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In this paper, we introduce the concept of k-clean monomial ideals as an exten-
sion of clean monomial ideals and present some homological and combinatorial
properties of them. Using the hierarchal structure of k-clean ideals, we show
that a (d−1)-dimensional simplicial complex is k-decomposable if and only if its
Stanley-Reisner ideal is k-clean, where k ≤ d − 1. We prove that the classes of
monomial ideals like Cohen-Macaulay ideals of codimension 2, monomial ideals
of forest type without embedded prime ideal and symbolic powers of Stanley-
Reisner ideals of matroid complexes are k-clean for all k ≥ 0.
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INTRODUCTION

Let R be a Noetherian ring and M be a finitely generated R-module. It
is well known that there exists a so called prime filtration

F : 0 = M0 ⊂M1 ⊂ . . . ⊂Mr−1 ⊂Mr = M

that is such that Mi/Mi−1
∼= R/Pi for some Pi ∈ Supp(M). We call any such

filtration of M a prime filtration. Set Supp(F) = {P1, . . . , Pr}. Let Min(M)
denote the set of minimal prime ideals in Supp(M). If I is an ideal of R then
we set min(I) = Min(R/I). Dress [7] calls a prime filtration F of M clean
if Supp(F) = Min(M). The module M is called clean, if M admits a clean
filtration and R is clean if it is a clean module over itself.

Let S = K[x1, . . . , xn] be the polynomial ring in n indeterminate over a
field K. Let ∆ be a simplicial complex on the vertex set [n] = {1, 2, . . . , n}.
Dress [7] showed that ∆ is (non-pure) shellable in the sense of Björner and
Wachs [3], if and only if the Stanley-Reisner ring S/I∆ is clean. The result of
Dress is, in fact, the algebraic counterpart of shellability for simplicial com-
plexes. Some subclasses of shellable complexes are k-decomposable simplicial
complexes which were introduced by Billera and Provan [2] on pure simplicial
complexes and then by Woodroofe [31] on not necessarily pure ones. Simon
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in [25] introduced “completed clean ideal trees” as an algebraic counterpart of
pure k-decomposable complexes. Actually, in the sense of Simon, the Stanley-
Reisner ideal of a k-decomposable complex is completed clean ideal tree.

Let I ⊂ S be a monomial ideal. We call I Cohen-Macaulay (clean) if the
quotient ring S/I has this property. In this paper, we define the concept of
k-clean monomial ideals. The class of k-clean monomial ideals are, actually,
subclass of clean monomial ideals. It is the aim of this paper to study the
properties of k-clean monomial ideals and describe relations between these
ideals and k-decomposable simplicial complexes. Moreover, some classes of k-
clean monomial ideals are introduced. Also, some results of [1,16] are extended.

In Section 2, we introduce k-clean monomial ideals. We show that k-
clean monomial ideals are clean and, also, every clean monomial ideal is k-
clean for some k ≥ 0 (see Theorem 2.4). In Section 3, we discuss some basic
properties of k-clean ideals. Some homological invariants of k-clean monomial
ideals like depth and Castelnuovo-Mumford regularity are described in this
section. In the fourth section, we show that a (d − 1)-dimensional simplicial
complex ∆ is k-decomposable if and only if its associated Stanley-Reisner ideal
is k-clean, where k ≤ d (see Theorem 4.1). The last section is devoted to
presenting some examples of k-clean monomial ideals. We show that irreducible
monomial ideals and monomial complete intersection ideals are k-clean, for all
k ≥ 0 (see Theorems 5.1 and 5.2). Then by showing that Cohen-Macaulay
monomial ideals of codimension 2 (see Theorem 5.4) are k-clean, we improve
Proposition 1.4. of [16]. In Theorem 5.6, we show that a monomial ideal
of forest type which has no embedded prime ideal is k-clean, for all k ≥ 0.
Finally, in Theorem 5.9, we show that symbolic powers of Stanley-Reisner
ideals of matroid complexes are k-clean for all k ≥ 0. In this way, we improve
Theorem 2.1 of [1].

1. PRELIMINARIES

Let ∆ be a simplicial complex of dimension d − 1 with the vertex set
[n] := {1, 2, . . . , n}. Let K be a field. The Stanley-Reisner monomial ideal of
∆ is denoted by I∆ and it is a squarefree monomial ideal in the polynomial
ring S = K[x1, . . . , xn] generated by the monomials xF =

∏
i∈F

xi which F is a

non-face in ∆. The quotient ring S/I∆ is called the face ring or Stanley-
Reiner ring of ∆. If F(∆) = {F1, . . . , Fr} is the set of maximal faces (facets)
of ∆ then we set ∆ = 〈F1, . . . , Fr〉.

For all undefined terms or notions on simplicial complexes we refer the
reader to the books [13] or [27].
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Given a simplicial complex ∆ on [n], the link, star and deletion of σ in
∆ are defined, respectively, by

link∆(σ) = {F ∈ ∆ : σ ∩ F = ∅, σ ∪ F ∈ ∆},
star∆(σ) = {F ∈ ∆ : σ ∪ F ∈ ∆} and
∆\σ = {F ∈ ∆ : σ * F}.

