without loss of generality we may assume that $I \subset \mathfrak{m}^2$. By Corollary 1.6.3. of [13], $\operatorname{pd}(S/I) = \operatorname{pd}(S^p/I^p)$ and $\operatorname{reg}(S/I) = \operatorname{reg}(S^p/I^p)$. Let Δ be a simplicial complex with $I_{\Delta} = I^p$. By Lemma 3.4, u^p is a cleaner monomial of I^p . Let $u^p = \mathbf{x}^{\sigma}$ for some $\sigma \in \Delta$. Therefore Δ is a k-decomposable simplicial complex with shedding monomial σ , by Theorem 4.1. Now it follows from Theorem 2.8 of [21] that

$$\begin{aligned} \operatorname{pd}(S/I) &= \operatorname{pd}(S^p/I_{\Delta}) = & \max\{\operatorname{pd}(S^p/I_{\Delta \setminus \sigma}), \operatorname{pd}(S^p/J_{\operatorname{link}_{\Delta}\sigma})\} \\ &= & \max\{\operatorname{pd}(S^p/(I+(u))^p), \operatorname{pd}(S^p/(I:u)^p)\} \\ &= & \max\{\operatorname{pd}(S/I+(u)), \operatorname{pd}(S/I:u)\} \end{aligned}$$

where $J_{\text{link}_{\Delta}\sigma}$ is the Stanley-Reisner ideal of $\text{link}_{\Delta}\sigma$ considered as a complex on $V(\Delta)\backslash \sigma$.

(ii) follows by a similar argument from Theorem 2.8 of [21] and Theorem 4.1. $\ \square$

Remark 3.6. The concept of sequentially Cohen-Macaulayness was introduced in [27] for finitely generated (graded) modules. We specially recall this concept for the quotient rings. Let $I \subset S$ be a monomial ideal. We say that I is sequentially Cohen-Macaulay if there exists a finite filtration

$$\mathcal{F}: 0 = M_0 \subset M_1 \subset \ldots \subset M_r = S/I$$

of submodules of S/I with these properties that M_i/M_{i-1} is Cohen-Macaulay and

$$\dim(M_1/M_0) \le \dim(M_2/M_1) \le \ldots \le \dim(M_r/M_{r-1}.$$

It was proven in [15] that cleanness implies sequentially Cohen-Macaulayness. Therefore the class of k-clean monomial ideals is contained in the class of sequentially Cohen-Macaulay monomial ideals. In particular, since that every unmixed sequentially Cohen-Macaulay monomial ideal is Cohen-Macaulay, we conclude that the unmixed k-clean monomial ideals are Cohen-Macaulay.

4. A VIEW TOWARD k-DECOMPOSABLE SIMPLICIAL COMPLEXES

In this section, we prove the main result of this paper. In fact, we show that a squarefree k-clean monomial ideal is Stanley-Reisner ideal of a k-decomposable simplicial complex, and $vice\ versa$.

THEOREM 4.1. Let Δ be a (d-1)-dimensional simplicial complex. Then $\sigma \in \Delta$ is a shedding face of Δ if and only if \mathbf{x}^{σ} is a cleaner monomial of I_{Δ} .

In particular, Δ is k-decomposable if and only if I_{Δ} is k-clean, where $0 \le k \le d-1$.

Proof. We first show that σ is a shedding face of Δ if and only if $\min(I_{\Delta} + (\mathbf{x}^{\sigma})) \subseteq \min(I_{\Delta})$. Since that Stanley-Reisner rings are reduced, it follows that

$$\min(I_{\Delta}) = \{ P_{F^c} : F \in \mathcal{F}(\Delta) \}$$

and

$$\min(I_{\Delta} + (\mathbf{x}^{\sigma})) = \{P_{F^c} : F \in \mathcal{F}(\Delta \setminus \sigma)\}.$$

