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In this paper, we introduce the concept of k-clean monomial ideals as an exten-
sion of clean monomial ideals and present some homological and combinatorial
properties of them. Using the hierarchal structure of k-clean ideals, we show
that a (d —1)-dimensional simplicial complex is k-decomposable if and only if its
Stanley-Reisner ideal is k-clean, where kK < d — 1. We prove that the classes of
monomial ideals like Cohen-Macaulay ideals of codimension 2, monomial ideals
of forest type without embedded prime ideal and symbolic powers of Stanley-
Reisner ideals of matroid complexes are k-clean for all k& > 0.
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INTRODUCTION

Let R be a Noetherian ring and M be a finitely generated R-module. It
is well known that there exists a so called prime filtration

F:0=MyCcMyC..CM,_1CM,=M

that is such that M;/M;_1 = R/P; for some P; € Supp(M). We call any such
filtration of M a prime filtration. Set Supp(F) = {Pi,..., P }. Let Min(M)
denote the set of minimal prime ideals in Supp(M). If I is an ideal of R then
we set min(/) = Min(R/I). Dress [7] calls a prime filtration F of M clean
if Supp(F) = Min(M). The module M is called clean, if M admits a clean
filtration and R is clean if it is a clean module over itself.

Let S = K[xy,...,x,] be the polynomial ring in n indeterminate over a
field K. Let A be a simplicial complex on the vertex set [n] = {1,2,...,n}.
Dress [7] showed that A is (non-pure) shellable in the sense of Bjorner and
Wachs [3], if and only if the Stanley-Reisner ring S/Ia is clean. The result of
Dress is, in fact, the algebraic counterpart of shellability for simplicial com-
plexes. Some subclasses of shellable complexes are k-decomposable simplicial
complexes which were introduced by Billera and Provan [2] on pure simplicial
complexes and then by Woodroofe [31] on not necessarily pure ones. Simon
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in [25] introduced “completed clean ideal trees” as an algebraic counterpart of
pure k-decomposable complexes. Actually, in the sense of Simon, the Stanley-
Reisner ideal of a k-decomposable complex is completed clean ideal tree.

Let I C S be a monomial ideal. We call I Cohen-Macaulay (clean) if the
quotient ring S/I has this property. In this paper, we define the concept of
k-clean monomial ideals. The class of k-clean monomial ideals are, actually,
subclass of clean monomial ideals. It is the aim of this paper to study the
properties of k-clean monomial ideals and describe relations between these
ideals and k-decomposable simplicial complexes. Moreover, some classes of k-
clean monomial ideals are introduced. Also, some results of [1,16] are extended.

In Section 2, we introduce k-clean monomial ideals. We show that k-
clean monomial ideals are clean and, also, every clean monomial ideal is k-
clean for some k > 0 (see Theorem 2.4). In Section 3, we discuss some basic
properties of k-clean ideals. Some homological invariants of k-clean monomial
ideals like depth and Castelnuovo-Mumford regularity are described in this
section. In the fourth section, we show that a (d — 1)-dimensional simplicial
complex A is k-decomposable if and only if its associated Stanley-Reisner ideal
is k-clean, where k < d (see Theorem 4.1). The last section is devoted to
presenting some examples of k-clean monomial ideals. We show that irreducible
monomial ideals and monomial complete intersection ideals are k-clean, for all
k > 0 (see Theorems 5.1 and 5.2). Then by showing that Cohen-Macaulay
monomial ideals of codimension 2 (see Theorem 5.4) are k-clean, we improve
Proposition 1.4. of [16]. In Theorem 5.6, we show that a monomial ideal
of forest type which has no embedded prime ideal is k-clean, for all & > 0.
Finally, in Theorem 5.9, we show that symbolic powers of Stanley-Reisner
ideals of matroid complexes are k-clean for all £ > 0. In this way, we improve
Theorem 2.1 of [1].

1. PRELIMINARIES

Let A be a simplicial complex of dimension d — 1 with the vertex set
[n] :=={1,2,...,n}. Let K be a field. The Stanley-Reisner monomial ideal of
A is denoted by Ia and it is a squarefree monomial ideal in the polynomial
ring S = K[z1,...,r,] generated by the monomials x!" = []z; which F is a

iEF

non-face in A. The quotient ring S/Ia is called the face ring or Stanley-
Reiner ring of A. If F(A) = {Fi,..., F,} is the set of maximal faces (facets)
of A then we set A = (F,..., F,).