Moreover, the Alexander dual of ∆ is defined as ∆∨ = {F ∈ ∆ : [n]\F 6∈ ∆}.
Let I ⊂ S be a squarefree monomial ideal generated by monomials of

degree at least 2. Then there exists a simplicial complex ∆ on [n] such that
I = I∆. The Alexander dual of I is defined I∨ = I∆∨ .

Definition 1.1 ( [31]). Let ∆ be a simplicial complex on vertex set [n].
Then a face σ ∈ ∆ is called a shedding face if it satisfies the following
property:

no facet of (star∆σ)\σ is a facet of ∆\σ.

Definition 1.2 ([31]). A (d − 1)-dimensional simplicial complex ∆ is re-
cursively defined to be k-decomposable if either ∆ is a simplex or else has
a shedding face σ with dim(σ) ≤ k such that both link∆σ and ∆\σ are k-
decomposable.

We consider the complexes {} and {∅} to be k-decomposable for k ≥ −1.
Also k-decomposability implies to k′-decomposability for k′ ≥ k.

A 0-decomposable simplicial complex is called vertex-decomposable.

We say that the simplicial complex ∆ is (non-pure) shellable if its fa-
cets can be ordered F1, F2, . . . , Fr such that, for all r ≥ 2, the subcomplex
〈F1, . . . , Fj−1〉 ∩ 〈Fj〉 is pure of dimension dim(Fj)− 1 [3]. It was shown in [31]
or [18] that a (d− 1)-dimensional (not necessarily pure) simplicial complex ∆
is shellable if and only if it is (d− 1)-decomposable.

Let I be a monomial ideal of S. We denote by G(I) the set of minimal
monomial generators of I. Let min(I) be the set of minimal (under inclusion)
prime ideals of S containing I.

For a ∈ Nn, set xa =
∏

a(i)>0

x
a(i)
i and define the support of a by supp(a) =

{i : a(i) > 0}. We set supp(xa) := supp(a). Also, we define ā an n-tuple in
{0, 1}n with ā(i) = 1 if a(i) 6= 0 and ā(i) = 0, otherwise. Set νi(x

a) := a(i).

Let u, v ∈ S be two monomials. We set [u, v] = 1 if for all i ∈ supp(u),
xaii - v and [u, v] 6= 1, otherwise.

For the monomial u ∈ S and the monomial ideal I ⊂ S set

Iu = 〈v ∈ G(I) : [u, v] 6= 1〉 and Iu = 〈v ∈ G(I) : [u, v] = 1〉.
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Definition 1.3 ([23]). Let I be a monomial ideal with the minimal system
of generators {u1, . . . , ur}. The monomial v = xa1

1 . . . xann is called shedding
if Iv 6= 0 and for each ui ∈ G(Iv) and each l ∈ supp(u) there exists uj ∈ G(Iv)
such that uj : ui = xl.

Definition 1.4 ([23]). Let I be a monomial ideal minimally generated with
set {u1, . . . , ur}. We say I is a k-decomposable ideal if r = 1 or else has a
shedding monomial v with |supp(v)| ≤ k + 1 such that the ideals Iv and Iv
are k-decomposable. (Note that since the number of minimal generators of I
is finite, the recursion procedure will stop.)

A 0-decomposable monomial ideal is called variable-decomposable.

Theorem 1.5 ([23, Theorem 2.10]). Let ∆ be a (not necessarily pure) (d−
1)-dimensional simplicial complex on vertex set [n]. Then ∆ is k-decomposable
if and only if I∆∨ is k-decomposable, where k ≤ d− 1.

Definition 1.6 ([20]). A monomial ideal I is called weakly polymatroi-
dal if for every two monomials u = xa1

1 . . . xann >lex v = xb11 . . . xbnn in G(I)
such that a1 = b1, . . . , at−1 = bt−1 and at > bt, there exists j > t such that
xt(v/xj) ∈ I.

Theorem 1.7 ([24, Theorem 4.33]). Every weakly polymatroidal ideal I
is variable-decomposable.

2. k-CLEAN MONOMIAL IDEALS

In this section, we extend the concept of cleanness introduced by Dress [7].
Let I ⊂ S be a monomial ideal. A prime filtration

F : (0) = M0 ⊂M1 ⊂ . . . ⊂Mr−1 ⊂Mr = S/I

of S/I is called multigraded, if all Mi are multigraded submodules of S/I,
and if there are multigraded isomorphisms Mi/Mi−1

∼= S/Pi(−ai) with some
ai ∈ Zn and some multigraded prime ideals Pi.

A multigraded prime filtration F of S/I is called clean if Supp(F) ⊆
min(I).