Let σ be the shedding face of Δ . To show that \mathbf{x}^{σ} is a cleaner monomial of I_{Δ} , it suffices to prove $\mathcal{F}(\Delta \backslash \sigma) \subseteq \mathcal{F}(\Delta)$. Suppose, on the contrary, that $F \in \mathcal{F}(\Delta \backslash \sigma)$ and $F \subsetneq G$ with $G \in \mathcal{F}(\Delta)$. This implies that $\sigma \subset G$ and so $G \in \operatorname{star}_{\Delta}\sigma$. On the other hand, since F is a facet of $\Delta \backslash \sigma$, it follows that there is $t \in \sigma$ such that $\sigma \backslash \{t\} \subset F$. We claim that $G = F \dot{\cup} \{t\}$. The inclusion " \supseteq " is clear. For the converse inclusion, if $s \in G \backslash (F \cup \{t\})$ for some s, then $\sigma \not\subseteq F \cup \{s\}$ and so $F \cup \{s\} \in \mathcal{F}(\Delta \backslash \sigma)$, a contradiction. Therefore $G = F \dot{\cup} \{t\}$ and it follows that $F \in \mathcal{F}((\operatorname{star}_{\Delta}\sigma) \backslash \sigma)$. But this contradicts the assumption that σ is a shedding face of Δ . Hence \mathbf{x}^{σ} is a cleaner monomial.

Let Δ be k-decomposable with the shedding face $\sigma \in \Delta$. By the first part, \mathbf{x}^{σ} is a cleaner monomial of I_{Δ} . To show that I_{Δ} is k-clean, we use induction on the number of the facets of Δ . If Δ is a simplex then the assertion is trivial. So assume that $|\mathcal{F}(\Delta)| > 1$. It is easy to check that $J_{\text{link}_{\Delta}\sigma} = I_{\Delta} : \mathbf{x}^{\sigma}$ and $I_{\Delta \setminus \sigma} = I_{\Delta} + (\mathbf{x}^{\sigma})$. By induction hypothesis, $\text{link}_{\Delta}\sigma$ and $\Delta \setminus \sigma$ are k-decomposable if and only if $I_{\Delta} : \mathbf{x}^{\sigma}$ and $I_{\Delta} + (\mathbf{x}^{\sigma})$ are k-clean. Therefore I_{Δ} is k-clean.

The reverse directions of both parts follow easily in similar arguments. \Box

Remark 4.2. Note that a k-clean monomial ideal need not be k'-clean for k' < k. Consider the monomial ideal $I \subset K[x_1, \ldots, x_6]$ with the minimal generator set

$$G(I) = \{x_1x_2x_4, x_1x_2x_5, x_1x_2x_6, x_1x_3x_5, x_1x_3x_6, x_1x_4x_5, x_2x_3x_6, x_2x_4x_5, x_2x_5x_6, x_3x_4x_5, x_3x_4x_6\}.$$

I is the Stanley-Reisner ideal of the simplicial complex

$$\Delta = \langle 124, 125, 126, 135, 136, 145, 236, 245, 256, 345, 346 \rangle$$

on [6]. It was shown in [25] that Δ is shellable but not vertex-decomposable. It follows from Theorem 4.1 that I is clean but not 0-clean. To see more examples of clean ideals which are not 0-clean we refer the reader to [11, 22].

Remark 4.3. Let I be a clean monomial ideal and $\dim(S/I) = d$. By Theorem 2.4, I is k-clean for some $k \geq 0$ with cleaner monomial u. It follows from Theorem 3.2 that \sqrt{I} is k-clean with cleaner monomial $v = \mathbf{x}^{\operatorname{supp}(u)}$. Let $I_{\Delta} = \sqrt{I}$ for some simplicial complex Δ on [n]. By Theorem 4.1, we have $|\operatorname{supp}(u)| = |\operatorname{supp}(v)| \leq \dim(\Delta) + 1 = d$. Therefore I is (d-1)-clean.

On the other hand, every k-clean monomial ideal is also (k + 1)-clean. This means that the k-cleanness is a hierarchical structure. Therefore we have the following implications:

$$0$$
-clean $\Rightarrow 1$ -clean $\Rightarrow \ldots \Rightarrow (d-1)$ -clean \Leftrightarrow clean.

In Remark 4.2 we implied that above implications are strict.

COROLLARY 4.4. Let $I \subset S$ be a squarefree monomial ideal generated by monomials of degree at least 2. Then I is k-clean if and only if I^{\vee} is k-decomposable.

Proof. Let Δ be a simplicial complex on [n] such that $I = I_{\Delta}$. The assertion follows from Theorems 4.1 and 1.5. \square

5. SOME CLASSES OF k-CLEAN IDEALS

In this section, we introduce some classes of k-clean monomial ideals.