For all undefined terms or notions on simplicial complexes we refer the
reader to the books [13] or [27].
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Given a simplicial complex A on [n], the link, star and deletion of ¢ in
A are defined, respectively, by

linka(o) ={FeA:0NF=0,0UF € A},
stara(o) ={F € A: o UF € A} and
A\c={FeA:0¢F}

Moreover, the Alexander dual of A is defined as AV = {F € A : [n]\F ¢ A}.

Let I C S be a squarefree monomial ideal generated by monomials of
degree at least 2. Then there exists a simplicial complex A on [n] such that
I = IA. The Alexander dual of I is defined IV = Iav.

Definition 1.1 ([31]). Let A be a simplicial complex on vertex set [n].
Then a face ¢ € A is called a shedding face if it satisfies the following

property:
no facet of (starpo)\o is a facet of A\o.

Definition 1.2 ([31]). A (d — 1)-dimensional simplicial complex A is re-
cursively defined to be k-decomposable if either A is a simplex or else has
a shedding face o with dim(o) < k such that both linkao and A\o are k-
decomposable.

We consider the complexes {} and {0} to be k-decomposable for k > —1.
Also k-decomposability implies to &’-decomposability for &' > k.

A 0-decomposable simplicial complex is called vertex-decomposable.

We say that the simplicial complex A is (non-pure) shellable if its fa-
cets can be ordered FY, Fs, ..., F, such that, for all » > 2, the subcomplex
(F1,...,Fj_1) N (F}) is pure of dimension dim(F};) —1 [3]. It was shown in [31]
or [18] that a (d — 1)-dimensional (not necessarily pure) simplicial complex A
is shellable if and only if it is (d — 1)-decomposable.

Let I be a monomial ideal of S. We denote by G(I) the set of minimal
monomial generators of I. Let min(/) be the set of minimal (under inclusion)
prime ideals of S containing I.

Fora e N" set x* = || l’?(l) and define the support of a by supp(a) =

a(i)>0
{i : a(i) > 0}. We set supp(x?) := supp(a). Also, we define a an n-tuple in
{0,1}™ with a(i) =1 if a(i) # 0 and a(i) = 0, otherwise. Set v;(x?) := a(i).

Let u,v € S be two monomials. We set [u,v] = 1 if for all ¢ € supp(u),
z {v and [u,v] # 1, otherwise.

For the monomial © € S and the monomial ideal I C S set

I"=weG):[u,v]#1) and I,=(veG):[u,v]=1).
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Definition 1.3 ([23]). Let I be a monomial ideal with the minimal system
of generators {uy,...,u,}. The monomial v = z{'...2% is called shedding

if I, # 0 and for each u; € G(I,) and each [ € supp(u) there exists u; € G(I")
such that u; : u; = x;.

Definition 1.4 ([23]). Let I be a monomial ideal minimally generated with
set {u1,...,u,}. We say I is a k-decomposable ideal if » = 1 or else has a
shedding monomial v with |supp(v)| < k 4 1 such that the ideals IV and I,
are k-decomposable. (Note that since the number of minimal generators of I
is finite, the recursion procedure will stop.)

A 0-decomposable monomial ideal is called variable-decomposable.

THEOREM 1.5 ([23, Theorem 2.10]). Let A be a (not necessarily pure) (d—
1)-dimensional simplicial complex on vertex set [n]. Then A is k-decomposable
if and only if Iav is k-decomposable, where k < d — 1.

Definition 1.6 ([20]). A monomial ideal [ is called weakly polymatroi-
dal if for every two monomials u = ' ... 2% >, v = ... 2b in G(I)
such that a; = b1,...,a,-1 = by—1 and a; > b, there exists 5 > t such that
xi(v/zj) € 1.

THEOREM 1.7 ([24, Theorem 4.33]). Every weakly polymatroidal ideal I
is variable-decomposable.

2. k-CLEAN MONOMIAL IDEALS

In this section, we extend the concept of cleanness introduced by Dress [7].
Let I C S be a monomial ideal. A prime filtration

F:(0)=MycMyC...CM,_y CM =5/

of S/I is called multigraded, if all M; are multigraded submodules of S/I,
and if there are multigraded isomorphisms M;/M;_; = S/P;(—a;) with some
a; € Z"™ and some multigraded prime ideals F;.

A multigraded prime filtration F of S/I is called clean if Supp(F) C
min(7).

