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In this paper, we define the generalized Padovan-circulant sequence and the
Padovan-circulant sequences of the first, second, third and fourth kind by using
the circulant matrices which are obtained from the characteristic polynomial
of the Padovan sequence. Then we obtain miscellaneous properties of these
sequences. Also, we consider the cyclic groups which are generated by the gene-
rating matrices and the auxiliary equations of the generalized Padovan-circulant
sequence and the Padovan-circulant sequences of the first, second, third and
fourth kind and then we study the orders of these cyclic groups. Furthermore,
we extend the Padovan-circulant sequences of the first, second, third and fourth
kind to groups and then we examine these sequences in finite groups. Finally, we
obtain the lengths of the periods of the Padovan-circulant orbits of the first, se-
cond, third and fourth kind of the quarternion group Q8 and the dihedral group
Dn as applications of the results obtained.
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1. INTRODUCTION AND PRELIMINARIES

In [3], P.J. Davis defined the circulant matrix Cn = [cij ]n×nassociated
with the numbers c0, c1, . . . , cn−1 as follows:

Cn =


c0 cn−1 · · · c2 c1
c1 c0 · · · c3 c2
...

...
. . .

...
...

cn−2 cn−3 · · · c0 cn−1

cn−1 cn−2 · · · c1 c0

 .

The (n− 1)th degree polynomial P (x) = c0 + c1x + · · · + cn−1x
n−1 is

called the associated polynomial of the circulant matrix Cn.

For more information on the circulant matrix Cn, see [12,17,20].
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The Padovan sequence is the sequence of integers P (n) defined by initial
values P (0) = P (1) = P (2) = 1 and recurrence relation

P (n) = P (n− 2) + P (n− 3) .

The Padovan sequence is

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, . . . .

It is easy to see that the characteristic polynomial of the Padovan se-
quence is

f (x) = x3 − x− 1.

For more information on this sequence, see [11].
Let the (n+ k)th term of a sequence be defined recursively by a linear

combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0, c1, . . . , ck−1 are real constants.
In [13], Kalman derived a number of closed-form formulas for the gene-

ralized sequence by the companion matrix method as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.

Then by an inductive argument he obtained that

Ank


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1

 .
In Section 2, we define the recurrence sequences by the aid of the circulant

matrix C4 which is obtained by using the characteristic polynomial of the
Padovan sequence. In [4–8, 16], the authors obtained the cyclic groups via
some special matrices. In Section 3, we consider the multiplicative orders of
the circulant matrix C4 and the Padovan-circulant matrices of the first, second,
third and fourth kind working to modulo m which are defined by the aid of
the recurrence relations of the generalized Padovan-circulant sequence. Then
we obtain the rules for the orders of the cyclic groups which are generated
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by reducing these matrices modulo m. The study of recurrence sequences in
groups began with the earlier work of Wall [22] where the ordinary Fibonacci
sequences in cyclic groups were investigated. The concept extended to some
special linear recurrence sequences by several authors; see for example, [1, 2,
4, 7–10, 14, 16, 18, 19, 21]. In Section 4, we define the Padovan-circulant orbits
of the first, second, third and fourth kind and then we study these sequences
in finite groups. Also in this section, we obtain the lengths of the periods of
the Padovan-circulant orbits of the first, second, third and fourth kind of the
quarternion group Q8 and the dihedral group Dn for generating pair (x, y).

2. THE PADOVAN-CIRCULANT SEQUENCES

We can write the following circulant matrix for the polynomial f (x):

C4 =


−1 −1 1 0
−1 1 0 −1

1 0 −1 −1
0 −1 −1 1

 .
Define the generalized Padovan-circulant sequence by using the matrices

C4 as shown:

(2.1) xn =


xn−2 − xn−3 − xn−4, n ≡ 1 mod 4,
−xn−2 + xn−4 − xn−5, n ≡ 2 mod 4,
−xn−3 − xn−4 + xn−6, n ≡ 3 mod 4,
xn−4 − xn−5 − xn−6, n ≡ 0 mod 4,

for n > 4,

where x1 = x2 = x3 = 0 and x4 = 1.

For n ≥ 1, by an inductive argument, we may write

x4n+1 − 2x4n−1 − x4n = (−1)n

and

x4n+2 + 2x4n + x4n−1 = 1.