5.1. IRREDUCIBLE MONOMIAL IDEALS

Theorem 5.1. Every irreducible monomial ideal is 0-clean.

Proof. Let I be a irreducible monomial ideal. We want to show that I is 0-clean. By Theorem 1.3.1. of [13], I is generated by pure powers of the variables. Without loss of generality we may assume that $I=(x_1^{a_1},\ldots,x_m^{a_m})$ with $a_i\neq 0$ for all i. We use induction on $\sum_{i=1}^m a_i$. If $\sum_{i=1}^m a_i=m$, then I is prime and we are done. Suppose that $\sum_{i=1}^m a_i>m$. So we can assume that $a_1>1$. We have

$$I: x_1 = (x_1^{a_1-1}, x_2^{a_2}, \dots, x_m^{a_m})$$
 and $I + (x_1) = (x_1, x_2^{a_2}, \dots, x_m^{a_m}).$

By induction hypothesis, $I: x_1$ and $I+(x_1)$ are 0-clean. Clearly, x_1 is a cleaner monomial and so the proof is completed. \square

5.2. MONOMIAL COMPLETE INTERSECTION IDEALS

Theorem 5.2. Let $I \subset S$ be a monomial complete intersection ideal. Then S/I is 0-clean.

Proof. Let $G(I) = \{M_1, \ldots, M_r\}$. By the assumption M_1, \ldots, M_r is a regular sequence. Hence $\gcd(M_i, M_j) = 1$ for all $i \neq j$. If I is a primary ideal then we are done, by Theorem 5.1. Suppose that I is not primary. We use induction on n the number of variables. Let $|\sup(M_1)| > 1$ and let $\nu_1(M_1) = a$. Then

$$I: x_1^a = (M_1/x_1^a, M_2, \dots, M_r)$$
 and $I + (x_1^a) = (x_1^a, M_2, \dots, M_r)$.

Since that $(M_1/x_1^a, M_2, \ldots, M_r)$ and $(x_1^a, M_2, \ldots, M_r)$ are complete intersection monomial ideals with the number of variables less that n, we deduce that $I: x_1^a$ and $I+(x_1^a)$ are 0-clean, by induction hypothesis. Set $J:=(M_2, \ldots, M_r)$. Since that

$$\min(I + (x_1^a)) = \{P + (x_1) : P \in \min(J)\}\$$

and

$$\min(I) = \{P + (x_i) : P \in \min(J) \text{ and } x_i | M_1\}.$$

we conclude that $\min(I + (x_1^a)) \subset \min(I)$ and so x_1^a is a cleaner monomial.

5.3. COHEN-MACAULAY MONOMIAL IDEALS OF CODIMENSION 2

Proposition 2.3 from [14] says that if $I \subset S$ is a squarefree monomial ideal with 2-linear resolution, then after suitable renumbering of the variables, one has the following property:

if $x_i x_j \in I$ with $i \neq j$, k > i and k > j, then either $x_i x_k$ or $x_j x_k$ belongs to I.

Let I has a 2-linear resolution and the monomials in G(I) be ordered by the lexicographical order induced by $x_n > x_{n-1} > \ldots > x_1$. Let $u = x_s x_t > v = x_i x_j$ be squarefree monomials in G(I) with s < t and i < j. We have $t \ge j$. If t = j, then $x_s(v/x_i) = u \in G(I)$. If t > j then by the above property either $x_i x_t \in G(I)$ or $x_j x_t \in G(I)$. This immediately implies the following lemma.

Lemma 5.3. If I is a squarefree monomial ideal generated in degree 2 which has a linear resolution, then after suitable renumbering of the variables, I is weakly polymatroidal.

THEOREM 5.4. Let $I \subset S$ be a monomial ideal which is Cohen-Macaulay and of codimension 2. Then S/I is 0-clean.