Definition 2.1. Let I C S be a monomial ideal. A non unit monomial
u & I is called a cleaner monomial of [ if min(I 4+ Su) C min(7).

Definition 2.2. Let I C S be a monomial ideal. We say that [ is k-clean
whenever I is a prime ideal or I has no embedded prime ideals and there exists
a cleaner monomial u ¢ I with [supp(u)| < k + 1 such that both I : u and
I + Su are k-clean.
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We recall the concept of ideal tree from [25]:

Let I C S be a k-clean monomial ideal. By the definition, there are
cleaner monomials w1, ug, ... with |supp(u;)| < k+1 decomposing I. Therefore
we obtain the rooted, finite, directed and binary tree 7:

I

/\
Ji:=1:u Jo =1+ Suy
ug us

J1ug J1 + Sus Jo :ug Jo + Sus

N TN Uy

T is called the ideal tree of I and the number of all cleaner monomials ap-
peared in 7T is called the length of 7. We denote the length of 7 by I(T).
We define the k-cleanness length of the k-clean monomial ideal I by

[(I) = min{l(T) : T is an ideal tree of I}.
Example 2.3. Consider the monomial ideal

1= ($1$2$47$1$29€5,3013623167561%3965,3?1963%679013?496579023633?67
ToTALs, TT5LE, L3T4LS, L3T4LG)

and
J = (z122, 2123, T124)

of the polynomial ring S = K|[z1,...,z¢]. I and J are, respectively, 1-clean and
0-clean and have ideal trees 71 and 73 such that the cleaner monomials appea-
red in 77 and 7Ts are, respectively, xox3, x124, T1T5, ToX4, ToT5, T2, T1, T3L6, L3
and x7.

THEOREM 2.4. FEvery k-clean monomial ideal I is clean. Also, every clean
monomial ideal is k-clean for some k > 0.

Proof. Let I be a k-clean monomial ideal. We use induction on the k-
cleanness length of I. Let I be not prime and there exists a cleaner monomial
u ¢ I of multidegree a with |supp(u)| < k+ 1 such that both I : w and I + Su
are k-clean. By induction, I : v and I + Su are clean. Let

Fir:I+Su=JycJcCc...cJ,. =8

and L L L S
T Ut O s P
FQ‘O_I:UCI:UC'”CI:u I:u
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be clean prime filtrations and let (L; /I : w)/(Li—1/1 : u) = S/Qi(—a;) where Q;
are prime ideals. It is known that the multiplication map ¢ : S/I : u(—a) =
I+ Su/I is an isomorphism. Restricting ¢ to L;/I : u yields a monomorphism
@i+ Li/T:u % T+ Su/I. Set H;/I := @;(L;/I : u). Hence H;/I = (L;/I :
u)(—a). It follows that

H; 4 - Hi—l/I - (Lz—l/I . U)(—a) = @(_a—ai).

Therefore we obtain the following prime filtration induced from Fs:

F3:I1=HyCH,C...CH;=1+ Su.

By adding F; to F3 we obtain the following prime filtration
F:Il=HycHic..cHi;=I+SucJi;cCc...Cc J,=85.

Finally, Supp(F) = Supp(F1)USupp(F2) C min(/+Su)Umin(! : v) C min(])
and therefore I is clean.

To prove the second assertion, suppose that I is a clean monomial ideal.
If I is prime then we are done. Suppose that I is not prime and let

F:(0)=MycMyC...CMy_y CM =5/I

be a clean prime filtration of S/I with M;/M;_; = S/P;(—a;). We use in-
duction on the length of the prime filtration F. Since that Ass(S/I) C
Supp(F) € min(/), we have Ass(S/I) = min(/). Hence I has no embedded
prime ideal. It follows from Proposition 10.1. of [15] that there is a chain of
monomial ideals I = Iy C I1 C ... C I, = S and monomials u; of multidegree
a; such that I; = I,_1 + Su; and I;_1 : u; = P;. Since that I 4+ Su; has a clean
filtration, it is k-clean, by induction hypothesis, where [supp(u1)| < k+ 1. On
the other hand, I + Su;/I = S/P;. Therefore min(f + Su;) = {P1} C min(I).
This means that I is k-clean. [

3. SOME PROPERTIES OF k-CLEAN MONOMIAL IDEALS

THEOREM 3.1. Let I C S be k-clean. Then for all monomialu € S, I : u
15 k-clean.