It is easy to show that

(2.2) (C4)
n =


(−1)n x4n+4 x4n+3 (−1)n x4n+2 x4n+1

x4n+3 x4n+4 x4n+1 x4n+2

(−1)n x4n+2 x4n+1 (−1)n x4n+4 x4n+3

x4n+1 x4n+2 x4n+3 x4n+4

 ,
for n ≥ 0, which can be proved by mathematical induction. Since detC4 =
5, we can write the Simpson formula for the generalized Padovan-circulant
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sequence as:[
(−1)n (x4n+2)

2 + (−1)n+1 (x4n+4)
2
]2

+
[
(x4n+1)

2 − (x4n+3)
2
]2

+2 (−1)n+1
[
(x4n+2)

2 + (x4n+4)
2
] [

(x4n+1)
2 + (x4n+3)

2
]

+

8 (−1)n x4n+1x4n+2x4n+3x4n+4 = (5)n .

Define the Padovan-circulant sequences of the first, second, third and
fourth kind by using (2.1) as shown, respectively:

(2.3) x1n = x1n−2−x1n−3−x1n−4 for n ≥ 5 where x11 = x12 = x13 = 0 and x14 = 1,

(2.4) x2n = −x2n−2 + x2n−4 − x2n−5 for n ≥ 6 where x21 = x22 = x23 = x24 = 0

and x25 = 1,

(2.5) x3n = −x3n−3 − x3n−4 + x3n−6 for n ≥ 7

where x31 = x32 = x33 = x34 = x35 = 0 and x36 = 1,

and

(2.6) x4n = x4n−4 − x4n−5 − x4n−6 for n ≥ 7 where x41 = x42 = x43 = x44 = x45 = 0

and x46 = 1.

Note that the generating functions of the Padovan-circulant sequences of
the first, second, third and fourth kind are as follows, respectively:

g(1) (x) =
x3

x4 + x3 − x2 + 1
,

g(2) (x) =
x4

x5 − x4 + x2 + 1
,

g(3) (x) =
x5

−x6 + x4 + x3 + 1
and

g(4) (x) =
x5

x6 + x5 − x4 + 1
.

By(2.3), (2.4), (2.5) and (2.6), we can write the following companion matrices:

M
(1)
P =


0 1 −1 −1
1 0 0 0
0 1 0 0
0 0 1 0


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and

M
(2)
P =


0 −1 0 1 −1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



M
(3)
P =



0 0 −1 −1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


and

M
(4)
P =



0 0 0 1 −1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

The matrices M
(1)
P , M

(2)
P , M

(3)
P and M

(4)
P are said to be the Padovan-

circulant matrices of the first, second, third and fourth kind.
By induction on n, we derive that

(2.7)
(
M

(1)
P

)n
=


x1n+4 x1n+5 −x1n+3 − x1n+2 −x1n+3

x1n+3 x1n+4 −x1n+2 − x1n+1 −x1n+2

x1n+2 x1n+3 −x1n+1 − x1n −x1n+1

x1n+1 x1n+2 −x1n − x1n−1 −x1n

 for n > 1

and
(2.8)

(
M

(2)
P

)n
=


x2n+5 x2n+6 x2n+3 − x2n+2 x2n+4 − x2n+3 −x2n+4

x2n+4 x2n+5 x2n+2 − x2n+1 x2n+3 − x2n+2 −x2n+3

x2n+3 x2n+4 x2n+1 − x2n x2n+2 − x2n+1 −x2n+2

x2n+2 x2n+3 x2n − x2n−1 x2n+1 − x2n −x2n+1

x2n+1 x2n+2 x2n−1 − x2n−2 x2n − x2n−1 −x2n

 for n > 2

(2.9)

(
M

(3)
P

)n
=



x3n+6 x3n+7 x3n+8 x3n+3 − x3n+5 x3n+4 x3n+5

x3n+5 x3n+6 x3n+7 x3n+2 − x3n+4 x3n+3 x3n+4

x3n+4 x3n+5 x3n+6 x3n+1 − x3n+3 x3n+2 x3n+3

x3n+3 x3n+4 x3n+5 x3n − x3n+2 x3n+1 x3n+2

x3n+2 x3n+3 x3n+4 x3n−1 − x3n+1 x3n x3n+1

x3n+1 x3n+2 x3n+3 x3n−2 − x3n x3n−1 x3n

 for n > 2
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(2.10)

(
M

(4)
P

)n
=



x4n+6 x4n+7 x4n+8 x4n+9 −x4n+5 − x4n+4 −x4n+5

x4n+5 x4n+6 x4n+7 x4n+8 −x4n+4 − x4n+3 −x4n+4

x4n+4 x4n+5 x4n+6 x4n+7 −x4n+3 − x4n+2 −x4n+3

x4n+3 x4n+4 x4n+5 x4n+6 −x4n+2 − x4n+1 −x4n+2

x4n+2 x4n+3 x4n+4 x4n+5 −x4n+1 − x4n −x4n+1

x4n+1 x4n+2 x4n+3 x4n+4 −x4n − x4n−1 −x4n

 for n > 1

for n ≥ 1. It is easy to see that det
(
M

(1)
P

)n
= det

(
M

(4)
P

)n
= 1 and

det
(
M

(2)
P

)n
= det

(
M

(3)
P

)n
= (−1)n.