Proof. Since I has no embedded prime ideals, if we show that I^p is 0-clean then it follows from Theorem 3.3 that I is 0-clean. Let Δ be a simplicial complex with $I_{\Delta} = I^p$. Since I is Cohen-Macaulay, by Corollary 1.6.3. of [13], I_{Δ} is Cohen-Macaulay, too. In particular, I_{Δ}^{\vee} has linear resolution, by the Eagon-Reiner theorem [8]. It follows from Lemma 5.3 and Theorems 1.7 and 4.1 that $I_{\Delta} = I^p$ is 0-clean, as desired. \square

5.4. MONOMIAL IDEALS OF FOREST TYPE WHICH HAVE NO EMBEDDED PRIME IDEAL

We recall some notions from [26]:

Let I be a monomial ideal with $G(I) = \{u_1, \ldots, u_r\}$. A variable x_i is called a **free variable** of I if there exists a $1 \le t \le r$ such that $x_i | u_t$ and $x_i \nmid u_j$ for any $j \ne t$. A monomial u_t is called a **leaf** of G(I) if u_t is the only generator of I, or there exists a $1 \le j \le r$, $j \ne t$ such that $\gcd(u_t, u_i) | \gcd(u_t, u_j)$ for all $i \ne t$. In this case u_j is called a **branch** of u_t . We say that I is a **monomial ideal of forest type** if any subset of G(I) has a leaf. A simplicial complex Δ is a **simplicial forest** in sense of [10] if $I(\Delta)$ is a monomial ideal of forest type.

LEMMA 5.5. Let $I \subset S$ be a monomial ideal and u a monomial in S which is regular over S/I. If I is k-clean then I + (u) and I : u are k-clean.

Proof. Since u is regular over S/I, we have I: u = I. This implies that I: u is k-clean. It remains to show that I + (u) is k-clean.

If I is a prime ideal then, by using induction on the |supp(u)|, it is easily verified that I+(u) is k-clean. So suppose that I is not prime. We use induction on the k-cleanness length of I. Let v be a cleaner monomial of I with $|\text{supp}(v)| \leq k+1$. We claim that v is a cleaner monomial of J=I+(u). Since u is regular over S/I and $\min(I+(v)) \subseteq \min(I)$, we have $\gcd(u,w)=1$ for all $w \in G(I) \cup \{v\}$. It follows that J:v=(I:v)+(u) and u is regular on S/I+(v) and S/I:v. Now, by induction hypothesis, J:v=(I:v)+(u) and J+(v)=(I+(v))+(u) are k-clean.

Now let $P \in \min(J + (v))$. Then there exists x_i with $x_i|u$ such that $x_i \in P$. We have $P \setminus x_i \in \min(I + (v))$ and so $P \setminus x_i \in \min(I)$. It follows that $P \in \min(J)$, as desired. \square

Theorem 5.6. Let $I \subset S$ be a monomial ideal of forest type which has no embedded prime ideal. Then I is 0-clean.

Proof. Our argument uses an idea from the proof presented in [26, Theorem 3.4.]. We use induction on n the number of variables. Let I be minimally

generated by u_1, \ldots, u_r . Let x_i be a free variable of I. Then there exists $1 \le j \le r$ such that $x_i|u_j$. Let $\nu_i(u_j) = a$ and set $u' = u_j/x_i^a$. It is clear that

$$I: x_i^a = (u_1, \dots, u_{r-1}, u')$$
 and $I + (x_i^a) = (u_1, \dots, u_{r-1}, x_i^a)$.

By Lemma 3.1 of [26], $I: x_i^a = (u_1, \ldots, u_{r-1}, u')$ is a monomial ideal of forest type. Furthermore, the minimal prime ideals of $(u_1, \ldots, u_{r-1}, u')$ are exactly the prime minimal ideals of I which does not contain x_i . Therefore $I: x_i^a$ has no embedded prime ideal and so it is 0-clean, by induction. On the other hand, (u_1, \ldots, u_{r-1}) is a monomial ideal of forest type and it has no embedded prime ideal. It follows from induction hypothesis that (u_1, \ldots, u_{r-1}) is 0-clean. Finally, Lemma 5.5 obtains that $I + (x_i^a)$ is 0-clean.