Definition 2.1. Let I ⊂ S be a monomial ideal. A non unit monomial
u 6∈ I is called a cleaner monomial of I if min(I + Su) ⊆ min(I).

Definition 2.2. Let I ⊂ S be a monomial ideal. We say that I is k-clean
whenever I is a prime ideal or I has no embedded prime ideals and there exists
a cleaner monomial u 6∈ I with |supp(u)| ≤ k + 1 such that both I : u and
I + Su are k-clean.
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We recall the concept of ideal tree from [25]:
Let I ⊂ S be a k-clean monomial ideal. By the definition, there are

cleaner monomials u1, u2, . . . with |supp(ui)| ≤ k+1 decomposing I. Therefore
we obtain the rooted, finite, directed and binary tree T :

I

u1

J1 := I : u1 J2 := I + Su1

J1 : u2 J1 + Su2 J2 : u3 J2 + Su3

u2 u3

u4 u5 u6 u7

...
...

...
...

...
...

...
...

T is called the ideal tree of I and the number of all cleaner monomials ap-
peared in T is called the length of T . We denote the length of T by l(T ).

We define the k-cleanness length of the k-clean monomial ideal I by

l(I) = min{l(T ) : T is an ideal tree of I}.

Example 2.3. Consider the monomial ideal

I = (x1x2x4, x1x2x5, x1x2x6, x1x3x5, x1x3x6, x1x4x5, x2x3x6,

x2x4x5, x2x5x6, x3x4x5, x3x4x6)

and
J = (x1x2, x1x3, x1x4)

of the polynomial ring S = K[x1, . . . , x6]. I and J are, respectively, 1-clean and
0-clean and have ideal trees T1 and T2 such that the cleaner monomials appea-
red in T1 and T2 are, respectively, x2x3, x1x4, x1x5, x2x4, x2x5, x2, x1, x3x6, x3

and x1.

Theorem 2.4. Every k-clean monomial ideal I is clean. Also, every clean
monomial ideal is k-clean for some k ≥ 0.

Proof. Let I be a k-clean monomial ideal. We use induction on the k-
cleanness length of I. Let I be not prime and there exists a cleaner monomial
u 6∈ I of multidegree a with |supp(u)| ≤ k+ 1 such that both I : u and I + Su
are k-clean. By induction, I : u and I + Su are clean. Let

F1 : I + Su = J0 ⊂ J1 ⊂ . . . ⊂ Jr = S

and

F2 : 0 =
L0

I : u
⊂ L1

I : u
⊂ . . . ⊂ Ls

I : u
=

S

I : u
.
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be clean prime filtrations and let (Li/I : u)/(Li−1/I : u) ∼= S/Qi(−ai) whereQi
are prime ideals. It is known that the multiplication map ϕ : S/I : u(−a)

.u−→
I +Su/I is an isomorphism. Restricting ϕ to Li/I : u yields a monomorphism
ϕi : Li/I : u

.u−→ I + Su/I. Set Hi/I := ϕi(Li/I : u). Hence Hi/I ∼= (Li/I :
u)(−a). It follows that

Hi

Hi−1

∼=
Hi/I

Hi−1/I
∼=

(Li/I : u)(−a)

(Li−1/I : u)(−a)
∼=

S

Qi
(−a− ai).

Therefore we obtain the following prime filtration induced from F2:

F3 : I = H0 ⊂ H1 ⊂ . . . ⊂ Hs = I + Su.

By adding F1 to F3 we obtain the following prime filtration

F : I = H0 ⊂ H1 ⊂ . . . ⊂ Hs = I + Su ⊂ J1 ⊂ . . . ⊂ Jr = S.

Finally, Supp(F) = Supp(F1)∪Supp(F2) ⊂ min(I+Su)∪min(I : u) ⊆ min(I)
and therefore I is clean.

To prove the second assertion, suppose that I is a clean monomial ideal.
If I is prime then we are done. Suppose that I is not prime and let

F : (0) = M0 ⊂M1 ⊂ . . . ⊂Mr−1 ⊂Mr = S/I

be a clean prime filtration of S/I with Mi/Mi−1
∼= S/Pi(−ai). We use in-

duction on the length of the prime filtration F . Since that Ass(S/I) ⊆
Supp(F) ⊆ min(I), we have Ass(S/I) = min(I). Hence I has no embedded
prime ideal. It follows from Proposition 10.1. of [15] that there is a chain of
monomial ideals I = I0 ⊂ I1 ⊂ . . . ⊂ Ir = S and monomials ui of multidegree
ai such that Ii = Ii−1 + Sui and Ii−1 : ui = Pi. Since that I + Su1 has a clean
filtration, it is k-clean, by induction hypothesis, where |supp(u1)| ≤ k+ 1. On
the other hand, I + Su1/I ∼= S/P1. Therefore min(I + Su1) = {P1} ⊂ min(I).
This means that I is k-clean. �

3. SOME PROPERTIES OF k-CLEAN MONOMIAL IDEALS

Theorem 3.1. Let I ⊂ S be k-clean. Then for all monomial u ∈ S, I : u
is k-clean.