Proof. We use induction on the k-cleanness length of I. If I is prime then
I : u is prime, too and we have nothing to prove. Assume that [ is not prime.
Suppose v is a cleaner monomial of I with |supp(v)] < k+ 1 and I : v and
I + (v) are k-clean. We consider two cases:

Case 1. Let v|u. Then I : u = (I : v) : u/v and by induction hypothesis
I:wis k-clean.
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Case 2. Let v t u. We show that v/gcd(u,v) is a cleaner monomial of
I :u. We have

u
By induction, (I : u) + (m) and (I : u) : m are k-clean. Since

min(/ + (v)) C min(/), by some elementary computations, we obtain that
min(({ + (v)) : ) C min(I : u). Therefore v/ ged(u,v) is a cleaner monomial
of I:u. O

THEOREM 3.2. The radical of each k-clean monomial ideal is k-clean.

Proof. Let I = (x®!,...,x?") be a k-clean monomial ideal with cleaner
monomial u = xP with |supp(u)| < k+ 1. We use induction on the k-cleanness
length of I. Denote the radical of I by v/I. By induction hypothesis, v/I + Su
and VT : u are k-clean. Let v = x®"PP(%) and let w be the product of variables
z; with i € supp(u) and a;j(i) > b(i) > 0 for some 1 < j < r. I+ Sv
is k-clean, because VI + Sv = I+ Su. Also, VI:ov = (VI :u) : w and
so VT : v is k-clean, by Theorem 3.1. On the other hand, min(v/T 4+ Sv) C
min(y/7T + Su) = min(I 4+ Su) C min(I) = min(v/I) and so v is a cleaner
monomial of vI. O

Let u = x?ll ...zi’ € S. The polarization of u is defined by
Up = Ti11 -+ Tijay -+ - Ligl -+ - Tigag-
If I ¢ S is a monomial ideal. The polarization of I is a monomial ideal of
SP = Klxij : x45|uP for some u € G(I)] given by I? = (uP : u € G(I)).
Define the K-algebra homomorphism 7 : SP — S by 7 (xz;;) = ;.

THEOREM 3.3. Let I be a monomial ideal with no embedded prime ideal.
If I? is k-clean then I is k-clean, too.

Proof. We use induction on the k-cleanness length of IP. If I is a prime
ideal then we have nothing to prove. Suppose that [ is not prime. Let u be a
cleaner monomial of I? with |[supp(u)| < k+ 1 and let I? : u and IP + (u) be
k-clean. We claim that 7(u) is a cleaner monomial of I. Note that

I:m(u)=7(IP:u)and I + (7(u)) = 7(I? + (u)).

By induction hypothesis, I : m(u) and I+ (7(u)) are k-clean. Since |supp(m(u))|
< |supp(u)| < k + 1, it remains to show that 7(u) is a cleaner monomial of
I. Let P € min(I + (7(u))). Hence there exists @ € min(I? + (u)) such that
P =7(Q). Since @ € min(I?), it follow that P € min(I), as desired. [

LEMMA 3.4. Let I C S be a k-clean monomial ideal with cleaner mono-
mial u. Then uP is a cleaner monomial of IP.
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Proof. Let Q € min(I? + (uP)). Then @ € Ass(SP/IP + (uP)). By Corol-
lary 2.6 of [9], m(Q) € Ass(S/I + (u)) = min( + (u)) C min(I). Again, by
Proposition 2.3 of [9], @ € min(I?), as desired. [

The following theorem describes projective dimension and Castelnuovo-
Mumford regularity of k-clean monomial ideals.

THEOREM 3.5. Let I C S be a k-clean monomial ideal with the cleaner
monomial w. Then
(1) pd(S/I) = max{pd(S/I + (u)),pd(S/I : u)};
(ii) reg(S/I) = max{reg(S/I + (u)),reg(S/I : u) + deg(u)}.

Proof. (i) Without loss of generality we may assume that I C m?. By
Corollary 1.6.3. of [13], pd(S/I) = pd(SP/I?) and reg(S/I) = reg(SP/IP).
Let A be a simplicial complex with In = IP. By Lemma 3.4, v” is a cleaner
monomial of IP. Let u? = x? for some o € A. Therefore A is a k-decomposable
simplicial complex with shedding monomial o, by Theorem 4.1. Now it follows
from Theorem 2.8 of [21] that

pd(S/I) = pd(SP/Ia) = max{pd(Sp/IA\U), pd(SP/ Jtinkpo) }
— max{pd(57/(I + (w))?), pd(57/(1 : u)?)}
— max{pd(S/I + (u)), pd(S/I : u)}

where Jiink,» is the Stanley-Reisner ideal of linkao considered as a complex
on V(A)\o.