Note that

$$\min(I + (x_i^a)) = \{Q + (x_i) : Q \in \min((u_1, \dots, u_{r-1}))\}\$$

and

$$\min(I) = \{Q + (x_j) : Q \in \min((u_1, \dots, u_{r-1})), \ x_j | u_r \}.$$

Since $x_i|u_r$, it follows that $\min(I+(x_i^a))\subseteq \min(I)$. Therefore x_i^a is a cleaner monomial. \square

The **nonface complex** or the **Stanley-Reisner complex** of I is denoted by $\delta_{\mathcal{N}}(I)$ and it is the simplicial complex over a set of vertices $\{v_1, \ldots, v_n\}$ defined by

$$\delta_{\mathcal{N}}(I) = \{\{v_{i_1}, \dots, v_{i_s}\} : x_{i_1} \dots x_{i_s} \notin I\}.$$

Let $I(\Delta)$ be the facet ideal of a simplicial complex Δ . Set $\Delta_N := \delta_{\mathcal{N}}(I(\Delta))$.

Corollary 5.7. Let Δ be a simplicial forest. Then Δ_N is vertex-decomposable.

Proof. Since $I(\Delta)$ is a monomial ideal of forest type, $I_{\Delta_N} = I(\Delta)$ is 0-clean, by Theorem 5.6. It follows from Theorem 4.1 that Δ_N is vertex decomposable. \square

Remark 5.8. In [26, Theorem 3.4.], it was shown that every monomial ideal of forest type is pretty clean. A clean monomial ideal is a pretty clean ideal which has no embedded prime ideal. Hence it follows from [26, Theorem 3.4.] that every monomial ideal of forest type with no embedded prime ideal is clean. Theorem 5.6 improves this result.

5.5. SYMBOLIC POWERS OF STANLEY-REISNER IDEALS OF MATROID COMPLEXES

Let Δ be a simplicial complex and let $I_{\Delta}^{(m)}$ denote the mth symbolic power of I_{Δ} . Minh and Trung [19] and Varbaro [30] independently proved that Δ is a matroid if and only if $I_{\Delta}^{(m)}$ is Cohen-Macaulay for all $m \in \mathbb{N}$. Later, in [28], Terai and Trung showed that Δ is a matroid if and only if $I_{\Delta}^{(m)}$ is Cohen-Macaulay for some integer $m \geq 3$. Recently, Bandari and Soleyman Jahan [1] proved that if Δ is a matroid, then $I_{\Delta}^{(m)}$ is clean for all $m \in \mathbb{N}$. In this section, we improve this result by showing that if Δ is a matroid, then $I_{\Delta}^{(m)}$ is 0-clean for all $m \in \mathbb{N}$.

THEOREM 5.9. Let Δ be a matroid complex with $I=I_{\Delta}$. Then for all $m\geq 1,\ I^{(m)}$ is 0-clean.

Proof. Let $\Delta = \langle F_1, \dots, F_t \rangle$. Then $I = I_{\Delta} = \bigcap_{i=1}^t P_{F_i^c}$ and $(I_{\Delta})^{(m)} = \bigcap_{i=1}^t (P_{F_i^c})^{(m)}$. Since Δ is a matroid and I is Cohen-Macaulay, it follows that $I^{(m)}$ has no embedded prime ideal. Therefore if we show that $(I^{(m)})^p$ is 0-clean then the proof is completed, by Theorem 3.3.

In [1] the authors introduced an ordering on the variables of S^p and showed that $((I^{(m)})^p)^\vee$ has linear quotients with respect to this ordering. We improve this result by considering the same ordering to show that $((I^{(m)})^p)^\vee$ is weakly polymatroidal. Then by Theorem 1.7 and Corollary 4.4, $(I^{(m)})^p$ is 0-clean. We use some notations of the proof of [1, Theorem 2.1.]. It is known that Δ^c is a matroid. Let $\dim(\Delta^c) = r - 1$. We set $J = ((I^{(m)})^p)^\vee$. Then

$$G(J) = \{x_{i_1,j_1} x_{i_2,j_2} \dots x_{i_r,j_r} : \{i_1,\dots,i_r\} \text{ is a facet of } \Delta^c\}$$

where $1 \le j_l \le m$ and $\sum_{l=1}^r j_l \le m+r-1$.