Proof. We use induction on the k-cleanness length of I. If I is prime then
I : u is prime, too and we have nothing to prove. Assume that I is not prime.
Suppose v is a cleaner monomial of I with |supp(v)| ≤ k + 1 and I : v and
I + (v) are k-clean. We consider two cases:

Case 1. Let v|u. Then I : u = (I : v) : u/v and by induction hypothesis
I : u is k-clean.
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Case 2. Let v - u. We show that v/ gcd(u, v) is a cleaner monomial of
I : u. We have

(I : u)+(
v

gcd(u, v)
) = (I+(v)) : u and (I : u) :

v

gcd(u, v)
= (I : v) :

u

gcd(u, v)
.

By induction, (I : u) + ( v
gcd(u,v)) and (I : u) : v

gcd(u,v) are k-clean. Since

min(I + (v)) ⊂ min(I), by some elementary computations, we obtain that
min((I + (v)) : u) ⊂ min(I : u). Therefore v/ gcd(u, v) is a cleaner monomial
of I : u. �

Theorem 3.2. The radical of each k-clean monomial ideal is k-clean.

Proof. Let I = (xa1 , . . . ,xar) be a k-clean monomial ideal with cleaner
monomial u = xb with |supp(u)| ≤ k+ 1. We use induction on the k-cleanness
length of I. Denote the radical of I by

√
I. By induction hypothesis,

√
I + Su

and
√
I : u are k-clean. Let v = xsupp(u) and let w be the product of variables

xi with i ∈ supp(u) and aj(i) > b(i) > 0 for some 1 ≤ j ≤ r.
√
I + Sv

is k-clean, because
√
I + Sv =

√
I + Su. Also,

√
I : v = (

√
I : u) : w and

so
√
I : v is k-clean, by Theorem 3.1. On the other hand, min(

√
I + Sv) ⊂

min(
√
I + Su) = min(I + Su) ⊂ min(I) = min(

√
I) and so v is a cleaner

monomial of
√
I. �

Let u = xa1
i1
. . . xatit ∈ S. The polarization of u is defined by

up = xi11 . . . xi1a1 . . . xit1 . . . xitat .

If I ⊂ S is a monomial ideal. The polarization of I is a monomial ideal of
Sp = K[xij : xij |up for some u ∈ G(I)] given by Ip = (up : u ∈ G(I)).

Define the K-algebra homomorphism π : Sp → S by π(xij) = xi.

Theorem 3.3. Let I be a monomial ideal with no embedded prime ideal.
If Ip is k-clean then I is k-clean, too.

Proof. We use induction on the k-cleanness length of Ip. If I is a prime
ideal then we have nothing to prove. Suppose that I is not prime. Let u be a
cleaner monomial of Ip with |supp(u)| ≤ k + 1 and let Ip : u and Ip + (u) be
k-clean. We claim that π(u) is a cleaner monomial of I. Note that

I : π(u) = π(Ip : u) and I + (π(u)) = π(Ip + (u)).

By induction hypothesis, I : π(u) and I+(π(u)) are k-clean. Since |supp(π(u))|
≤ |supp(u)| ≤ k + 1, it remains to show that π(u) is a cleaner monomial of
I. Let P ∈ min(I + (π(u))). Hence there exists Q ∈ min(Ip + (u)) such that
P = π(Q). Since Q ∈ min(Ip), it follow that P ∈ min(I), as desired. �

Lemma 3.4. Let I ⊂ S be a k-clean monomial ideal with cleaner mono-
mial u. Then up is a cleaner monomial of Ip.
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Proof. Let Q ∈ min(Ip + (up)). Then Q ∈ Ass(Sp/Ip + (up)). By Corol-
lary 2.6 of [9], π(Q) ∈ Ass(S/I + (u)) = min(I + (u)) ⊂ min(I). Again, by
Proposition 2.3 of [9], Q ∈ min(Ip), as desired. �

The following theorem describes projective dimension and Castelnuovo-
Mumford regularity of k-clean monomial ideals.

Theorem 3.5. Let I ⊂ S be a k-clean monomial ideal with the cleaner
monomial u. Then

(i) pd(S/I) = max{pd(S/I + (u)),pd(S/I : u)};
(ii) reg(S/I) = max{reg(S/I + (u)), reg(S/I : u) + deg(u)}.

Proof. (i) Without loss of generality we may assume that I ⊂ m2. By
Corollary 1.6.3. of [13], pd(S/I) = pd(Sp/Ip) and reg(S/I) = reg(Sp/Ip).
Let ∆ be a simplicial complex with I∆ = Ip. By Lemma 3.4, up is a cleaner
monomial of Ip. Let up = xσ for some σ ∈ ∆. Therefore ∆ is a k-decomposable
simplicial complex with shedding monomial σ, by Theorem 4.1. Now it follows
from Theorem 2.8 of [21] that

pd(S/I) = pd(Sp/I∆) = max{pd(Sp/I∆\σ), pd(Sp/Jlink∆σ)}
= max{pd(Sp/(I + (u))p), pd(Sp/(I : u)p)}
= max{pd(S/I + (u)),pd(S/I : u)}

where Jlink∆σ is the Stanley-Reisner ideal of link∆σ considered as a complex
on V (∆)\σ.