It is clear that each of the eigenvalues of the matrices M
(1)
P , M

(2)
P , M

(3)
P

and M
(4)
P are distinct. Let

{
α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

}
,
{
α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4 , α

(2)
5

}
and

{
α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4 , α

(3)
5 , α

(3)
6

}
be the sets of the eigenvalues of the

matrices M
(1)
P , M

(2)
P and M

(3)
P , respectively and let V (k) be a (k + 3)× (k + 3)

Vandermonde matrix as follows:

V (k) =



(
α
(k)
1

)k+2 (
α
(k)
2

)k+2
· · ·

(
α
(k)
k+2

)k+2 (
α
(k)
k+3

)k+2(
α
(k)
1

)k+1 (
α
(k)
2

)k+1
· · ·

(
α
(k)
k+2

)k+1 (
α
(k)
k+3

)k+1

...
...

...
...

...

α
(k)
1 α

(k)
2 · · · α

(k)
k+2 α

(k)
k+3

1 1 · · · 1 1


where 1 ≤ k ≤ 3.

Suppose that

W i
k =



(
α
(k)
1

)n+k+3−i(
α
(k)
2

)n+k+3−i

...(
α
(k)
k+3

)n+k+3−i


and V

(k,i)
j is a (k + 3) × (k + 3) matrix obtained from V (k) by replacing the

jth column of V (k) by W i
k for all 1 ≤ k ≤ 3.

Then we can give the Binet formulas for the Padovan-circulant sequences
of the first, second and third kind with the following Theorem.
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Theorem 2.1. Let xkn be the nth term of the sequence of the kth kind for
all 1 ≤ k ≤ 3. Then

m
(k,n)
ij =

det V
(k,i)
j

detV (k)

where
(
M

(k)
P

)n
=
[
m

(k,n)
ij

]
such that 1 ≤ k ≤ 3.

Proof. Since the eigenvalues of the matrix M
(k)
P are distinct, the matrix

M
(k)
P is diagonalizable. Let

D(1) = diag
(
α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)
,

D(2) = diag
(
α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4 , α

(2)
5

)
and

D(3) = diag
(
α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4 , α

(3)
5 , α

(3)
6

)
,

then it is readily seen that M
(k)
P V (k) = V (k)D(k) . Since the matrix V (k) is

invertible,
(
V (k)

)−1
M

(k)
P V (k) = D(k). Thus, the matrix M

(k)
P is similar to D(k).

So we get
(
M

(k)
P

)n
V (k) = V (k)

(
D(k)

)n
for n ≥ 1. Then we write the following

linear system of equations for n ≥ 1:

m
(k,n)
i1

(
α
(k)
1

)k+2
+m

(k,n)
i2

(
α
(k)
1

)k+1
+ · · · +m

(k,n)
ik+2 =

(
α
(k)
1

)n+k+3−i

m
(k,n)
i1

(
α
(k)
2

)k+2
+m

(k,n)
i2

(
α
(k)
2

)k+1
+ · · · +m

(k,n)
ik+2 =

(
α
(k)
2

)n+k+3−i

...

m
(k,n)
i1

(
α
(k)
k+3

)k+2
+m

(k,n)
i2

(
α
(k)
k+3

)k+1
+ · · · +m

(k,n)
ik+2 =

(
α
(k)
k+3

)n+k+3−i
.

So, we obtain that

m
(1,n)
ij =

det V
(1,i)
j

detV (1)
foreachi, j = 1, 2, 3, 4,

m
(2,n)
ij =

det V
(2,i)
j

detV (2)
foreachi, j = 1, 2, 3, 4, 5

and

m
(3,n)
ij =

det V
(3,i)
j

detV (3)
foreachi, j = 1, 2, 3, 4, 5, 6. �
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If we choose

V (4) =



(
α
(4)
1

)5 (
α
(4)
2

)5
· · ·

(
α
(4)
5

)5 (
α
(4)
6

)5(
α
(4)
1

)4 (
α
(4)
2

)4
· · ·

(
α
(4)
5

)4 (
α
(4)
6

)4
...

