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1. INTRODUCTION

A group which has no proper subgroup of finite index is called F-perfect.
Let X be a class of groups. If a group G is not in X but every proper subgroup
of G is in X then G is called a minimal non X-group and denoted usually by
MNX. Clearly every perfect p-group for some prime p is F-perfect and the
structure of many MNX-groups is investigated in perfect p-case.

In the present article we take S, the class of all soluble groups, as the
class X, i.e. we consider certain MNS-groups. It is not known yet if locally
finite MNS-p-groups exist. Such groups are mainly studied in [2–6] (in some
general form) and given certain descriptions.

In Section 2, we give certain applications of Khukhro-Makarenko Theorem
to F-groups. Also we provide a corollary to [17, Satz 6] which is used effectively
in most of the cited articles and give certain applications of it. Finally, we
define Weak Fitting groups and a useful class Ξ of groups and give certain
results related to these notions.

In Section 3, we consider a property of generator subsets of some MNS-
groups.

In the final section, we deal with the groups having FC-subgroups and
define the class Θ of groups. We provide two points of view and consider such
a group as a subgroup of M(Q, GF (p)) for some prime p, the McLain groups,
or represent as a finitary permutation group on an infinite set.
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2. F-PERFECT GROUPS

First we use a result known as the Khukhro-Makarenko Theorem (in
short KM-Theorem, [9–12]) to obtain certain useful results for F-perfect groups.
The following lemma gives an idea about the derived length of finite index
subgroups. Throughout the paper, we use dl(G) to denote the derived length
of a soluble group G.

Lemma 1. Let G be an F-perfect group, and N , K be normal subgroups of
G such that K contains N . If the factor group K/N is finite then it is central
in G.

Proof. Since K/N is finite, CG(K/N) has finite index in G. So we have
G = CG(N/K) by hypothesis. In other words K/N is central in G. So the
proof is complete. �

To obtain some results, for a proper subgroup S of a group G, we need to
find a normal subgroups N of G such that |N : N ∩S| is infinite. The following
corollary provides an idea.

Corollary 2. Let G be an F-perfect group and N be a soluble proper
normal subgroup of G of derived length d. If S is a subgroup of G of derived
length ≤ d− 2 then |N : N ∩S| is infinite. In particular, for i ≥ d− 2, N/N (i)

is infinite.

Proof. Let K := N ∩ S and suppose that K has finite index in N . By
KM-Theorem, N contains a characteristic subgroup C such that dl(C) ≤ d−2
and N/C is finite. Then by Lemma 1, N/C is central in G, in particular, it is
abelian. It follows that dl(N) ≤ d− 1, a contradiction. �

In the following corollary, Ng for g ∈ N denotes the finite-index normal
subgroup of N such that g /∈ Ng.

Corollary 3. Let G be an F-perfect group and N be a soluble residually
finite proper normal subgroup of G of derived length d. Then for every g ∈ N ,
dl(Ng) ≥ d− 1.

Let G be a group and H be a subgroup of G. If |G : H| is infinite,
CoreGH =

⋂
g∈GH

g = 1 and for every proper subgroup K of G, |K : K ∩H|
is finite then G is called a barely transitive group and H is called a point
stabilizer. Though the definition of barely transitive groups has permutation
groups origin, we use the above abstract definition of these groups (see [13]).

In the following corollary nc(S) denotes the nilpotency class of S.

Corollary 4. Let G be an F-perfect group and N be a soluble (nilpotent)
proper normal subgroup of G of derived length d (nilpotency class c). If S is
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a finite index subgroup of N then dl(S) = d − 1 or d (nc(S) = c − 1 or c).
Furthermore, dl(CoreNS) ≥ d− 1 (nc(CoreNS) ≥ c− 1).

Theorem 5. Let G be locally finite perfect barely transitive group with
a point stabilizer H and N be a proper normal subgroup of G whose derived
length is d (nilpotency class is c). Then for every positive integer n and for
every x1, . . . , xn ∈ G,

dl(N ∩H ∩Hx1 ∩ · · · ∩Hxn) ≥ d− 1 (nc(N ∩H ∩Hx1 ∩ · · · ∩Hxn) ≥ c− 1).

Proof. Result follows by Corollary 4. �

Corollary 6. Let G be a locally finite perfect barely transitive group
with a point stabilizer H. Then for every positive integer n, H contains a
proper soluble (nilpotent) subgroup K of finite exponent such that dl(K) > n
(nc(K) > n).