(ii) follows by a similar argument from Theorem 2.8 of [21] and Theo-
rem 4.1. �

Remark 3.6. The concept of sequentially Cohen-Macaulayness was intro-
duced in [27] for finitely generated (graded) modules. We specially recall this
concept for the quotient rings. Let I ⊂ S be a monomial ideal. We say that I
is sequentially Cohen-Macaulay if there exists a finite filtration

F : 0 = M0 ⊂M1 ⊂ . . . ⊂Mr = S/I

of submodules of S/I with these properties that Mi/Mi−1 is Cohen-Macaulay
and

dim(M1/M0) ≤ dim(M2/M1) ≤ . . . ≤ dim(Mr/Mr−1.

It was proven in [15] that cleanness implies sequentially Cohen-Macaulayness.
Therefore the class of k-clean monomial ideals is contained in the class of
sequentially Cohen-Macaulay monomial ideals. In particular, since that every
unmixed sequentially Cohen-Macaulay monomial ideal is Cohen-Macaulay, we
conclude that the unmixed k-clean monomial ideals are Cohen-Macaulay.
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4. A VIEW TOWARD k-DECOMPOSABLE SIMPLICIAL COMPLEXES

In this section, we prove the main result of this paper. In fact, we
show that a squarefree k-clean monomial ideal is Stanley-Reisner ideal of a
k-decomposable simplicial complex, and vice versa.

Theorem 4.1. Let ∆ be a (d− 1)-dimensional simplicial complex. Then
σ ∈ ∆ is a shedding face of ∆ if and only if xσ is a cleaner monomial of I∆.

In particular, ∆ is k-decomposable if and only if I∆ is k-clean, where
0 ≤ k ≤ d− 1.

Proof. We first show that σ is a shedding face of ∆ if and only if min(I∆ +
(xσ)) ⊆ min(I∆). Since that Stanley-Reisner rings are reduced, it follows that

min(I∆) = {PF c : F ∈ F(∆)}

and

min(I∆ + (xσ)) = {PF c : F ∈ F(∆\σ)}.

Let σ be the shedding face of ∆. To show that xσ is a cleaner monomial
of I∆, it suffices to prove F(∆\σ) ⊆ F(∆). Suppose, on the contrary, that
F ∈ F(∆\σ) and F $ G with G ∈ F(∆). This implies that σ ⊂ G and so
G ∈ star∆σ. On the other hand, since F is a facet of ∆\σ, it follows that
there is t ∈ σ such that σ\{t} ⊂ F . We claim that G = F ∪̇{t}. The inclusion
“⊇” is clear. For the converse inclusion, if s ∈ G\(F ∪ {t}) for some s, then
σ * F ∪ {s} and so F ∪ {s} ∈ F(∆\σ), a contradiction. Therefore G = F ∪̇{t}
and it follows that F ∈ F((star∆σ)\σ). But this contradicts the assumption
that σ is a shedding face of ∆. Hence xσ is a cleaner monomial.

Let ∆ be k-decomposable with the shedding face σ ∈ ∆. By the first part,
xσ is a cleaner monomial of I∆. To show that I∆ is k-clean, we use induction
on the number of the facets of ∆. If ∆ is a simplex then the assertion is
trivial. So assume that |F(∆)| > 1. It is easy to check that Jlink∆σ = I∆ : xσ

and I∆\σ = I∆ + (xσ). By induction hypothesis, link∆σ and ∆\σ are k-
decomposable if and only if I∆ : xσ and I∆ + (xσ) are k-clean. Therefore I∆ is
k-clean.

The reverse directions of both parts follow easily in similar arguments. �

Remark 4.2. Note that a k-clean monomial ideal need not be k′-clean
for k′ < k. Consider the monomial ideal I ⊂ K[x1, . . . , x6] with the minimal
generator set

G(I) = {x1x2x4, x1x2x5, x1x2x6, x1x3x5, x1x3x6, x1x4x5,

x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6}.
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I is the Stanley-Reisner ideal of the simplicial complex

∆ = 〈124, 125, 126, 135, 136, 145, 236, 245, 256, 345, 346〉
on [6]. It was shown in [25] that ∆ is shellable but not vertex-decomposable. It
follows from Theorem 4.1 that I is clean but not 0-clean. To see more examples
of clean ideals which are not 0-clean we refer the reader to [11,22].