(ii) follows by a similar argument from Theorem 2.8 of [21] and Theo-
rem 4.1. O

Remark 3.6. The concept of sequentially Cohen-Macaulayness was intro-
duced in [27] for finitely generated (graded) modules. We specially recall this
concept for the quotient rings. Let I C S be a monomial ideal. We say that [
is sequentially Cohen-Macaulay if there exists a finite filtration

.F:OZM0CM1C...CMTZS/I

of submodules of S/I with these properties that M;/M;_1 is Cohen-Macaulay
and

dlm(Ml/M()) S dlm(Mg/Ml) S e S dim(MT/MT_l.

It was proven in [15] that cleanness implies sequentially Cohen-Macaulayness.
Therefore the class of k-clean monomial ideals is contained in the class of
sequentially Cohen-Macaulay monomial ideals. In particular, since that every
unmixed sequentially Cohen-Macaulay monomial ideal is Cohen-Macaulay, we
conclude that the unmixed k-clean monomial ideals are Cohen-Macaulay.
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4. A VIEW TOWARD k-DECOMPOSABLE SIMPLICIAL COMPLEXES

In this section, we prove the main result of this paper. In fact, we
show that a squarefree k-clean monomial ideal is Stanley-Reisner ideal of a
k-decomposable simplicial complex, and vice versa.

THEOREM 4.1. Let A be a (d — 1)-dimensional simplicial complex. Then
o € A is a shedding face of A if and only if X% is a cleaner monomial of I .

In particular, A is k-decomposable if and only if In is k-clean, where
0<k<d-1.

Proof. We first show that o is a shedding face of A if and only if min(/a +
(x7)) € min(/a). Since that Stanley-Reisner rings are reduced, it follows that

min(Ip) = {Ppc : F € F(A)}

and
min(Ia + (x7)) = {Ppe : F € F(A\o)}.

Let o be the shedding face of A. To show that x? is a cleaner monomial
of Ia, it suffices to prove F(A\o) C F(A). Suppose, on the contrary, that
F € F(A\o) and F' G G with G € F(A). This implies that ¢ C G and so
G € starao. On the other hand, since F is a facet of A\o, it follows that
there is t € o such that o\{t} C F. We claim that G = FU{t}. The inclusion
“D” is clear. For the converse inclusion, if s € G\(F U {t}) for some s, then
o ¢ FU{s} and so FU{s} € F(A\o), a contradiction. Therefore G = FU{t}
and it follows that F' € F((starac)\o). But this contradicts the assumption
that o is a shedding face of A. Hence x7 is a cleaner monomial.

Let A be k-decomposable with the shedding face o € A. By the first part,
X7 is a cleaner monomial of Io. To show that Ia is k-clean, we use induction
on the number of the facets of A. If A is a simplex then the assertion is
trivial. So assume that |F(A)| > 1. It is easy to check that Jink, o = Ia @ X7
and Ian\, = Ia + (x7). By induction hypothesis, linkac and A\c are k-
decomposable if and only if Ia : x7 and Ia + (x7) are k-clean. Therefore Ia is
k-clean.

The reverse directions of both parts follow easily in similar arguments. [

Remark 4.2. Note that a k-clean monomial ideal need not be k’-clean
for k' < k. Consider the monomial ideal I C KJz1,...,zs] with the minimal
generator set

G(I) = {1‘196‘2964, T1X2X5, L1X2X6, L1L3X5, L1T3X6, L1L4T5,

ToL3T6, ToTALs5, T2L5L6, L3LAT5, LITATG ) -
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I is the Stanley-Reisner ideal of the simplicial complex
A = (124,125,126, 135,136, 145, 236, 245, 256, 345, 346)

on [6]. It was shown in [25] that A is shellable but not vertex-decomposable. It
follows from Theorem 4.1 that I is clean but not 0-clean. To see more examples
of clean ideals which are not 0-clean we refer the reader to [11,22].

Remark 4.3. Let I be a clean monomial ideal and dim(S/I) = d. By
Theorem 2.4, I is k-clean for some k > 0 with cleaner monomial u. It follows
from Theorem 3.2 that v/T is k-clean with cleaner monomial v = x5"PP(%) | Let
In = VI for some simplicial complex A on [n]. By Theorem 4.1, we have
|supp(u)| = [supp(v)| < dim(A) + 1 = d. Therefore I is (d — 1)-clean.