...
...

...
...

α
(4)
1 α

(4)
2 · · · α

(4)
5 α

(4)
6

1 1 · · · 1 1


and

W i
4 =



(
α
(4)
1

)n+6−i(
α
(4)
2

)n+6−i

...(
α
(4)
6

)n+6−i


,

then we obtain the Binet formula for the Padovan-circulant sequence of the
fourth kind as follows:

m
(4,n)
ij =

det V
(4,i)
j

detV (4)
for each i, j = 1, 2, 3, 4, 5, 6

such that
(
M

(4)
P

)n
=
[
m

(4,n)
ij

]
.

3. THE CYCLIC GROUPS VIA THE MATRICES C4, M
(1)
P , M

(2)
P , M

(3)
P

AND M
(4)
P

For a given matrix A = [aij ] of integers, A (modm) means that the
entries of A are reduced modulo m. Let 〈A〉m = {(A)n (modm)|n ≥ 0}. If
gcd (detA,m) = 1, 〈A〉m is the cyclic group. We denote cardinal of the set
〈A〉mby |〈A〉m|. Since detC4 = 5, it is clear that the set 〈C4〉m is a cyclic
group for every positive integer m such that gcd (5,m) = 1. Similarly, the

sets
〈
M

(1)
P

〉
m

,
〈
M

(2)
P

〉
m

,
〈
M

(3)
P

〉
m

and
〈
M

(4)
P

〉
m

are cyclic groups for every

positive integer m.

Now we consider the cyclic groups which are generated by the matrices

C4, M
(1)
P , M

(2)
P , M

(3)
P and M

(4)
P .

Theorem 3.1. Let p be a prime and let 〈G〉pε be any of the cyclic groups

of 〈C4〉pε,
〈
M

(1)
P

〉
pε

,
〈
M

(2)
P

〉
pε

,
〈
M

(3)
P

〉
pε

and
〈
M

(4)
P

〉
pε

such that ε ∈ N . If



9 The Padovan-circulant sequences 409

u is the largest positive integer such that
∣∣∣〈G〉p∣∣∣ =

∣∣∣〈G〉pu∣∣∣, then
∣∣∣〈G〉pv ∣∣∣ =

pv−u ·
∣∣∣〈G〉p∣∣∣ for every v ≥ u. In particular, if

∣∣∣〈G〉p∣∣∣ 6= ∣∣∣〈G〉p2∣∣∣, then
∣∣∣〈G〉pv ∣∣∣ =

pv−1 ·
∣∣∣〈G〉p∣∣∣ for every v ≥ 2.

Proof. Let us consider the cyclic group
〈
M

(1)
P

〉
pε

. Suppose that a is

a positive integer and

∣∣∣∣〈M (1)
P

〉
pε

∣∣∣∣ is denoted by k (pε). If
(
M

(1)
P

)k(pa+1)
≡

I
(
mod pa+1

)
, then

(
M

(1)
P

)k(pa+1)
≡ I (mod pa) where I is a 4 × 4 identity

matrix. Thus we obtain that k (pa) divides k
(
pa+1

)
. On the other hand,

writing
(
M

(1)
P

)k(pa)
= I +

(
m

(a)
ij · pa

)
, by the binomial theorem, we obtain

(
M

(1)
P

)k(pa)·p
=
(
I +

(
m

(a)
ij · p

a
))p

=

p∑
i=0

(
p
i

)(
m

(a)
ij · p

a
)i
≡ I

(
mod pa+1

)
,

which yields that k
(
pa+1

)
divides k (pa) · p. Then, we have that k

(
pa+1

)
=

k (pa) or k
(
pa+1

)
= k (pa) · p. It is clear that k

(
pa+1

)
= k (pa) · p holds if and

only if there is a m
(a)
ij which is not divisible by p. Since u is the largest positive

integer such that k (p) = k (pu), k (pu) 6= k
(
pu+1

)
. There is an m

(u+1)
ij which

is not divisible by p. Therefore, we get that k
(
pu+1

)
6= k

(
pu+2

)
. To complete

the proof we may use an inductive method on u.

There are similar proofs for the cyclic groups 〈C4〉pε ,
〈
M

(2)
P

〉
pε

,
〈
M

(3)
P

〉
pε

and
〈
M

(4)
P

〉
pε

.