Proof. By [8, Theorem 1] G is a p-group, in particular, G is locally nil-
potent. Also by [13, Theorem 1.1(2)] every proper normal subgroup of G is
nilpotent of finite exponent. Hence G is a union of a ascending chain of pro-
per normal subgroups of finite exponent. This implies G has a proper normal
subgroup of derived length (nilpotency class) ≥ n + 2, since G is perfect. By
Theorem 5, dl(N ∩H) > n (nc(N ∩H) > n). Hence the proof is complete. �

The following lemma is a corollary to [17, Satz 6] which is useful to
extend some results proved for Fitting groups to the groups which are product
of residually nilpotent normal subgroups.

Lemma 7. Let G be a residually nilpotent p-group, U be a finite subgroup
of G and a ∈ G \ U . If G/L is infinite and elementary abelian for a normal
subgroup L of G then G has a subgroup V such that a /∈ V and V L/L is
infinite.

Proof. Since G is residually nilpotent, we have that
∞⋂
i=1

γi(G) = 1.

This yields
∞⋂
i=1

(Uγi(G)) = U(

∞⋂
i=1

γi(G)) = U

since U is finite. Hence there is an integer r such that a /∈ Uγr(G), i.e.
aγr(G) /∈ Uγr(G)/γr(G). Since G/γr(G) is nilpotent and

G/γr(G)

L/γr(G)



126 Aynur Arikan 4

is an infinite elementary abelian, by [17, Satz 6] G/γr(G) has a subgroup
V/γr(G) such that aγr(G) /∈ V/γr(G) and

V/γr(G)L/γr(G)

L/γr(G)

is infinite. Consequently, a /∈ V and and V L/L is infinite, as desired. �

The following proof is almost the same with the proof of [13, Theorem 1.1].

Lemma 8. Let G be a countably infinite periodic locally soluble group
which is not a product of two proper subgroups then G is a p-group for some
prime p.

Proof. Since G is locally soluble, it is locally finite by [15, 1.3.5]. Hence
G has finite subgroups Gi for i ≥ 1 such that G =

⋃
i≥1Gi and Gi is a proper

subgroup of Gi+1 for every i ≥ 1. Let p be a prime which divides the order
of an element of G. Since G1 is soluble, it has a Hallp′-subgroup and any two
of them are conjugate. So we can construct inductively Pn ∈ SylpGn and
Hn ∈ Hallp′Gn such that Pn ≤ Pn+1, Hn ≤ Hn+1 and Gn = PnHn. Now put

P :=
⋃
i≥1

Pi and H :=
⋃
i≥1

Hi.

Hence we have that G = PH. By hypothesis either G = P or G = H. But
since p divides the order of an element in G we have that G = P and hence G
is a p-group. �

Lemma 9. Let G be a periodic MNS group which is not finitely generated.
Then either G is p-group or generated by p-elements for some prime p.

Proof. Clearly G is locally soluble. As in the proof of Lemma 8, G = PH.
If G = P then G is a p-group. If not, then also H 6= G since H is a p′-group
and G has an element of order divided by p. Now G = PHH and PH is normal
in G. Hence

PH = 〈xh : x ∈ P, h ∈ H〉 = G,
i.e. G is generated by p-elements. �

If a group G is a product of residually nilpotent normal subgroups then
we say that G is a Weak Fitting group (WF -group in short). We also define
the class Ξ of groups as follows:

Normal closure of every finitely generated subgroup of the group is resi-
dually nilpotent.

Theorem 10. Let G be a perfect p-group, where p is a prime. Suppose
that G satisfies the following conditions:

(i) G is a Ξ-group,
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(ii) G is not finitely generated,

(iii) every proper normal subgroup of G is soluble.

If U is a finite subgroup of G and L is a proper soluble subgroup of G
then ⋂

y∈G\L

〈U, y〉 = U.

Proof. Assume that the assertion is false. Then⋂
y∈G\L

〈U, y〉 6= U

for some finite subgroup U and a proper soluble subgroup L of G. Take

a ∈ (
⋂

y∈G\L

〈U, y〉) \ U.

