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Axial Couette flow of Oldroyd-B fluids between two infinite coaxial circular cy-
linders is studied when the fluid motion is generated by the outer cylinder that
is moving along its axis with an arbitrary time-dependent velocity. The corre-
sponding solution for the motion through an infinite cylinder is obtained as a
limiting case of previous general solution. Both solutions for the dimensionless
fluid velocity satisfy all imposed initial and boundary conditions and can be ea-
sily particularized to give the similar solutions corresponding to Maxwell, second
grade and Newtonian fluids performing the same motions. Finally, as a check of
general results as well as to get some physical insight for oscillating motions of
these fluids, three special cases with engineering applications are considered and
different known results from the literature are recovered. The required time to
reach the steady-state for sine oscillating motions is graphically determined. It
is higher for second grade or Oldroyd-B fluids in comparison with Newtonian,
respectively Maxwell fluids.
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1. INTRODUCTION

Flows between circular cylinders or through a cylinder are of interest
both for academic researchers and industry. Research workers can study chan-
ges associated with variations of boundary conditions and geometry but exact
solutions can be easier obtained for motions with symmetry along or about an
axis. Exact solutions for motions of Newtonian fluids in cylindrical domains
are provided by Batchelor [2] and Yih [22]. First exact solutions for motions of
second grade, Maxwell or Oldroyd-B fluids in such domains seem to be those
of Ting [16], Srivastava [15], respectively Waters and King [20].

During time, many exact solutions for such motions of non-Newtonian
fluids have been established. Among the solutions corresponding to motions
of Oldroyd-B fluids we remember those of Wood [21], Fetecau [4], Hayat et al.
[8], Fetecau et al. [5] and McGinty et al. [11]. They correspond to different
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boundary conditions and some of them have been already extended to fractional
Olroyd-B fluids [1, 9, 10, 18].

It is worth pointing out that the most part of previous solutions have been
extended to motion problems with shear stress on the boundary [6, 13, 23]. In
these cases, contrary to what is usually assumed, the force with which the
cylinder is moved is given on the boundary. However, in both cases, general
solutions for longitudinal motions of rate type fluids in cylindrical domains
are lacking in the existing literature. Such solutions are very important from
theoretical and practical point of view. They generate exact solutions for any
motion with technical relevance of this type and the corresponding problem
can be considered as being completely solved.

The purpose of this note is to provide general solutions for the axial
Couette flow of Oldroyd-B fluids in cylindrical domains. These solutions, which
are determined by means of integral transforms, can be easily reduced to the
similar solutions for Maxwell, second grade and Newtonian fluids performing
the same motions. Moreover, for validation as well as to get some physical
signification that is absent in the literature for oscillating motions of non-
Newtonian fluids between circular cylinders, three special cases are considered
and different known results are recovered. Finally, the solutions corresponding
to sine oscillating motions of Olroyd-B fluids are presented as a sum of steady-
state (permanent) and transient solutions and the required time to reach the
steady-state is graphically determined.

2. STATEMENT OF THE PROBLEM

Consider an incompressible Oldroyd-B fluid at rest between two infinite
coaxial circular cylinders of radii R1 and R2(> R1). At time t = 0+ the
outer cylinder begins to slide along its axis with a velocity V f(t) where V
is constant and the dimensionless function f(.) is a piecewise continuous and
f(0) = 0. Due to the shear, the fluid begins to move and its velocity is of the
form v = v(r, t)ez where ez is the unit vector along the z direction of a fixed
cylindrical coordinate system r, θ and z. For such a motion the continuity
equation is satisfied.

Assuming that the extra-stress tensor S, as well as the velocity v, is a
function of r and t only and neglecting the body forces, we can easy show
that the constitutive and the motion equations reduce to the relevant partial
differential equations [12, Eqs. (22)3 and (26)2]

(1)

(
∂

∂r
+

1

r

)
τ(r, t) = ρ

∂v(r, t)

∂t
,

(
1 + λ

∂

∂t

)
τ(r, t) = µ(1 + λr)

∂v(r, t)

∂r
.
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In the above relations τ(r, t) = Srz(r, t) is the non-trivial shear stress,
λ and λr are the relaxation and retardation times, ρ and µ are the density
respectively the viscosity of the fluid. In order to get the equation (1) we also
assumed that there is no pressure gradient in the flow direction and took into
consideration the fact that the fluid was at rest at the initial moment t = 0.