Theorem 3.2. Let 〈G〉m be any the cyclic groups of 〈C4〉m,
〈
M

(1)
P

〉
m

,〈
M

(2)
P

〉
m

,
〈
M

(3)
P

〉
m

and
〈
M

(4)
P

〉
m

and let m =
∏t
i=1 p

ei
i , (t ≥ 1) where pi’s

are distinct primes. Then |〈G〉m| = lcm
[∣∣∣〈G〉pe11 ∣∣∣ , ∣∣∣〈G〉pe22 ∣∣∣ , . . . , ∣∣∣〈G〉pett ∣∣∣].

Proof. Let us consider the cyclic group
〈
M

(2)
P

〉
m

, where m is a positive

integer. Let

∣∣∣∣〈M (2)
P

〉
p
ei
i

∣∣∣∣ = λi for 1 ≤ i ≤ t and let
∣∣∣〈M (2)

P

〉
m

∣∣∣ = λ. Then by

(2.8), we have

x2λi+5 ≡ 1 mod peii ,

x2λi+u ≡ −1 mod peii for u = −2,−1, 0

x2λi+v ≡ 0 mod peii for v = 1, 2, 3, 4, 6
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and
x2λ+5 ≡ 1 modm,
x2λ+u ≡ −1 modm for u = −2,−1, 0
x2λ+v ≡ 0 modm for v = 1, 2, 3, 4, 6,

which implies that λi|λ for all values of i. Thus it is verified that
∣∣∣〈M (2)

P

〉
m

∣∣∣
equals the least common multiple of

∣∣∣∣〈M (2)
P

〉
p
ei
i

∣∣∣∣’s.
There are similar proofs for the cyclic groups 〈C4〉pε ,

〈
M

(1)
P

〉
pε

,
〈
M

(3)
P

〉
pε

and
〈
M

(4)
P

〉
pε

. �

It is well-known that a sequence is periodic if, after certain points, it
consists only of repetitions of a fixed subsequence. The number of elements in
the repeating subsequence is the period of the sequence. A sequence is simply
periodic with period k if the first k elements in the sequence form a repeating
subsequence.

Reducing the generalized Padovan-circulant sequence and the Padovan-
circulant sequences of the first, second, third and fourth kind by a modulus m,
we can get the repeating sequences, respectively denoted by

{xn (m)} = {x1 (m) , x2 (m) , x3 (m) , . . . , xj (m) , . . .}

and {
xkn (m)

}
=
{
xk1 (m) , xk2 (m) , xk3 (m) , . . . , xkj (m) , . . .

}
,

where xj (m) = xj (modm), xkj (m) = xkj (modm) and 1 ≤ k ≤ 4. They
have the same recurrence relation as in (2.1), (2.3), (2.4), (2.5) and (2.6),
respectively.

Theorem 3.3. For 1 ≤ k ≤ 4, the sequences
{
xkn (m)

}
are simply periodic

for every positive integer m. Similarly, the sequence {xn (m)} is a simply
periodic sequence if gcd (5,m) = 1.

Proof. Let us consider the generalized Padovan-circulant sequence and
let gcd (5,m) = 1. Suppose that S = {(s1, s2, s3, s4)| 0 ≤ si ≤ m− 1}. Then
we have |S| = m4. Since there are m4 distinct 4-tuples of elements of Zm, at
least one of the 4-tuples appears twice in the sequence {xn (m)}. Thus, the
subsequence following this 4-tuple repeats; that is the sequence {xn (m)} is pe-
riodic. So if xi+4 (m) ≡ xj+4 (m), xi+3 (m) ≡ xj+3 (m), xi+2 (m) ≡ xj+2 (m),
xi+1 (m) ≡ xj+1 (m) and i > j, then i ≡ j mod 4. From the definition, we can
easily derive

xi (m) ≡ xj (m) , xi−1 (m) ≡ xj−1 (m) , . . . , xi−j+2 (m) ≡ x2 (m) ,
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xi−j+1 (m) ≡ x1 (m) .

Thus it is verified that the sequence {xn (m)} is simply periodic.

There are similar proofs for the sequences
{
xkn (m)

}
, (1 ≤ k ≤ 4). �

We denote the periods of the sequences {xn (m)},
{
xkn (m)

}
, (1 ≤ k ≤ 4)

by lP (m), lkP (m), respectively.

Then, we have the following useful results from (2.2), (2.7), (2.8), (2.9)
and (2.10), respectively.