Put K = L〈U, y〉G, then clearly K is soluble. Assume that FG = G for some
finite subgroup F of G. Then G has elements x1, . . . , xn for some positive
integer n such that G =

∏n
i=1〈xGi 〉. But since G is a MNS-group, there is

1 ≤ m ≤ n such that G = 〈xGm〉 and hence G = [G, xm]. But since G is locally
nilpotent, this is a contradiction as in the proof of [4, Lemma 2.5]. Now we
have that G has an ascending sequence of finite subgroups Fi for i ≥ 1 such
that

G =
⋃
i≥1

FG
i

and dl(FG
i ) < dl(FG

i+1) for every i ≥ 1, since G is perfect. Now G is locally
finite and for every i ≥ 1, Ni := FG

i is a soluble residually nilpotent subgroup
of G. Since K is soluble and G is perfect, by Corollary 2 we have that there
is a positive integer r such that |Nr : Nr ∩K| is infinite. By [5, Lemma 2.11],
Nr contains a normal subgroup M such that M/(M ∩K)M ′ is infinite. Put
T := M〈U, a〉 then T/(T∩K)T ′ is infinite of finite exponent by [5, Lemma 2.13].
Put S := (T ∩ K)T ′ and W/S := (T/S)p. Now T/W is infinite elementary
abelian and T is residually finite. So by Lemma 7, T has a subgroup V such
that U ≤ V and VW/W is infinite. Hence there is an element z ∈ V \K such
that a /∈ 〈U, z〉. But since T ∩K ≤ W and L ≤ K we have that z /∈ L. But
this is a contradiction. �

The following result is a generalization of [6, Theorem 1.1(a)] and says
that we may omit to impose to be a Ξ-group to all homomorphic images. The
notion “(∗)-triple” is defined in [6] as follows:

Let G be a group, L a proper subgroup, Y a subset, V a finitely generated
subgroup of G and let 1 6= w ∈ G. If w /∈ V but w ∈ 〈V, y〉 for every y ∈ Y \L,
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then (w, V, L) is called (∗)-triple for Y . If
⋂

y∈Y \L〈V, y〉 6= V , then there is
w ∈ (

⋂
y∈Y \L〈V, y〉) \ V and hence (w, V, L) is an “(∗)-triple” for Y and vice

versa.

Corollary 11. Let G be an infinitely generated periodic Ξ-group with
all proper subgroup soluble and has (∗)-triple for G then G is soluble.

As an application of Lemma 7 we may give the following results which
are extended from “Fitting” case (in [1]) to “Weakly Fitting” case. There are
some further such results in the literature which can be extended in such a
way, but we do not include them here.

Let F (x1, x2, . . . ) be a free group of countable rank and define φ0(x1) =
x1, and for i ≥ 1

φi(x1, . . . , x2i) = [φi−1(x1, . . . , x2i−1), φi−1(x2i−1+1, . . . , x2i)].

Lemma 12. Let G be a WF -p-group. If for every proper subgroup of G
is contained in a proper normal subgroup of G and for every given sequence of
elements x1, x2, . . . , xn, . . . there is a non-negative integer d such that

φd(x1, . . . , x2d) = 1,

then G′ 6= G.

Proof. Just consider 〈y, a, U〉G as a residually nilpotent subgroup of G
and follow Lemma 7 in the proof of [1, Lemma 2.3]. �

Now we can reformulate the main theorem and its corollary in [1] as
follows:

Theorem 13. Let G be a WF -p-group. If for every proper subgroup H
of G, H(n) is hypercentral for some non-negative integer n and HG 6= G then
G′ 6= G.

Corollary 14. Let G be a WF -p-group and suppose that every proper
subgroup of G is contained in a proper normal subgroup of G then the following
hold.

(i) If every proper subgroup of G is soluble then G is soluble.

(ii) If every proper subgroup of G is hypercentral then G is hypercentral.

3. GENERATING SUBSETS

Now we give a property of some generator sets for MNS-p-groups.

Theorem 15. Let G be a locally finite MNS-p-group. Then G has a
generating subset X such that X contains proper generating subsets Y and Z
for G such that X \ Y , X \ Z are infinite and Y ∩ Z = ∅.
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Proof. Since G is nonabelian, X has elements x1,1, x1,2 such that

φ1(x1,1, x1,2) 6= 1.