It is well known the fact that the present model contains as special cases
Maxwell and Newtonian fluids for λr = 0, respectively λr = λ = 0. Further-
more, Eq. (1)2 with λ = 0 can be easily written in the form of the governing
equation corresponding to second grade fluids performing the same motion.
Consequently, it is expected to get the solutions corresponding to these fluids
as limiting cases of general solutions. Eliminating τ(r, t) between Eqs. (1) we
obtain the governing equation
(2)(

1 + λ
∂

∂t

)
∂v(r, t)

∂t
= ν

(
1 + λr

∂

∂t

)(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, t); rε(R1, R2), t > 0,

for velocity. Here ν = µ/ρ is the kinematic viscosity of the fluid.
The appropriate initial and boundary conditions are

(3) v(r, 0) =
∂v(r, t)

∂t

∣∣∣∣
t=0

= 0, rε[R1, R2],

(4) v(R1, t) = 0, v(R2, t) = V f(t), t ≥ 0.

By introducing the non-dimensional variables and functions

r∗ =
r

R2
, t∗ =

ν

R2
2

t, λ∗ =
ν

R2
2

λ, λ∗r =
ν

R2
2

λr,

R∗ =
R1

R2
, v∗ =

v

V
, f∗(t∗) = f

(
R2

2

ν
t∗
)

(5)

and dropping out the star notation, we attain to the next non-dimensional
initial and boundary problem

(6)

(
1 + λ

∂

∂t

)
∂v(r, t)

∂t
=

(
1 + λr

∂

∂t

)(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, t); rε(R, 1), t > 0,

(7) v(r, 0) =
∂v(r, t)

∂t

∣∣∣∣
t=0

= 0, rε[R, 1]; v(R, t) = 0, v(1, t) = f(t), t ≥ 0.

3. SOLUTION OF THE PROBLEM

In the following, the partial differential equation (6) with the initial and
boundary conditions (7) will be solved by means of integral transforms.
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Consequently, applying the Laplace transform to Eq. (6) and using the
initial conditions (7) we find that the Laplace transform v̄(r, q) of v(r, t) satisfies
the ordinary differential equation

q(1 + λq)v̄(r, q) = (1 + λrq)

(
∂2

∂r2
+

1

r

∂

∂r

)
v̄(r, q); rε(R, 1),(8)

with the boundary conditions

v̄(R, q) = 0, v̄(1, q) = F (q).(9)

Here F (q) is the Laplace transform of the function f(t) while q is the transform
parameter. Of course, if v̄(r, q) satisfies Dirichlet’s conditions in the domain
[R,1] then at each point of the interval (R,1) where the function is continuous,
its finite Hankel transform is given by [3]

(10) v̄H(rn, q) =

∫ 1

R
rv̄(r, q)B0(r, rn)dr.

Now, we multiply Eq. (8) by rB0(r, rn) where B0(r, rn) = J0(rrn)Y0(Rrn)
−J0(Rrn)Y0(rrn), integrate from R to 1 and take into consideration the boun-
dary conditions (7) and the result (see [3] and the fact that B10(1, rn) =
2
πrn

J0(Rrn)
J
0(rn)

)

(11)∫ 1

R
rB0(r, rn)

(
∂2

∂r2
+

1

r

∂

∂r

)
v̄(r, q)dr = −r2nv̄H(rn, q) +

2

π
v̄(1, q)

J0(Rrn)

J0(rn)
,

in order to obtain

v̄H(rn, q) =
2

π
F (q)

λrq + 1

λq2 + (1 + λrr2n)q + r2n

J0(Rrn)

J0(rn)
.(12)

In the above relations Jv(.) and Yv(.) are Bessel functions of the first and
second kind of v order, rn are the positive roots of transcendental equation
B0(1, r) = 0 and B10(r, rn) = J1(rrn)Y0(Rrn) − J0(Rrn)Y1(rrn). In order to
obtain a suitable form of the velocity field, we write the second factor of the
right part of Eq. (12) like