Consider the order < on the variables of S^{α} by setting $x_{i,j} > x_{i',j'}$ if either j < j', or j = j' and i < i'. Let $u, v \in G(J)$ with $u = x_{i_r,j_r} \dots x_{i_2,j_2} x_{i_1,j_1} > v = x_{i'_r,j'_r} \dots x_{i'_2,j'_2} x_{i'_1,j'_1}$ such that $x_{i_l,j_l} = x_{i'_l,j'_l}$ for all l > t and $x_{i_l,j_l} > x_{i'_l,j'_l}$. We have two cases:

Case 1. $x_{i_t}|x_{i'_t} \dots x_{i'_{t+1}} x_{i'_t}$. Let $i'_l = i_t$. It is clear that $j_t < j'_l$. In particular, $x_{i_t,j_t}(v/x_{i'_t,j'_l}) \in G(J)$.

Case 2. $x_{i_t} \nmid x_{i'_t} \dots x_{i'_{t+1}} x_{i'_t}$. Since $I_{\Delta^{\vee}}$ is matroidal, it follows from [12, Lemma 3.1.] that there exists $i'_l \notin \{i_1, \dots, i_r\}$ such that $x_{i_t}(x_{i'_t} \dots x_{i'_1}/x_{i'_l}) \in I_{\Delta^{\vee}}$. Therefore

$$x_{i'_r,j'_r} \dots x_{i'_{l-1},j'_{l-1}} x_{i'_{l+1},j'_{l+1}} \dots x_{i_t,j_t} x_{i'_{t-1},j'_{t-1}} \dots x_{i'_1,j'_1} \in G(J).$$

Therefore J is weakly polymatroidal, as desired. \square

It follows from Theorem 5.9 that we can add the condition "0-cleanness of $I_{\Delta}^{(m)}$ for all m > 0" to [1, Corollary 2.3.]:

COROLLARY 5.10. Let Δ be a pure simplicial complex and $I = I_{\Delta} \subset S$. Then the following conditions are equivalent:

- (i) Δ is a matroid;
- (ii) $S/I^{(m)}$ is 0-clean for all integer m > 0;
- (iii) $S/I^{(m)}$ is clean for some integer m > 0;
- (iv) $S/I^{(m)}$ is clean for some integer $m \geq 3$;
- (v) $S/I^{(m)}$ is Cohen-Macaulay for some integer $m \geq 3$;
- (vi) $S/I^{(m)}$ is Cohen-Macaulay for all integer m > 0.

Cowsik and Nori in [6] proved that for any homogeneous radical ideal I in the polynomial ring S, all the powers of I are Cohen-Macaulay if and only if I is a complete intersection. We call the simplicial complex Δ complete intersection if I_{Δ} is a complete intersection ideal. Therefore the simplicial complex Δ is a complete intersection if and only if I_{Δ}^{m} is Cohen-Macaulay for any $m \in \mathbb{N}$ ([29, Theorem 3]). We improve this result in the following. By the fact that if I_{Δ}^{m} is Cohen-Macaulay then I_{Δ}^{m} is equal to the mth symbolic power $I_{\Delta}^{(m)}$ of I_{Δ} we have

COROLLARY 5.11. Let Δ be a pure simplicial complex and $I = I_{\Delta} \subset S$. Then the following conditions are equivalent:

- (i) Δ is a complete intersection;
- (ii) S/I^m is 0-clean for all integer m > 0;
- (iii) S/I^m is clean for some integer m > 0;
- (iv) S/I^m is clean for some integer $m \geq 3$;
- (v) S/I^m is Cohen-Macaulay for some integer $m \geq 3$;
- (vi) S/I^m is Cohen-Macaulay for all integer m > 0.

Acknowledgements. The author would like to express his sincere gratitude to the referee for his/her helpful comments that helped to improve the quality of the manuscript. The research was in part supported by a grant from IPM (No. 96130025).

REFERENCES

- [1] S. Bandari and A. Soleyman Jahan, The cleanness of (symbolic) powers of Stanley-Reisner ideals. Czechoslovak Math. J. 67 (2017), 3, 767–778.
- [2] L.J. Billera and J.S. Provan, Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res. 5 (1980), 4, 576-594.
- [3] A. Björner and M.L. Wachs. Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), 4 1299–1327.