On the other hand, every k-clean monomial ideal is also (k + 1)-clean.
This means that the k-cleanness is a hierarchical structure. Therefore we have
the following implications:

O-clean = 1-clean = ...= (d — 1)-clean < clean.

In Remark 4.2 we implied that above implications are strict.

COROLLARY 4.4. Let I C S be a squarefree monomial ideal generated
by monomials of degree at least 2. Then I is k-clean if and only if IV is
k-decomposable.

Proof. Let A be a simplicial complex on [n] such that I = Ia. The
assertion follows from Theorems 4.1 and 1.5. [

5. SOME CLASSES OF k-CLEAN IDEALS

In this section, we introduce some classes of k-clean monomial ideals.

5.1. IRREDUCIBLE MONOMIAL IDEALS

THEOREM 5.1. Every irreducible monomial ideal is 0-clean.

Proof. Let I be a irreducible monomial ideal. We want to show that I
is O-clean. By Theorem 1.3.1. of [13], I is generated by pure powers of the
variables. Without loss of generality we may assume that I = (z7*,...,z%")
with a; # 0 for all . We use induction on Y ;" a;. If >, a; = m, then I is
prime and we are done. Suppose that > ", a; > m. So we can assume that

a1 > 1. We have

Iiay = (@282, x%m) and T+ (1) = (21,292, ..., 2%m).

By induction hypothesis, I : 1 and I+ (z;) are 0-clean. Clearly, x; is a cleaner
monomial and so the proof is completed. [
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5.2. MONOMIAL COMPLETE INTERSECTION IDEALS

THEOREM 5.2. Let I C S be a monomial complete intersection ideal.
Then S/1 is 0-clean.

Proof. Let G(I) = {Mu,...,M,}. By the assumption Mi,..., M, is a
regular sequence. Hence ged(M;, M;) = 1 for all 4 # j. If I is a primary
ideal then we are done, by Theorem 5.1. Suppose that I is not primary. We

use induction on n the number of variables. Let |supp(Mi)| > 1 and let
v1(Mi) = a. Then

I:2%=(M/z§,Ms,...,M,)and I + (z$) = («{, Ma,..., M,).

Since that (M /x§, My, ..., M,) and (z{, Mo, ..., M,) are complete intersection
monomial ideals with the number of variables less that n, we deduce that I : z¢
and I+ (z§) are O-clean, by induction hypothesis. Set J := (M, ..., M,). Since
that
min(I + (z¢)) = {P + (x1) : P € min(J)}
and
min(l) = {P + (z;) : P € min(J) and z;|M; }.

we conclude that min(/+ («{)) C min(/) and so z{ is a cleaner monomial. [J

5.3. COHEN-MACAULAY MONOMIAL IDEALS OF CODIMENSION 2

Proposition 2.3 from [14] says that if [ C S is a squarefree monomial ideal
with 2-linear resolution, then after suitable renumbering of the variables, one
has the following property:

if x;x; € I with i # j, k>4 and k > j, then either x;z;, or z;x) belongs to I.

Let I has a 2-linear resolution and the monomials in G(I) be ordered by the
lexicographical order induced by z,, > xp—1 > ... > x1. Let u = x5y > v =
x;x; be squarefree monomials in G(I) with s <t and i < j. We have t > j. If
t = j, then z4(v/x;) = u € G(I). If t > j then by the above property either
zixy € G(I) or zjx; € G(I). This immediately implies the following lemma.

LEMMA 5.3. If I is a squarefree monomial ideal generated in degree 2
which has a linear resolution, then after suitable renumbering of the variables,
I is weakly polymatroidal.