(13)
λrq + 1

λq2 + (1 + λrr2n)q + r2n
=
λr
λ

q + an
(q + an)2 − b2n

+
1− λran
λbn

bn
(q + an)2 − b2n

,

where an = 1+λrr2n
2λ and bn =

√
(1+λran)2−4λr2n

2λ .
Introducing Eq. (13) into (12), applying the inverse Laplace transform

and using the convolution theorem, we obtain
(14)

vH(rn, t) =
2

π

J0(Rrn)

J0(rn)

∫ t

0
f(t− s)

[
λr
λ

ch(bns) +
1− λran
λbn

sh(bns)

]
e−ansds.



5 General solutions for the axial Couette flow 5

Integrating by parts into above equation, we find that

vH(rn, t) =
2

π

J0(Rrn)

r2nJ0(rn)
f(t)− 2

π

J0(Rrn)

r2nJ0(rn)

∫ t

0
f ′(t− s)cn(s)ds,(15)

where cn(s) =
[
ch(bns) + 1−λrr2n

2λbn
sh(bns)

]
exp (−ans).

Applying the inverse Hankel transform and using the identities

v(r, t) =
π2

2

∞∑
n=1

r2nJ
2
0 (rn)B0(r, rn)

J2
0 (Rrn)− J2

0 (rn)
vH(rn, t),

(16) π

∞∑
n=1

J0(rn)J0(Rrn)

J2
0 (Rrn)− J2

0 (rn)
B0(r, rn) =

1

lnR
ln

(
R

r

)
,

we find for dimensionless velocity v(r, t) the simple expression
(17)

v(r, t)=
1

lnR
ln

(
R

r

)
f(t)+π

∞∑
n=1

J0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)
B0(r, rn)

∫ t

0
f ′(t−τ)cn(s)ds,

which clearly satisfies the initial and boundary conditions (7). Moreover, taking
the limits of Eq. (17) for λr → 0, λ→ 0 or both λ and λr → 0, the solutions
corresponding to Maxwell, second grade or Newtonian fluids performing the
same motion are obtained. The solution corresponding to second grade fluids,
for instance, is

vSG(r, t) = 1
lnR ln

(
R
r

)
f(t) + π

∞∑
n=1

J0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)

B0(r, rn)

1 + λrr2n∫ t
0 f
′(t− s)exp

(
− r2ns

1+λrr2n

)
ds.(18)

4. FLOW THROUGH AN INFINITE CIRCULAR CYLINDER

Let us consider the same fluid at rest in an infinite circular cylinder of
radius R. After time t = 0 the cylinder is moving along its axis with the same
velocity V f(t). The fluid is gradually moved and the governing equation for
velocity has the same form (2). The initial conditions are the same as before
and the boundary condition and the limitation condition at r = 0 are

(19) v(R, t) = V f(t), |v(0, t)| <∞; t ≥ 0.
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The non-dimensional velocity field corresponding to this motion

(20) v(r, t) = f(t)− 2

∞∑
n=1

J0(rrn)

rnJ1(rn)

∫ t

0
f ′(t− s)cn(s)ds,

can be easily obtained following the same way as before and using the associate
finite Hankel transform [14, Sec. 14]. The sum into Eq. (20) is taken over all
positive roots rn of the equation J0(r) = 0. Of course, these new roots are
the limit of the previous roots when R→ 0 but we kept the same notation for
writing simplicity.

Moreover, it is worth pointing out that the solution (20) can be also
obtained as a limiting case of the solution (17) when R→ 0. In order to prove
that, we firstly use the equivalence

(21) B0(1, rn) = 0 ⇔ J0(rn) =
J0(Rrn)

Y0(Rrn)
Y0(rn),

which shows that the roots of the equation J0(r) = 0 are the limit of the roots
of the equation B0(1, rn) = 0 when R→ 0.

Secondly, using the previous result and the identity

(22) J0(rn)Y1(rn)− J1(rn)Y0(rn) = − 2

πrn
,

we can show that

(23) lim
R→0

J0(rn)J0(Rrn)

J2
0 (Rrn)− J2

0 (rn)
B0(r, rn) = − 2J0(rrn)

πrnJ1(rn)
.