Clearly 〈X \ {x1,1, x1,2}〉 = G and hence there exit y1,1, y1,2 ∈ X \ {x1,1, x1,2}
such that

φ1(y1,1, y1,2) 6= 1

and {x1,1, x1,2} ∩ {y1,1, y1,2} = ∅.
Now assume that we have found elements

xr,1, . . . , xr,2r ∈ X \ {x1,1, x1,2, x2,1, x2,2, x2,3, x2,4, . . . , xr−1,1, . . . , xr−1,2r−1 ,

y1,1, y1,2, y2,1, y2,2, y2,3, y2,4, . . . , yr−1,1, . . . , yr−1,2r−1}
for some

y1,1, y1,2, y2,1, y2,2, y2,3, y2,4, . . . , yr−1,1, . . . , yr−1,2r−1 ∈

X \ {x1,1, x1,2, x2,1, x2,2, x2,3, x2,4, . . . , xr,1, . . . , xr,2r−1}
and

yr,1, . . . , yr,2r ∈ X \ {x1,1, x1,2, x2,1, x2,2, x2,3, x2,4, . . . , xr−1,1, . . . , xr−1,2r−1 ,

y1,1, y1,2, y2,1, y2,2, y2,3, y2,4, . . . , yr−1,1, . . . , yr−1,2r−1 , xr,1, . . . , xr,2r}

such that
φr(xr,1, . . . xr,2r) 6= 1 and φr(yr,1, . . . yr,2r) 6= 1

for r ≥ 1 and {xr,1, . . . xr,2r} ∩ {yr,1, . . . yr,2r} = ∅.
Since

〈X \ {x1,1, . . . , xr,2r , y1,1, . . . , yr,2r}〉 = G,

as above there are elements

xr+1,1, . . . , xr+1,2r+1 ∈ X \ {x1,1, . . . , xr,2r , y1,1, . . . , yr,2r}

and

yr+1,1, . . . , yr+1,2r+1 ∈ X \ {x1,1, . . . , xr,2r , y1,1, . . . , yr,2r , xr+1,1, . . . , xr+1,2r+1}

such that
φr+1(xr+1,1, . . . , xr+1,2r+1) 6= 1
φr+1(yr+1,1, . . . , yr+1,2r+1) 6= 1.

Clearly
{xr+1,1, . . . , xr+1,2r+1} ∩ {yr+1,1, . . . , yr+1,2r+1} = ∅.

Put Y := 〈xi,1, . . . , xi,2i : i ≥ 1〉 and Z := 〈yi,1, . . . , yi,2i : i ≥ 1〉.
Since Y and Z are nonsoluble we have 〈Y 〉 = G = 〈Z〉. Also (X \ Y ) ⊇ Z,
(X \ Z) ⊇ Y and so X \ Y and X \ Z are infinite and Y ∩ Z = ∅. Hence the
proof is complete. �
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In Theorem 15, if Z(G) = 1 then we may assume that the elements ap-
pearing in commutators are all distinct. It can be accomplished by considering
commutator centralizers CG([x, y]) which are infinite by [5, Lemma 2.4]. For
example, if we consider the commutator [[x, y], [x, z]] with repeating element
x, and y 6= z. Then we can choose an element u ∈ CG([x, y]) such that ux is
distinct from y and z. Hence [[ux, y], [x, z]] = [[x, y], [x, z]], but ux, x, y, z are
all distinct.

Corollary 16. Let G be a locally finite MNS-p-group. Then G has a
sequence of descending generating subsets

X1 > X2 > · · · > Xn > . . . and Y1 > Y2 > · · · > Yn > . . .

for G such that for each i ≥ 1, Xi+1 \ Xi and Yi+1 \ Yi are infinite, and
X1 ∩ Y1 = ∅.

Proof. The result follows by taking a generating subset for G, applying
the procedure in Theorem 15 and considering that 〈X \ E〉 = G for every
generator subset X for G and finite subset F of X. �

4. FC-SUBGROUPS

Having certain FC-subgroups in groups may provide some opportunities
to figure out the structure of the groups (see [6, Theorem 1.1(b)], for example).
In this section, we give certain useful results.

The following is a slightly generalized form of [14, Theorem 2.4] (see [14]
for the definition of the notion “locally degree preserving”).

Theorem 17. Let G be a perfect locally finite p-group for some prime p.
If there exists a ∈ G \ Z(G) such that 〈aG, g〉 is an FC-group for every g ∈ G
then there exists a locally degree-preserving embedding of an epimorphic image
of G into M(Q, GF (p)) for some prime p.