Corollary 3.4. Let p be a prime. Then

i. If p 6= 5, then lP (p) = 4 ·
∣∣∣〈C4〉p

∣∣∣.
ii. lkP (p) =

∣∣∣〈Mk
P

〉
p

∣∣∣ for 1 ≤ k ≤ 4.

Let p be a prime and let

A1 (pε) =
{
xn (modpε) : n ∈ Z, x4 = x2 − x− 1

}
,

A2 (pε) =
{
xn (modpε) : n ∈ Z, x5 = −x3 + x− 1

}
,

A3 (pε) =
{
xn (modpε) : n ∈ Z, x6 = −x3 − x2 + 1

}
and

A4 (pε) =
{
xn (modpε) : n ∈ Z, x6 = x2 − x− 1

}
such that ε ≥ 1. Then, it is clear that the sets A1 (pε), A2 (pε), A3 (pε) and
A4 (pε) are cyclic groups.

Now we can give a relationship between the characteristic equations of
the Padovan-circulant sequences of the first, second, third and fourth kind and
the periods l1P (m), l2P (m), l3P (m) and l4P (m) by the following Corollary.

Corollary 3.5. Let p be a prime and let ε ∈ N . Then, the cyclic
groups A1 (pε), A2 (pε), A3 (pε) and A4 (pε) are isomorphic to the cyclic groups〈
M

(1)
P

〉
pε

,
〈
M

(2)
P

〉
pε

,
〈
M

(3)
P

〉
pε

and
〈
M

(4)
P

〉
pε

.

4. THE PADOVAN-CIRCULANT SEQUENCES OF THE FIRST,
SECOND THIRD AND FOURTH KIND IN GROUPS

Let G be a finite j -generator group and let X be the subset of
G×G×G× · · · ×G︸ ︷︷ ︸

j

such that (x1, x2, . . . , xj) ∈ X if, and only if, G is

generated by x1, x2, . . . , xj . We call (x1, x2, . . . , xj) a generating j-tuple
for G.
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Definition 4.1. For a generating j -tuple (x1, x2, . . . , xj) ∈ X, we define the
Padovan-circulant orbits of the first, second, third and fourth kind as follows,
respectively:

a1n+4 =
(
a1n
)−1 (

a1n+1

)−1 (
a1n+2

)
for n ≥ 1, with initial conditions

a11 = (x1)
−1 , a12 = x2, a

1
3 = x3, a

1
4 = x4 if j = 4,

a11 = x1, a
1
2 = (x1)

−1 , a13 = x2, a
1
4 = x3 if j = 3,

a11 = (x1)
−2 , a12 = x1, a

1
3 = (x1)

−1 , a14 = x2 if j = 2,

a2n+5 =
(
a2n
)−1 (

a2n+1

) (
a2n+3

)−1

for n ≥ 1, with initial conditions
a21 = (x1)

−1 , a22 = x2, a
2
3 = x3, a

2
4 = x4, a

2
5 = x5 if j = 5,

a21 = (x1)
−1 , a22 = (x1)

−1 , a23 = x2, a
2
4 = x3, a

2
5 = x4 if j = 4,

a21 = (x1)
−1 , a22 = (x1)

−1 , a23 = (x1)
−1 , a24 = x2, a

2
5 = x3 if j = 3,

a21 = e, a22 = (x1)
−1 , a23 = (x1)

−1 , a24 = (x1)
−1 , a25 = x2 if j = 2,

a3n+6 =
(
a3n
) (
a3n+2

)−1 (
a3n+3

)−1

for n ≥ 1, with initial conditions
a31 = x1, a

3
2 = x2, a

3
3 = x3, a

3
4 = x4, a

3
5 = x5, a

3
6 = x6 if j = 6,

a31 = e, a32 = x1, a
3
3 = x2, a

3
4 = x3, a

3
5 = x4, a

3
6 = x5 if j = 5,

a31 = x1, a
3
2 = e, a33 = x1, a

3
4 = x2, a

3
5 = x3, a

3
6 = x4 if j = 4,

a31 = x1, a
3
2 = x1, a

3
3 = e, a34 = x1, a

3
5 = x2, a

3
6 = x3 if j = 3,

a31 = x1, a
3
2 = x1, a

3
3 = x1, a

3
4 = e, a35 = x1, a

3
6 = x2 if j = 2,

a4n+6 =
(
a4n
)−1 (

a4n+1

)−1 (
a4n+2

)
for n ≥ 1, with initial conditions

a41 = (x1)
−1 , a42 = x2, a

4
3 = x3, a

4
4 = x4, a

4
5 = x5, a

4
6 = x6 if j=6,

a41 = x1, a
4
2 = (x1)