- [4] A. Björner and M.L. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), 3945–3975.
- [5] W. Bruns and J. Herzog, On multigraded resolutions. Math. Proc. Cambridge Philos. Soc. 118 (1995), 234–251.
- [6] R.C. Cowsik and M.V. Nori, On the fibres of blowing up. J. Indian Math. Soc. 40 (1976), 217–222.
- [7] A. Dress, A new algebraic criterion for shellability. Beitr. Algebra Geom. 34 (1993), 1, 45–55.
- [8] J.A. Eagon and V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality.
 J. Pure Appl. Algebra 130 (1998), 265–275.
- [9] S. Faridi, Monomial ideals via square-free monomial ideals. Lecture Notes Pure Appl. Math. 244 (2005), 85–114.
- [10] S. Faridi, Simplicial trees are sequentially Cohen-Macaulay. J. Pure Appl. Algebra 190 (2004), 1–3, 121–136.
- [11] M. Hachimori, Combinatorics of constructible complexes. Ph.D. thesis, Univ. of Tokyo, Tokyo, 2000.
- [12] J. Herzog and T. Hibi, Cohen-Macaulay polymatroidal ideals. European J. Combin. 27 (2006), 513-517.
- [13] J. Herzog and T. Hibi, Monomial ideals. Grad. Texts in Math. 260, Springer-Verlag, 2011.
- [14] J. Herzog, T. Hibi and X. Zheng. Monomial ideals whose powers have a linear resolution. Math. Scand. 95 (2004), 23–32.
- [15] J. Herzog and D. Popescu, Finite filtrations of modules and shellable multicomplexes. Manuscripta Math. 121 (2006), 3, 385–410.
- [16] J. Herzog, A. Soleyman Jahan and S. Yassemi, Stanley decompositions and partitionable simplicial complexes. J. Algebraic Combin. 27 (2008), 113–125.
- [17] J. Herzog, Y. Takayama and N. Terai, On the radical of a monomial ideal. Arch. Math. 85 (2005), 397–408.
- [18] J. Jonsson, Optimal decision trees on simplicial complexes. Electron. J. Combin. 12 (2005), 1, Research Paper R3, 31 p.
- [19] N.C. Minh and N.V. Trung, Cohen-Macaulayness of monomial ideals and symbolic powers of Stanley-Reisner ideals. Adv. Math. 226 (2011), 1285–1306.
- [20] F. Mohammadi and S. Moradi, Weakly polymatroidal ideals with applications to vertex cover ideals. Osaka J. Math. 47 (2010), 627–636.
- [21] S. Moradi, Homological invariants of the Stanley-Reisner ring of a k-decomposable simplicial complex. Asian-Eur. J. Math. 10 (2017), 3, Article ID 1750061, 10 p.
- [22] S. Moriyama and F. Takeuchi, Incremental construction properties in dimension two: shellability, extendable shellability and vertex decomposability. Discrete Math. **263** (2003), 295–296.
- [23] R. Rahmati-Asghar and S. Yassemi, k-decomposable monomial ideals. Algebra Colloq. 22 (2015), Spec. Iss. 1, 745–756.
- [24] Y.-H. Shen, Monomial ideals with linear quotients and componentwise (support-) linearity. arXiv:1404.2165v1.
- [25] R.S. Simon, Combinatorial properties of "cleanness". J. Algebra 167 (1994), 361–388.
- [26] A. Soleyman Jahan and X. Zheng, Pretty clean monomial ideals and linear quotients. J. Combin. Ser. A. 117 (2010), 104–110.

- [27] R. Stanley, Combinatorics and Commutative Algebra. Second Edition. Progr. Math. 41, Birkhäuser, Boston, 1995.
- [28] N. Terai and N.V. Trung, Cohen-Macaulayness of large powers of Stanley-Reisner ideals. Adv. Math. 229 (2012), 711–730.
- [29] N. Terai and K. Yoshida, Locally complete intersection Stanley-Reisner ideals. Illinois J. Math. 53 (2009), 2, 413–429.
- [30] M. Varbaro, Symbolic powers and matroids. Proc. Amer. Math. Soc. 139 (2011), 7, 2357–2366.
- [31] R. Woodroofe, Chordal and sequentially Cohen-Macaulay clutters. Electron. J. Combin. 18 (2011), 1, Research Paper P208, 20 p.

Received 8 September 2016

University of Maragheh,
Faculty of Basic Sciences,
Department of Mathematics,
P. O. Box 55136-553, Maragheh, Iran
Institute for Research
in Fundamental Sciences (IPM),
School of Mathematics,
P.O. Box 19395-5746, Tehran, Iran
rahmadsms@qmail.com