Remark 4.3. Let I be a clean monomial ideal and dim(S/I) = d. By
Theorem 2.4, I is k-clean for some k ≥ 0 with cleaner monomial u. It follows
from Theorem 3.2 that

√
I is k-clean with cleaner monomial v = xsupp(u). Let

I∆ =
√
I for some simplicial complex ∆ on [n]. By Theorem 4.1, we have

|supp(u)| = |supp(v)| ≤ dim(∆) + 1 = d. Therefore I is (d− 1)-clean.
On the other hand, every k-clean monomial ideal is also (k + 1)-clean.

This means that the k-cleanness is a hierarchical structure. Therefore we have
the following implications:

0-clean ⇒ 1-clean ⇒ . . .⇒ (d− 1)-clean ⇔ clean.

In Remark 4.2 we implied that above implications are strict.

Corollary 4.4. Let I ⊂ S be a squarefree monomial ideal generated
by monomials of degree at least 2. Then I is k-clean if and only if I∨ is
k-decomposable.

Proof. Let ∆ be a simplicial complex on [n] such that I = I∆. The
assertion follows from Theorems 4.1 and 1.5. �

5. SOME CLASSES OF k-CLEAN IDEALS

In this section, we introduce some classes of k-clean monomial ideals.

5.1. IRREDUCIBLE MONOMIAL IDEALS

Theorem 5.1. Every irreducible monomial ideal is 0-clean.

Proof. Let I be a irreducible monomial ideal. We want to show that I
is 0-clean. By Theorem 1.3.1. of [13], I is generated by pure powers of the
variables. Without loss of generality we may assume that I = (xa1

1 , . . . , x
am
m )

with ai 6= 0 for all i. We use induction on
∑m

i=1 ai. If
∑m

i=1 ai = m, then I is
prime and we are done. Suppose that

∑m
i=1 ai > m. So we can assume that

a1 > 1. We have

I : x1 = (xa1−1
1 , xa2

2 , . . . , x
am
m ) and I + (x1) = (x1, x

a2
2 , . . . , x

am
m ).

By induction hypothesis, I : x1 and I+(x1) are 0-clean. Clearly, x1 is a cleaner
monomial and so the proof is completed. �
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5.2. MONOMIAL COMPLETE INTERSECTION IDEALS

Theorem 5.2. Let I ⊂ S be a monomial complete intersection ideal.
Then S/I is 0-clean.

Proof. Let G(I) = {M1, . . . ,Mr}. By the assumption M1, . . . ,Mr is a
regular sequence. Hence gcd(Mi,Mj) = 1 for all i 6= j. If I is a primary
ideal then we are done, by Theorem 5.1. Suppose that I is not primary. We
use induction on n the number of variables. Let |supp(M1)| > 1 and let
ν1(M1) = a. Then

I : xa1 = (M1/x
a
1,M2, . . . ,Mr) and I + (xa1) = (xa1,M2, . . . ,Mr).

Since that (M1/x
a
1,M2, . . . ,Mr) and (xa1,M2, . . . ,Mr) are complete intersection

monomial ideals with the number of variables less that n, we deduce that I : xa1
and I+(xa1) are 0-clean, by induction hypothesis. Set J := (M2, . . . ,Mr). Since
that

min(I + (xa1)) = {P + (x1) : P ∈ min(J)}
and

min(I) = {P + (xi) : P ∈ min(J) and xi|M1}.

we conclude that min(I+(xa1)) ⊂ min(I) and so xa1 is a cleaner monomial. �

5.3. COHEN-MACAULAY MONOMIAL IDEALS OF CODIMENSION 2

Proposition 2.3 from [14] says that if I ⊂ S is a squarefree monomial ideal
with 2-linear resolution, then after suitable renumbering of the variables, one
has the following property:

if xixj ∈ I with i 6= j, k > i and k > j, then either xixk or xjxk belongs to I.

Let I has a 2-linear resolution and the monomials in G(I) be ordered by the
lexicographical order induced by xn > xn−1 > . . . > x1. Let u = xsxt > v =
xixj be squarefree monomials in G(I) with s < t and i < j. We have t ≥ j. If
t = j, then xs(v/xi) = u ∈ G(I). If t > j then by the above property either
xixt ∈ G(I) or xjxt ∈ G(I). This immediately implies the following lemma.

Lemma 5.3. If I is a squarefree monomial ideal generated in degree 2
which has a linear resolution, then after suitable renumbering of the variables,
I is weakly polymatroidal.

Theorem 5.4. Let I ⊂ S be a monomial ideal which is Cohen-Macaulay
and of codimension 2. Then S/I is 0-clean.