Making λ→ 0 into Eq. (20) the solution
(24)

vSG(r, t) = f(t)− 2
∞∑
n=1

1

1 + λrr2n

J0(rrn)

rnJ1(rn)

∫ t

0
f ′(t− s)exp

(
− r2ns

1 + λrr2n

)
ds,

corresponding to second grade fluid is obtained. For λr = 0 into Eq. (24), the
general solution for Newtonian fluids is obtained.

5. SPECIAL CASES

The general expressions given by Eqs. (17) and (20) can generate exact
solutions for any motion with technical relevance of this type.

Consequently, the motion of Newtonian, second grade, Maxwell and
Oldroyd-B fluids between two infinite coaxial cylinders induced by the outer
cylinder that slides along its axis with a given velocity or the motion through
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an infinite circular cylinder performing the same motion is completely solved.
However, in order to certify the accuracy of general results, as well as to bring
to light their theoretical and practical value and some physical insight for some
motions with technical relevance, three special cases are considered.

5.1. CASE f(t) = H(t) (UNIFORM TRANSLATION OF THE CYLINDER)

Taking f(t) = H(t), the Heaviside unit step function, into Eqs. (17) and
(20) we find the dimensionless velocity fields

(25) v(r, t) =
ln(R/r)

lnR
H(t) + πH(t)

∞∑
n=1

J0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)
B0(r, rn)cn(t),

(26) v(r, t) = H(t)

(
1− 2

∞∑
n=1

J0(rrn)

rnJ1(rn)
cn(t)

)
,

corresponding to motions induced by an infinite circular cylinder that slides
along its axis with a constant velocity V . In order to determine the solutions
(25) and (26) we used the known results

(27) H ′(t) = δ(t),

∫ t

0
δ(t− s)f(s)ds = f(t).

Both solutions (25) and (26) are written as a sum of steady solutions

(28) vs(r,∞) =
ln(R/r)

lnR
as rε[R, 1]; vs(r,∞) = 1 as rε[0, 1]

and the corresponding transient solutions. In the second case, at large times,
the whole system is moving as a solid body.

5.2. CASE f(t) = H(t)tα

(RAMP-TYPE TRANSLATION OF THE CYLINDER)

By now replacing f(t) by H(t)tα (α > 0) into Eqs. (17) and (20), we
obtain the solutions corresponding to motions due to a slowly (α < 1), con-
stantly (α = 1) or highly (α > 1) accelerating translation of the cylinder.

Of course, of a special interest is the case α = 1 corresponding to the
motion induced by ramp-type translation of the cylinder [17]. More exactly,
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after time t = 0 the cylinder slides along its axis with a constantly accelerating
velocity Vt and the corresponding solutions

(29) v(r, t) = H(t)

{
ln(R/r)

lnR
t+ π

∞∑
n=1

J0(rn)J0(Rrn)B0(r, rn)

r2n[J2
0 (Rrn)− J2

0 (rn)]
[1− dn(t)]

}
,

(30) v(r, t) = H(t)

{
t− 2

∞∑
n=1

J0(rrn)

r3nJ1(rn)
[1− dn(t)]

}
,

are just the dimensionless forms of the solutions (17) and (20) obtained by
Fetecau et al. [5] by a different technique. Into above relations

dn(t) =
{

ch(bnt) + 1+(λr−2λ)r2n
2λbn

sh(bnt)
}
e(−ant).

As expected, the starting solutions (29) and (30) are presented as sum of
large-time solutions

(31) vLT (r, t) = H(t)

{
ln(R/r)

lnR
t+ π

∞∑
n=1

J0(rn)J0(Rrn)

r2n[J2
0 (rn)− J2

0 (Rrn)]
B0(r, rn)

}
,

(32) vLT (r, t) = H(t)

{
t− 2

∞∑
n=1

J0(rrn)

r3nJ1(rn)

}
,

and the transient solutions that contain exponential functions and tend to zero
for t→∞.