−1 , a43 = x2, a
4
4 = x3, a

4
5 = x4, a

4
6 = x5 if j=5,

a41 = (x1)
−2 , a42 = x1, a

4
3 = (x1)

−1 , a44 = x2, a
4
5 = x3, a

4
6 = x4 if j=4,

a41 = (x1)
3 , a42 = (x1)

−2 , a43 = x1, a
4
4 = (x1)

−1 , a45 = x2, a
4
6 = x3 if j=3,

a41 = (x1)
−5, a42 = (x1)

3, a43 = (x1)
−2, a44 = x1, a

4
5 = (x1)

−1, a46 = x2 if j=2,

We denote the Padovan-circulant orbits of the first, second, third and
fourth kind by P 1

(x1,...,xj)
(G), P 2

(x1,...,xj)
(G), P 3

(x1,...,xj)
(G)and P 4

(x1,...,xj)
(G),

respectively.

Theorem 4.1. The Padovan-circulant orbits of the first, second, third
and fourth kind of a finite group are simply periodic.
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Proof. Let us consider the Padovan-circulant orbit of the third kind
P 3
(x1,...,xj)

(G). Suppose that n is the order of G. Since there are n6 distinct

triples of elements of G, at least one of the triples appears twice in the sequence
P 3
(x1,...,xj)

(G). Thus, consider the subsequence following this triple. Because

of the repeating, the sequence is periodic. Since the sequence P 3
(x1,...,xj)

(G) is

periodic, there exist natural numbers u and v, with u ≥ v, such that

a3u+1 = a3v+1, a
3
u+2 = a3v+2, . . . , a

3
u+6 = a3v+6.

By the defining relation of the Padovan-circulant orbit of the third kind, we
know that (

a3n+6

) (
a3n+3

) (
a3n+2

)
= a3n.

Therefore, a3u = a3v, and hence,

a3u−v+1 = a31, a
3
u−v+2 = a32, . . . , a

3
u−v+6 = a36,

which implies that the orbit P 3
(x1,...,xj)

(G) is simply periodic.

There are similar proofs for the orbits P 1
(x1,...,xj)

(G), P 2
(x1,...,xj)

(G) and

P 4
(x1,...,xj)

(G). �

We denote the length of the period of the orbit P k(x1,...,xj) (G) by

LP k(x1,...,xj) (G) for 1 ≤ k ≤ 4. From the definitions of the Padovan-circulant

orbits of the first, second, third and fourth kind it is clear that the lengths of
the periods of these sequences in a finite group depend on the chosen generating
set and the order in which the assignments of x1, x2, . . . , xj are made.

We will now address the lengths of the periods of the Padovan-circulant
orbits of the first, second, third and fourth kind of the quarternion group Q8

and the dihedral group Dn for generating pair (x, y).

Theorem 4.2. Consider the quaternion group Q8 where

Q8 =
〈
x, y : x4 = e, y2 = x2, y−1xy = x−1

〉
.

Then LP 1
(x,y) (Q8) = 14, LP 2

(x,y) (Q8) = 30, LP 3
(x,y) (Q8) = 62 and

LP 4
(x, y) (Q8) = 62.

Proof. We prove this by direct calculation. Let us consider the Padovan-
circulant orbit of the first kind. The orbit P 1

(x,y) (Q8) is

x2, x, x3, y, e, y, xy3, e, x, x3, y, x2, y, xy, x2, x, x3, y, e, . . . ,

which has period 14.

There are similar proofs for the orbits P 2
(x,y) (Q8), P 3

(x,y) (Q8) and

P 4
(x, y) (Q8). �
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Theorem 4.3. Consider the dihedral group Dn where

Dn =
〈
x, y : x2 = y2 = (xy)n = e

〉
.

Then

LP 1
(x,y) (Dn) =


7n
2 , n ≡ 0 mod 4,

7n, n ≡ 2 mod 4,
14n, otherwise,

LP 2
(x,y) (Dn) =


15n
2 · α, n ≡ 0 mod 4,

15n · α, n ≡ 2 mod 4,
30n · α, otherwise

and

LP 3
(x,y) (Dn) = LP 4

(x,y) (Dn) =


31n
2 · β, n ≡ 0 mod 4,

31n · β, n ≡ 2 mod 4,
62n · β, otherwise,

where α, β ∈ N .