382 Rahim Rahmati-Asghar 12

Proof. Since I has no embedded prime ideals, if we show that Ip is 0-
clean then it follows from Theorem 3.3 that I is 0-clean. Let ∆ be a simplicial
complex with I∆ = Ip. Since I is Cohen-Macaulay, by Corollary 1.6.3. of [13],
I∆ is Cohen-Macaulay, too. In particular, I∨∆ has linear resolution, by the
Eagon-Reiner theorem [8]. It follows from Lemma 5.3 and Theorems 1.7 and
4.1 that I∆ = Ip is 0-clean, as desired. �

5.4. MONOMIAL IDEALS OF FOREST TYPE
WHICH HAVE NO EMBEDDED PRIME IDEAL

We recall some notions from [26]:

Let I be a monomial ideal with G(I) = {u1, . . . , ur}. A variable xi is
called a free variable of I if there exists a 1 ≤ t ≤ r such that xi|ut and xi - uj
for any j 6= t. A monomial ut is called a leaf of G(I) if ut is the only generator
of I, or there exists a 1 ≤ j ≤ r, j 6= t such that gcd(ut, ui)| gcd(ut, uj) for all
i 6= t. In this case uj is called a branch of ut. We say that I is a monomial
ideal of forest type if any subset of G(I) has a leaf. A simplicial complex
∆ is a simplicial forest in sense of [10] if I(∆) is a monomial ideal of forest
type.

Lemma 5.5. Let I ⊂ S be a monomial ideal and u a monomial in S which
is regular over S/I. If I is k-clean then I + (u) and I : u are k-clean.

Proof. Since u is regular over S/I, we have I : u = I. This implies that
I : u is k-clean. It remains to show that I + (u) is k-clean.

If I is a prime ideal then, by using induction on the |supp(u)|, it is easily
verified that I + (u) is k-clean. So suppose that I is not prime. We use
induction on the k-cleanness length of I. Let v be a cleaner monomial of I
with |supp(v)| ≤ k+ 1. We claim that v is a cleaner monomial of J = I + (u).
Since u is regular over S/I and min(I + (v)) ⊆ min(I), we have gcd(u,w) = 1
for all w ∈ G(I) ∪ {v}. It follows that J : v = (I : v) + (u) and u is regular on
S/I + (v) and S/I : v. Now, by induction hypothesis, J : v = (I : v) + (u) and
J + (v) = (I + (v)) + (u) are k-clean.

Now let P ∈ min(J + (v)). Then there exists xi with xi|u such that
xi ∈ P . We have P\xi ∈ min(I + (v)) and so P\xi ∈ min(I). It follows that
P ∈ min(J), as desired. �

Theorem 5.6. Let I ⊂ S be a monomial ideal of forest type which has
no embedded prime ideal. Then I is 0-clean.

Proof. Our argument uses an idea from the proof presented in [26, Theo-
rem 3.4.]. We use induction on n the number of variables. Let I be minimally
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generated by u1, . . . , ur. Let xi be a free variable of I. Then there exists
1 ≤ j ≤ r such that xi|uj . Let νi(uj) = a and set u′ = uj/x

a
i . It is clear that

I : xai = (u1, . . . , ur−1, u
′) and I + (xai ) = (u1, . . . , ur−1, x

a
i ).

By Lemma 3.1 of [26], I : xai = (u1, . . . , ur−1, u
′) is a monomial ideal of forest

type. Furthermore, the minimal prime ideals of (u1, . . . , ur−1, u
′) are exactly

the prime minimal ideals of I which does not contain xi. Therefore I : xai
has no embedded prime ideal and so it is 0-clean, by induction. On the other
hand, (u1, . . . , ur−1) is a monomial ideal of forest type and it has no embedded
prime ideal. It follows from induction hypothesis that (u1, . . . , ur−1) is 0-clean.
Finally, Lemma 5.5 obtains that I + (xai ) is 0-clean.

Note that

min(I + (xai )) = {Q+ (xi) : Q ∈ min((u1, . . . , ur−1))}

and

min(I) = {Q+ (xj) : Q ∈ min((u1, . . . , ur−1)), xj |ur}.

Since xi|ur, it follows that min(I + (xai )) ⊆ min(I). Therefore xai is a cleaner
monomial. �

The nonface complex or the Stanley-Reisner complex of I is deno-
ted by δN (I) and it is the simplicial complex over a set of vertices {v1, . . . , vn}
defined by

δN (I) = {{vi1 , . . . , vis} : xi1 . . . xis 6∈ I}.

Let I(∆) be the facet ideal of a simplicial complex ∆. Set ∆N :=
δN (I(∆)).

Corollary 5.7. Let ∆ be a simplicial forest. Then ∆N is vertex-
decomposable.

Proof. Since I(∆) is a monomial ideal of forest type, I∆N
= I(∆) is

0-clean, by Theorem 5.6. It follows from Theorem 4.1 that ∆N is vertex de-
composable. �

Remark 5.8. In [26, Theorem 3.4.], it was shown that every monomial
ideal of forest type is pretty clean. A clean monomial ideal is a pretty clean
ideal which has no embedded prime ideal. Hence it follows from [26, Theorem
3.4.] that every monomial ideal of forest type with no embedded prime ideal is
clean. Theorem 5.6 improves this result.
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5.5. SYMBOLIC POWERS OF STANLEY-REISNER IDEALS
OF MATROID COMPLEXES

Let ∆ be a simplicial complex and let I
(m)
∆ denote the mth symbolic

power of I∆. Minh and Trung [19] and Varbaro [30] independently proved that

∆ is a matroid if and only if I
(m)
∆ is Cohen-Macaulay for all m ∈ N. Later,

in [28], Terai and Trung showed that ∆ is a matroid if and only if I
(m)
∆ is

Cohen-Macaulay for some integer m ≥ 3. Recently, Bandari and Soleyman

Jahan [1] proved that if ∆ is a matroid, then I
(m)
∆ is clean for all m ∈ N. In

this section, we improve this result by showing that if ∆ is a matroid, then

I
(m)
∆ is 0-clean for all m ∈ N.