THEOREM 5.4. Let I C S be a monomial ideal which is Cohen-Macaulay
and of codimension 2. Then S/I is 0-clean.
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Proof. Since I has no embedded prime ideals, if we show that I? is 0O-
clean then it follows from Theorem 3.3 that I is 0-clean. Let A be a simplicial
complex with Ia = IP. Since I is Cohen-Macaulay, by Corollary 1.6.3. of [13],
In is Cohen-Macaulay, too. In particular, IX has linear resolution, by the
Eagon-Reiner theorem [8]. It follows from Lemma 5.3 and Theorems 1.7 and
4.1 that In = IP is O-clean, as desired. [

5.4. MONOMIAL IDEALS OF FOREST TYPE
WHICH HAVE NO EMBEDDED PRIME IDEAL

We recall some notions from [26]:

Let I be a monomial ideal with G(I) = {u1,...,u,}. A variable z; is
called a free variable of I if there exists a 1 < ¢ < r such that x;|u; and x; { u;
for any j # t. A monomial u; is called a leaf of G(I) if u; is the only generator
of I, or there exists a 1 < j <, j # t such that ged(u,u;)| ged(u, uj) for all
¢ # t. In this case u; is called a branch of u;. We say that I is a monomial
ideal of forest type if any subset of G(I) has a leaf. A simplicial complex
A is a simplicial forest in sense of [10] if /(A) is a monomial ideal of forest

type.

LEMMA 5.5. Let I C S be a monomial ideal and u a monomial in S which
is reqular over S/I. If I is k-clean then I + (u) and I : u are k-clean.

Proof. Since u is regular over S/I, we have I : w = I. This implies that
I : u is k-clean. It remains to show that I + (u) is k-clean.

If I is a prime ideal then, by using induction on the |supp(u)], it is easily
verified that I + (u) is k-clean. So suppose that I is not prime. We use
induction on the k-cleanness length of I. Let v be a cleaner monomial of [
with |supp(v)| < k+ 1. We claim that v is a cleaner monomial of J = I + (u).
Since u is regular over S/I and min(I + (v)) C min(/), we have ged(u, w) =1
for all w € G(I)U{v}. It follows that J : v = (I : v) + (u) and u is regular on
S/I+ (v) and S/I : v. Now, by induction hypothesis, J : v = (I : v) + (u) and
J+ (v) =1+ (v)) + (u) are k-clean.

Now let P € min(J + (v)). Then there exists z; with z;|u such that
xz; € P. We have P\z; € min(I + (v)) and so P\z; € min(I). It follows that
P € min(J), as desired. [

THEOREM 5.6. Let I C S be a monomial ideal of forest type which has
no embedded prime ideal. Then I is 0-clean.

Proof. Our argument uses an idea from the proof presented in [26, Theo-
rem 3.4.]. We use induction on n the number of variables. Let I be minimally
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generated by wui,...,u,. Let x; be a free variable of I. Then there exists
1 < j <r such that z;|uj. Let v;(u;) = a and set v’ = u;/z¢. It is clear that

I:a? = (up,...,up—1,u) and I+ (%) = (w1, ..., up—1,2%).
By Lemma 3.1 of [26], I : ¢ = (u1,...,ur—1,u) is a monomial ideal of forest
type. Furthermore, the minimal prime ideals of (uq,...,u,—1,u’) are exactly

the prime minimal ideals of I which does not contain x;. Therefore I : x¢
has no embedded prime ideal and so it is O-clean, by induction. On the other

hand, (u1,...,u,—1) is a monomial ideal of forest type and it has no embedded
prime ideal. It follows from induction hypothesis that (uy,...,u,—1) is O-clean.
Finally, Lemma 5.5 obtains that I + (z) is O-clean.

Note that

min(I + () = {Q + (x;) : @ € min((u1,...,ur—1))}
and
min(I) = {Q + (z;) : Q € min((u1,...,ur—1)), z;lur}.

Since x;|u,, it follows that min(I 4+ (z¢)) € min(/). Therefore z¢ is a cleaner
monomial. O

The nonface complex or the Stanley-Reisner complex of [ is deno-
ted by dp(I) and it is the simplicial complex over a set of vertices {vy,...,v,}
defined by

NI ={{viy, . yvi} iy o mi, E 1T

Let I(A) be the facet ideal of a simplicial complex A. Set Ay :=
on(I(A)).

COROLLARY 5.7. Let A be a simplicial forest. Then Ay is vertex-
decomposable.