Proof. Since G is perfect, considering G/Z(G) we may assume that G
has trivial center. Since N := 〈aG〉 is an FC-group and G has no proper
subgroup of finite index, the socle of N , say S, is infinite and elementary
abelian. Now the action of G := G/CG(S) on S via conjugation gives rise to
a faithful representation of G over the field GF (p). By [16, Theorem B(ii)], G
is unipotent. Let g ∈ G then S〈g〉 is an FC-group. Hence

|S : CS(g)| ≤ |S〈g〉 : CS〈g〉(g)| <∞.

Therefore the representation is finitary linear. By [14, Theorem 2.3], there
exists a locally degree-preserving embedding of an epimorphic image of G into
M(Q, GF (p)). �
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Theorem 17 directs our attention to McLain groups for some perfect
groups (of course if such groups exist). For example,

Corollary 18. Let G be a locally finite MNS-p-group for some prime
p. If there exists a ∈ G \ Z(G) such that 〈aG, g〉 is an FC-group for every
g ∈ G then there exists a locally degree-preserving embedding of an epimorphic
image of G into M(Q, GF (p)) for some prime p.

Proof. Clearly G is perfect and has no proper subgroup of finite index.
So the result follows by Theorem 17. �

Define the class Θ of groups as follows:

The normal closure of every two generated subgroup of the group is an
FC-group.

Theorem 19. Let G be an infinitely generated locally finite F-perfect-p-
group for some prime p with trivial center. If G is a Θ-group then G has an
epimorphic image which can be represented as a finitary permutation group.

Proof. Assume that for every 1 6= a ∈ G, CG(〈aG〉) is abelian. Let c, d
be nontrivial elements of G. Since G is locally nilpotent and 〈c, d〉G is an FC-
group, 〈c, d〉G is hypercentral and hence Z(〈c, d〉G) 6= 1. Let z ∈ Z(〈c, d〉G)
then 〈c, d〉G ≤ CG(〈zG〉). This implies that 〈c, d〉G and hence G is abelian, a
contradiction.

Consequently, G has an element 1 6= a ∈ G such that CG(〈aG〉) is non-
abelian. Now put C := CG(〈aG〉). By [18, Theorem 1.9] C/Z(G) is residu-
ally finite and thus C has a proper normal subgroup L of finite index. Put
Ω := {ag : g ∈ G} and let G act on Ω via conjugation. Then Ω is infinite, since
G has no proper subgroup of finite index and Z(G) = 1. Let 1 6= b ∈ G and put
B := 〈bG〉. Since 〈a, b〉G 6= G is an FC-group, |B : CB(a)| and {[b, ax] : x ∈ G}
are finite. Since Z(G) = 1 and L ≤ CG([g, a]), we also have that

|CG([g, a]) : CG([g, a]) ∩ CG(a)| <∞

for every g ∈ B \ CB(a). If ax and ay are conjugates of a in G then

|CG(ay) : CG(ay) ∩ CG(ax)| <∞,

since L ≤ CG(ax) ∩ CG(ay) i.e. CG(ax) and CG(ay) commensurable. By [7,
Lemma 4], supp(b) is finite. Therefore G acts on Ω as a finitary permutation
group and G/CG(〈aG〉) is isomorphic to a subgroup of FSym(Ω). �

Theorem 19 gives another point of view to some MNS-groups (if they
exist).
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Corollary 20. Let G be an infinitely generated locally finite MNS-p-
group for some prime p. If G ∈ Θ then G has an epimorphic image which can
be represented as a finitary permutation group.

Proof. Since Z(G/Z(G)) = 1, the result follows by Theorem 19. �

Lemma 21. Let G be an infinitely generated locally finite MNS-p-group
for some prime p. Suppose that G has a noncentral element a such that for
every b ∈ G, 〈a, b〉G is an FC-group. Then for every b ∈ G, dl(〈b〉G) ≤
dl(CG(a)) + 1, i.e, there is a bound on the derived length of the normal closure
of every element of G.

Proof. Put Wb := 〈a, b〉 then |Wb : CWb
(a)| is finite. By KM-Theorem Wb

has a characteristic subgroup Rb of finite index such that dl(Rb) ≤ dl(CG(a)).
Put G := G/Rb. Since G/CG(Wb) is finite and G has no proper subgroup
of finite index, we have that G = CG(Wb). This implies in particular that
W ′b ≤ Rb and thus dl(Wb) ≤ dl(Rb) + 1 ≤ dl(CG(a)) + 1. In particular,
dl(〈b〉G) ≤ dl(CG(a)) + 1. Hence the proof is complete. �
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