Theorem 5.9. Let ∆ be a matroid complex with I = I∆. Then for all
m ≥ 1, I(m) is 0-clean.

Proof. Let ∆ = 〈F1, . . . , Ft〉. Then I = I∆ =
⋂t
i=1 PF c

i
and (I∆)(m) =⋂t

i=1(PF c
i
)(m). Since ∆ is a matroid and I is Cohen-Macaulay, it follows that

I(m) has no embedded prime ideal. Therefore if we show that (I(m))p is 0-clean
then the proof is completed, by Theorem 3.3.

In [1] the authors introduced an ordering on the variables of Sp and
showed that ((I(m))p)∨ has linear quotients with respect to this ordering. We
improve this result by considering the same ordering to show that ((I(m))p)∨

is weakly polymatroidal. Then by Theorem 1.7 and Corollary 4.4, (I(m))p is
0-clean. We use some notations of the proof of [1, Theorem 2.1.]. It is known
that ∆c is a matroid. Let dim(∆c) = r − 1. We set J = ((I(m))p)∨. Then

G(J) = {xi1,j1xi2,j2 . . . xir,jr : {i1, . . . , ir} is a facet of ∆c}

where 1 ≤ jl ≤ m and
∑r

l=1 jl ≤ m+ r − 1.

Consider the order < on the variables of Sα by setting xi,j > xi′,j′ if either
j < j′, or j = j′ and i < i′. Let u, v ∈ G(J) with u = xir,jr . . . xi2,j2xi1,j1 >
v = xi′r,j′r . . . xi′2,j′2xi′1,j′1 such that xil,jl = xi′l,j

′
l

for all l > t and xit,jt > xi′t,j′t .
We have two cases:

Case 1. xit |xi′r . . . xi′t+1
xi′t . Let i′l = it. It is clear that jt < j′l. In

particular, xit,jt(v/xi′l,j
′
l
) ∈ G(J).

Case 2. xit - xi′r . . . xi′t+1
xi′t . Since I∆∨ is matroidal, it follows from [12,

Lemma 3.1.] that there exists i′l 6∈ {i1, . . . , ir} such that xit(xi′r . . . xi′1/xi′l) ∈
I∆∨ . Therefore

xi′r,j′r . . . xi′l−1,j
′
l−1
xi′l+1,j

′
l+1

. . . xit,jtxi′t−1,j
′
t−1

. . . xi′1,j′1 ∈ G(J).

Therefore J is weakly polymatroidal, as desired. �
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It follows from Theorem 5.9 that we can add the condition “0-cleanness
of I

(m)
∆ for all m > 0” to [1, Corollary 2.3.]:

Corollary 5.10. Let ∆ be a pure simplicial complex and I = I∆ ⊂ S.
Then the following conditions are equivalent:

(i) ∆ is a matroid;

(ii) S/I(m) is 0-clean for all integer m > 0;

(iii) S/I(m) is clean for some integer m > 0;

(iv) S/I(m) is clean for some integer m ≥ 3;

(v) S/I(m) is Cohen-Macaulay for some integer m ≥ 3;

(vi) S/I(m) is Cohen-Macaulay for all integer m > 0.

Cowsik and Nori in [6] proved that for any homogeneous radical ideal I
in the polynomial ring S, all the powers of I are Cohen-Macaulay if and only
if I is a complete intersection. We call the simplicial complex ∆ complete
intersection if I∆ is a complete intersection ideal. Therefore the simplicial
complex ∆ is a complete intersection if and only if Im∆ is Cohen-Macaulay for
any m ∈ N ( [29, Theorem 3]). We improve this result in the following. By
the fact that if Im∆ is Cohen-Macaulay then Im∆ is equal to the mth symbolic

power I
(m)
∆ of I∆ we have

Corollary 5.11. Let ∆ be a pure simplicial complex and I = I∆ ⊂ S.
Then the following conditions are equivalent:

(i) ∆ is a complete intersection;

(ii) S/Im is 0-clean for all integer m > 0;

(iii) S/Im is clean for some integer m > 0;

(iv) S/Im is clean for some integer m ≥ 3;

(v) S/Im is Cohen-Macaulay for some integer m ≥ 3;

(vi) S/Im is Cohen-Macaulay for all integer m > 0.
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