Proof. Since I(A) is a monomial ideal of forest type, Ian, = I(A) is
0-clean, by Theorem 5.6. It follows from Theorem 4.1 that Ay is vertex de-
composable. [

Remark 5.8. In [26, Theorem 3.4.], it was shown that every monomial
ideal of forest type is pretty clean. A clean monomial ideal is a pretty clean
ideal which has no embedded prime ideal. Hence it follows from [26, Theorem
3.4.] that every monomial ideal of forest type with no embedded prime ideal is
clean. Theorem 5.6 improves this result.
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5.5. SYMBOLIC POWERS OF STANLEY-REISNER IDEALS
OF MATROID COMPLEXES

Let A be a simplicial complex and let I(Am) denote the mth symbolic
power of Ia. Minh and Trung [19] and Varbaro [30] independently proved that
A is a matroid if and only if I(Am) is Cohen-Macaulay for all m € N. Later,
in [28], Terai and Trung showed that A is a matroid if and only if I(Am) is
Cohen-Macaulay for some integer m > 3. Recently, Bandari and Soleyman
Jahan [1] proved that if A is a matroid, then I(Am) is clean for all m € N. In
this section, we improve this result by showing that if A is a matroid, then
I(Am) is 0-clean for all m € N.

THEOREM 5.9. Let A be a matroid complex with I = In. Then for all
m > 1, I™ s 0-clean.

Proof. Let A = (Fy,...,F;). Then I = In = (;_, Ppe and (In)™ =
ﬂEZI(PFZ_c)(m). Since A is a matroid and I is Cohen-Macaulay, it follows that
I™) has no embedded prime ideal. Therefore if we show that (I(™))? is 0-clean
then the proof is completed, by Theorem 3.3.

In [1] the authors introduced an ordering on the variables of SP and
showed that ((I(™)P)Y has linear quotients with respect to this ordering. We
improve this result by considering the same ordering to show that ((1(™)P)V
is weakly polymatroidal. Then by Theorem 1.7 and Corollary 4.4, (I™)P is
0O-clean. We use some notations of the proof of [1, Theorem 2.1.]. It is known
that A° is a matroid. Let dim(A°®) =7 — 1. We set J = ((I(™)P)V. Then

G(J) =A{xi, j1 Tisjo - - - Tiy g, : {01, .., 4r} is a facet of A}

where 1 <jy<mand > ,_,j; <m+r—1.

Consider the order < on the variables of S by setting x; ; > x; ; if either
j<j,orj=j andi <. Let u,v e G(J) with u = x;, j, ... TiyjsTiy j; >
v = Ty g Ty gy e such that @y, = @y g for all 1> ¢ and @4, 5, > @y 51
We have two cases:

Case 1. xit‘%;---xigﬂiﬁi;- Let 77 = 4. It is clear that j; < j/. In
particular, z;, ;, (v/zy ;1) € G(J).

Case 2. z;, {7y .. -y, Ty Since Iav is matroidal, it follows from [12,
Lemma 3.1.] that there exists i) & {i1,...,4r} such that x; (2 ...y /zy) €
Iav. Therefore
e G(J).

xi/mj; . xig—l’jll—lxig+1’jll+1 . .%'it7jt.%'i2717j£71 e xi,l’ji

Therefore J is weakly polymatroidal, as desired. [
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It follows from Theorem 5.9 that we can add the condition “0O-cleanness
of I(Am) for all m > 0” to [1, Corollary 2.3.]:

COROLLARY 5.10. Let A be a pure simplicial complex and I = I C S.
Then the following conditions are equivalent:
(i) A is a matroid;
(i) S/I™ is 0-clean for all integer m > 0;
(iii) S/I'™ is clean for some integer m > 0;

(v) S/1™ is Cohen-Macaulay for some integer m > 3;

)
) (
(iv) S/I0™ is clean for some integer m > 3;
) (
(vi) S/I™) is Cohen-Macaulay for all integer m > 0.

Cowsik and Nori in [6] proved that for any homogeneous radical ideal I
in the polynomial ring S, all the powers of I are Cohen-Macaulay if and only
if I is a complete intersection. We call the simplicial complex A complete
intersection if In is a complete intersection ideal. Therefore the simplicial
complex A is a complete intersection if and only if I\’ is Cohen-Macaulay for
any m € N ( [29, Theorem 3]). We improve this result in the following. By
the fact that if I'{' is Cohen-Macaulay then I\’ is equal to the mth symbolic

power I(Am) of In we have

COROLLARY 5.11. Let A be a pure simplicial complex and I = I C S.

Then the following conditions are equivalent:

(i) A is a complete intersection;

(i1) S/I™ is 0-clean for all integer m > 0;

(iii) S/I™ is clean for some integer m > 0;

(iv) S/I™ is clean for some integer m > 3;

(v) S/I™ is Cohen-Macaulay for some integer m > 3;

(vi) S/I™ is Cohen-Macaulay for all integer m > 0.
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