5.3. CASE f(t) = H(t)sin(ωt)
(OSCILLATING TRANSLATION OF THE CYLINDER)

Let us now assume that the outer cylinder oscillates along its axis after
the time t = 0+. The outcome motion can correspond to f(t) = H(t)sin(ωt),
f(t) = H(t)cos(ωt) or a combination of them but we consider here only one
case. By replacing f(t) with H(t)sin(ωt) into Eq. (17) and using again Eqs.
(27), we find the starting solution

v(r, t) = H(t)

{
ln(R/r)

lnR
sin(ωt) + ωπ

∞∑
n=1

J0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)

B0(r, rn)

∫ t

0
cos(ωs)cn(t− s)ds

}
,(33)

The similar solution corresponding to the motion through an infinite ci-
rcular cylinder, as it results from Eq. (20), is

(34) v(r, t) = H(t)

{
sin(ωt)− 2ω

∞∑
n=1

J0(rrn)

rnJ1(rn)

∫ t

0
cos(ωs)cn(t− s)ds

}
.
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Usually, the starting solutions for oscillating motions of fluids are impor-
tant for those who want to eliminate the transients from their experiments.
More exactly, they want to know the required time after which the fluid flows
according to steady-state (permanent) solutions. In order to solve this problem,
we must write the transient solutions (33) and (34) as sums between steady-
state and transient solutions. To do that, we firstly evaluate the integral from
these relations, namely∫ t

0 cos(ωs)cn(t− s)ds = ω cn−λ(r2n−λω2)
c2nω

2+(r2n−λω2)2
sin(ωt) + (1+λλrω2)r2n

c2nω
2+(r2n−λω2)2

cos(ωt)

−
{

(1+λλrω2)r2n
c2nω

2+(r2n−λω2)2
ch(bnt) + r2n

cn(1−λλrω2)−2λ(r2n−λω2)
[c2nω

2+(r2n−λω2)2]bn
sh(bnt)

}
exp(−ant),

where cn = 1 + λrr
2
n.

Introducing this last result into above relations, we find the steady-state
solutions

vp(r, t) =

{
1

lnR
ln

(
R

r

)
+

πω2
∞∑
n=1

cn − λ(r2n − λω2)

c2nω
2 + (r2n − λω2)2

J0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)
B0(r, rn)

}
sin(ωt)+

πωcos(ωt)

∞∑
n=1

(1 + λλrω
2)r2n

c2nω
2 + (r2n − λω2)2

J0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)
B0(r, rn),(35)

vp(r, t) =

{
1− 2ω2

∞∑
n=1

cn − λ(r2n − λω2)

c2nω
2 + (r2n − λω2)2

J0(rrn)

rnJ1(rn)

}
sin(ωt)

− 2ωcos(ωt)
∞∑
n=1

1 + λλrω
2

c2nω
2 + (r2n − λω2)2

rnJ0(rrn)

J1(rn)
,(36)

respectively, the transient solutions

vt(r, t) = −ωπ
∞∑
n=1

r2nJ0(rn)J0(Rrn)

J2
0 (rn)− J2

0 (Rrn)
B0(r, rn)

{
1 + λλrω

2

c2nω
2 + (r2n − λω2)2

ch(bnt) +
cn(1− λλrω2)− 2λ(r2n − λω2)

[c2nω
2 + (r2n − λω2)2]bn

sh(bnt)

}
exp(−ant),(37)

vt(r, t) = 2ω
∞∑
n=1

rnJ0(rrn)

J1(rn)

{
1 + λλrω

2

c2nω
2 + (r2n − λω2)2

ch(bnt)

+
cn(1− λλrω2)− 2λ(r2n − λω2)

[c2nω
2 + (r2n − λω2)2]bn

sh(bnt)

}
exp(−ant),(38)
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corresponding to the two motions between two infinite circular cylinders or
through an infinite circular cylinder.

For validation, it is worth pointing out that making λr = 0 into Eqs.
(37) and (38) we recover the dimensionless forms of the transient solutions
corresponding to the same motions of Maxwell fluids obtained by Vieru et al.
[19, Eqs. (23) and (30)] by a different technique. Furthermore, as it results
from Fig. 1 the diagrams of steady-state solutions (35) and (36) are identical
to those corresponding to the solutions

vp(r, t) = Im

{
I0(r
√
γ)K0(R

√
γ)−K0(r

√
γ)I0(R

√
γ)

I0(
√
γ)K0(R

√
γ)−K0(

√
γ)I0(R

√
γ)

eiωt
}
,(39)

vp(r, t) = Im

{
I0(r
√
γ)

I0(
√
γ)

eiωt
}
, γ = ω

(λr − λ)ω + i(1 + λλrω
2)

1 + (λrω)2
,(40)

which are the dimensionless forms of the steady-state solutions obtained by
Fetecau et al. [7, Eqs. (32) and (37)2] where λ2 and λ4 have to be zero while
λ1 = λ and λ3 = λr. Into Figs. 1, the corresponding roots rn have been
approximated by nπ/(R− 1), respectively (4n− 1)π/4.