Proof. Firstly, let us consider the Padovan-circulant orbit of the first kind.
The orbit P 1

(x,y) (Dn) is

x1 = e, x2 = x, x3 = x, x4 = y, . . . ,

x15 = e, x16 = (yx)3 y, x17 = (yx)3 y, x18 = y (xy)4 , . . . ,

x14i+1 = e, x14i+2 = (yx)4i−1 y, x14i+3 = (yx)4i−1 y, x14i+4 = y (xy)4i , . . . .

So we need the smallest integer i such that 4i = n · µ1 for µ1 ∈ N .
If n ≡ 0 mod 4, i = n

4 . Thus, LP 1
(x,y) (Dn) = 14 · n4 = 7n

2 .

If n ≡ 2 mod 4, i = n
2 . Thus, LP 1

(x,y) (Dn) = 14 · n2 = 7n.

If n ≡ 1 mod 4 or n ≡ 3 mod 4, i = n. Thus, LP 1
(x,y) (Dn) = 14n.

Secondly, let us consider the Padovan-circulant orbit of the third kind.
The orbit P 3

(x,y) (Dn) is in the following form:

x1 = x, x2 = x, x3 = x, x4 = e, x5 = x, x6 = y, . . . ,

x63 =, (yx)167 y x64 = (xy)312 x, x65 = (yx)599 y,

x66 = (yx)188 , x67 = (xy)564 x, x62i+6 = (yx)1248 y, . . . ,

x62i·β+1 = (yx)u1·4i−1 y, x62i·β+2 = (xy)u2·4i x, x62i·β+3 = (yx)u3·4i−1 y,

x62i·β+4 = (yx)u4·4i , x62i·β+5 = (xy)u5·4i x, x62i·β+6 = (yx)u6·4i y, . . . .

where u1, u2, u3, u5, u6 ∈ N and u4 is a positive odd integer such that

gcd (u1, u2, u3, u4, u5, u6) = 1.

So we need the smallest integer i such that 4i = n · µ2 for µ2 ∈ N .
If n ≡ 0 mod 4, i = n

4 . Thus, LP 3
(x,y) (Dn) = 62 · n4 · β = 31n

2 · β.

If n ≡ 2 mod 4, i = n
2 . Thus, LP 3

(x,y) (Dn) = 62 · n2 · β = 31n · β.

If n ≡ 1 mod 4 or n ≡ 3 mod 4, i = n. Thus, LP 3
(x,y) (Dn) = 62n · β.

There are similar proofs for the orbits P 2
(x,y) (Dn) and P 4

(x, y) (Dn). �
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5. CONCLUSIONS

In Section 2, we have defined the generalized Padovan-circulant sequence
and the Padovan-circulant sequences of the first, second, third and fourth kind
and then, we have obtained the relationships among the elements of the se-
quences and the generating matrices of the sequences. Also, we have given the
Simpson formula of the generalized Padovan-circulant sequence. Furthermore,
we have obtained the generating functions and the Binet-type formulas for the
Padovan-circulant sequences of the first, second, third and fourth kind.

In Section 3, we have studied the generalized Padovan-circulant sequence
and the Padovan-circulant sequences of the first, second, third and fourth kind
modulo m. Also, we have obtained the cyclic groups which are generated by
reducing the multiplicative orders of the generating matrices and the auxiliary
equations of these sequences modulo m and then, we have studied the orders
of these cyclic groups.

In Section 4, we have extended the Padovan-circulant sequences of the
first, second, third and fourth kind to groups. Then we have redefined these
sequences by the means of the elements of the groups and we have examined
them in finite groups. Finally, we have obtained the lengths of the periods of
the Padovan-circulant sequences of the first, second, third and fourth kind in
the quarternion group Q8 and the dihedral group Dn.

6. FURTHER WORK

There are many open problems in this area. Below are a few of them:
• Does there exist a relationship among the Padovan sequence and the

considered sequences in this paper?
• Does there exist a formula for calculating the periods lP (m), l1P (m),

l2P (m), l3P (m) and l4P (m)?
• What general theories can be obtained regarding the lengths of the

periods of the Padovan-circulant orbits of the first, second, third and fourth
kind of a general group? For example, does there exist a decision process to
determine whether, or not, a given group has finite length.

• Let us consider infinite groups such that the lengths of the periods of
the Padovan-circulant orbits of the first, second, third and fourth kind of these
groups are finite. To find these lengths it would be useful to have a program.
This would possibly rely on using the Knuth-Bendix method, see [15].
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