ON THE PROPERTIES OF (p, q)-FIBONACCI AND (p, q)-LUCAS QUATERNIONS

BIJAN KUMAR PATEL and PRASANTA KUMAR RAY

Communicated by Alexandru Zaharescu

Based on generalized Lucas numbers, (p, q)-Lucas quaternions are introduced. Moreover, some identities such as Catalan identity, d'Ocagne's identity etc., involving (p, q)-Fibonacci and (p, q)-Lucas quaternions are established.

AMS 2010 Subject Classification: 11B39, 05A15, 11R52.

Key words: generalized Fibonacci and Lucas numbers, Fibonacci and Lucas quaternions, (p, q)-Fibonacci quaternions, generating functions.

1. INTRODUCTION

As usual, generalized Fibonacci sequence $\{\mathcal{F}_n\}_{n\geq 1}$ is recursively defined as

$$\mathcal{F}_{n+1} = p\mathcal{F}_n + q\mathcal{F}_{n-1}$$

with initial conditions $\mathcal{F}_0 = 0$ and $\mathcal{F}_1 = 1$. On the other hand, the recurrence expression for generalized Lucas sequence $\{\mathcal{L}_n\}_{n>1}$ is given by

$$\mathcal{L}_{n+1} = p\mathcal{L}_n + q\mathcal{L}_{n-1},$$

with initials $\mathcal{L}_0 = 2$ and $\mathcal{L}_1 = p$. The closed forms popularly known as Binet formulas for these two sequences are given by the expressions

$$\mathcal{F}_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $\mathcal{L}_n = \alpha^n + \beta^n$,

where $\alpha = \frac{p + \sqrt{p^2 + 4q}}{2}$ and $\beta = \frac{p - \sqrt{p^2 + 4q}}{2}$ with $\Delta = p^2 + 4q > 0$. Moreover, it can be observed that, $\alpha^n = \alpha \mathcal{F}_n + q \mathcal{F}_{n-1}$ and $\beta^n = \beta \mathcal{F}_n + q \mathcal{F}_{n-1}$.

The Irish mathematician and physicist William Rowan Hamilton introduced quaternions as an extension of complex numbers. According to him, a quaternion q is a hyper-complex number represented by an equation

$$q = ae_0 + be_1 + ce_2 + de_3,$$

MATH. REPORTS 21(71), 1 (2019), 15–25

where $a, b, c, d \in \mathbb{R}$ and the set $\{e_0, e_1, e_2, e_3\}$ forms a standard orthonormal basis in \mathbb{R}^4 . The collection of quaternions are usually denoted by \mathbb{H} and constitute a non-commutative field called a skew field that extends the complex field \mathbb{C} . It is well-known that, the standard basis vectors e_0, e_1, e_2, e_3 satisfy the multiplication rule as per the following composition table:

TABLE 1

The multiplication table of basis for $\mathbb H$

*	1	e_1	e_2	e_3
1	1	e_1	e_2	e_3
e_1	e_1	-1	e_3	$-e_2$
e_2	e_2	$-e_3$	-1	e_1
e_3	e_3	e_2	$-e_1$	-1

Horadam, in [4], defined Fibonacci and Lucas quaternions by the equations

 $QF_n = F_n e_0 + F_{n+1}e_1 + F_{n+2}e_2 + F_{n+3}e_3,$

and

$$QL_n = L_n e_0 + L_{n+1} e_1 + L_{n+2} e_2 + L_{n+3} e_3,$$

where F_n and L_n denote *n*-th Fibonacci number and *n*-th Lucas number respectively.

Fibonacci and Lucas quaternions are generalized in many ways. For details of these works, one can go through [1-3, 6-8]. A recent generalization for Fibonacci quaternion is due to İpek [6]. He introduced (p, q)-Fibonacci quaternion sequence $\{\mathcal{F}_n(p, q)\}_{n\geq 0}$ which is defined recursively by the expression:

$$\mathcal{QF}_n = \mathcal{F}_n e_0 + \mathcal{F}_{n+1} e_1 + \mathcal{F}_{n+2} e_2 + \mathcal{F}_{n+3} e_3 = \sum_{s=0}^3 \mathcal{F}_{n+s} e_s,$$

where \mathcal{F}_n and \mathcal{QF}_n denote the *n*-th (p, q)-Fibonacci number and the *n*-th (p, q)-Fibonacci quaternion respectively. In [6], İpek has established the recurrence relation for (p, q)-Fibonacci quaternions which is given by the equation

(1.1)
$$\mathcal{QF}_{n+1} = p\mathcal{QF}_n + q\mathcal{QF}_{n-1}, \ n \ge 1$$

and derived some identities including Binet formula, generating functions and certain bionomial sums involving (p, q)-Fibonacci quaternions.

In this article, we first introduce (p, q)-Lucas quaternions and then derive some new identities such as Catalan identity, d'Ocagne's identity etc., for both these quaternions. Definition 1.1. The (p,q)-Lucas quaternion sequence $\{\mathcal{L}_n(p,q)\}_{n\geq 0}$ is defined recursively by

$$\mathcal{QL}_n = \mathcal{L}_n e_0 + \mathcal{L}_{n+1} e_1 + \mathcal{L}_{n+2} e_2 + \mathcal{L}_{n+3} e_3 = \sum_{s=0}^3 \mathcal{L}_{n+s} e_s,$$

where \mathcal{L}_n denotes generalized Lucas number.