6. CONCLUSIONS

Axial Coutte flow of Oldroyd-B fluids between two infinite circular co-
axial cylinders is completely solved when the fluid motion is induced by the
outer cylinder that is moving along its axis. General solutions for the dimen-
sionless velocity of the fluid are presented under integral and series form in
terms of standard Bessel functions of zero order. They satisfy all imposed
initial and boundary conditions and can easily be particularized to give the si-
milar solutions for Maxwell, second grade and Newtonian fluids performing the
same motion. Furthermore, they can generate exact solutions for any motion
with technical relevance of this type and are easily reduced to the solutions
corresponding to the fluid motion through an infinite circular cylinder that is
moving along its symmetry axis.

For validation, as well as to obtain some physical insight for some oscil-
lating motions, three special cases are considered and different known results
from the existing literature are recovered. In the case of constantly accelerating
translation of the cylinder, for instance, our solutions (29) and (30) are just
the dimensionless forms of the solutions (17) and (20) that have been obtai-
ned in [5] by a different technique. Moreover, the solutions corresponding to
oscillating motions of the cylinder are presented as a sum of steady-state and
transient solutions. Figs. 1 show that steady-state solutions (35) and (36) are
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Fig. 1 – Profiles of permanent dimensionless velocities (35) and (39), respectively (36) and

(40), for different values of the time t.

Fig. 2 – Variations of starting and permanent dimensionless

velocities (33), respectively (35), for different values of the time t.

equivalent to those obtained by Fetecau et al. [7, Eqs. (32) and (37)2] by a
different technique.

Practically speaking, an important problem regarding the technical rele-
vance of starting solutions is to determine the required time to get the steady-
state. More exactly, to determine the time after which the fluid flows according
to steady-state solutions. This time, for longitudinal oscillations of Oldroyd-B
fluids between two infinite circular cylinders, is first time determined here for
different values of the relaxation or retardation time λ or λr and of the fre-
quency ω of oscillations. In Fig. 2, for comparison, the diagrams of starting
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and steady-state dimensionless velocities (33) and(35) against r are presented
for the same values of pertinent parameters. At small values of the time t
the difference between them is significant but it rapidly disappears and the
required dimensionless time to reach the steady-state is small enough.

Fig. 3 – Required time to reach the steady-state for the motion due to sine oscillations of

the outer cylinder for different values of the relaxation time λ.

Fig. 4 – Required time to reach the steady-state for the motion due to sine oscillations of

the outer cylinder for different values of λr.

Fig. 3 and 4 clearly show that the required time to reach steady-state in
such motions of Oldroyd-B fluids is decreasing function with respect to λ and
increases for increasing values of λr. Consequently, as expected, the effects of
the two material parameters λ and λr on the fluid motion are opposite and the
main conclusions are:
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• The steady-state for such oscillating motions of fluids is rather obtained
for Newtonian and Maxwell fluids in comparison to second grade, respectively
Oldroyd-B fluids.
• It is also later obtained for Newtonian and second grade fluids in comparison
to Maxwell, respectively Oldroyd-B fluids.

Fig. 5 – Required time to reach the steady-state for the motion due to sine oscillations of

the outer cylinder for different values of the frequency ω.

Finally, for completion, the influence of the frequency omega of oscilla-
tions is brought to light by means of Fig. 5. The required time to reach the
steady-state, as it results from this figure, is a decreasing function with re-
gard to ω. It is also worth pointing out that all present results are in accord
with those obtained in [7] for similar motions through an infinite circular cy-
linder but they are the first results of this type for oscillating motions of fluids
between two infinite coaxial circular cylinders.
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