In view of the above recursive definition, it can be easily observed that (p,q)-Lucas quaternions has recurrence relation of the form

$$\mathcal{QL}_{n+1} = p\mathcal{QL}_n + q\mathcal{QL}_{n-1}, \ n \ge 1.$$

For $\alpha = \frac{p+\sqrt{\Delta}}{2}$, it can be seen that

$$\alpha \mathcal{QF}_n + q \mathcal{QF}_{n-1} = \alpha \sum_{s=0}^3 \mathcal{F}_{n+s} e_s + q \sum_{s=0}^3 \mathcal{F}_{n-1+s} e_s$$
$$= \sum_{s=0}^3 (\alpha \mathcal{F}_{n+s} + q \mathcal{F}_{n+s-1}) e_s.$$

Since $\alpha^n = \alpha \mathcal{F}_n + q \mathcal{F}_{n-1}$ [5] and setting $A = \sum_{s=0}^3 \alpha^s e_s$, the above expression reduces to

(1.2)
$$\alpha \mathcal{QF}_n + q \mathcal{QF}_{n-1} = A\alpha^n.$$

Similarly, since $\beta^n = \beta \mathcal{F}_n + q \mathcal{F}_{n-1}$ [5] and letting $B = \sum_{s=0}^3 \beta^s e_s$, we obtain

(1.3)
$$\beta \mathcal{QF}_n + q \mathcal{QF}_{n-1} = B\beta^n.$$

On subtraction of (1.3) from (1.2) gives the Binet formulas for (p,q)-Fibonacci quaternions as

$$\mathcal{QF}_n = \frac{A\alpha^n - B\beta^n}{\alpha - \beta},$$

where $A = \sum_{s=0}^{3} \alpha^{s} e_{s}$ and $B = \sum_{s=0}^{3} \beta^{s} e_{s}$. Similarly, adding (1.2) and (1.3), the Binet formula for (p,q)-Lucas quaternions is obtained and it is given by

$$\mathcal{QL}_n = A\alpha^n + B\beta^n.$$

Moreover, it can be seen that $\mathcal{QL}_n = \mathcal{QF}_{n+1} + q\mathcal{QF}_{n-1} = p\mathcal{QF}_n + 2q\mathcal{QF}_{n-1}$ and $\Delta \mathcal{QF}_n = \mathcal{QL}_{n+1} + q\mathcal{QL}_{n-1}$.

2. PRELIMINARIES

In this section, we present some known formulas that are used subsequently.

The following results are given in [5].

LEMMA 2.1. Let $n \in \mathbb{N}$ and m be a non-zero integer, then

$$\mathcal{F}_{m+n} = \mathcal{F}_m \mathcal{F}_{n+1} + q \mathcal{F}_{m-1} \mathcal{F}_n$$

and

$$(-q)^{n-1}\mathcal{F}_{m-n} = \mathcal{F}_{m-1}\mathcal{F}_n - \mathcal{F}_m\mathcal{F}_{n-1}$$

LEMMA 2.2. Let $n, m \in \mathbb{Z}$, then

$$\mathcal{L}_{m+n} = \mathcal{F}_n \mathcal{L}_{m+1} + q \mathcal{F}_{n-1} \mathcal{L}_m$$

and

$$(-q)^n \mathcal{L}_{m-n} = \mathcal{F}_{m+1} \mathcal{L}_n - \mathcal{L}_{n+1} \mathcal{F}_m.$$

LEMMA 2.3. Let $m, r \in \mathbb{Z}$ with $m \neq 0$ and $m \neq 1$. Then

$$\mathcal{F}_{mn+r} = \sum_{j=0}^{n} \binom{n}{j} q^{n-j} \mathcal{F}_{m}^{j} \mathcal{F}_{m-1}^{n-j} \mathcal{F}_{j+r}$$

and

$$\mathcal{L}_{mn+r} = \sum_{j=0}^{n} \binom{n}{j} q^{n-j} \mathcal{F}_{m}^{j} \mathcal{F}_{m-1}^{n-j} \mathcal{L}_{j+r}$$

The following results are found in [6].

LEMMA 2.4. (Binet Formula) Let $Q\mathcal{F}_n$ be the n-th (p,q)-Fibonacci quaternion. Then,

$$\mathcal{QF}_n = \frac{A\alpha^n - B\beta^n}{\alpha - \beta},$$

where $A = \sum_{s=0}^{3} \alpha^{s} e_{s}$ and $B = \sum_{s=0}^{3} \beta^{s} e_{s}$.

LEMMA 2.5. For any non-negative integer n, the ordinary generating function for $Q\mathcal{F}_n$ is

$$G_{\mathcal{F}}(s) = \frac{\mathcal{QF}_0 + (-p\mathcal{QF}_0 + \mathcal{QF}_1)s}{1 - ps - qs^2}$$

LEMMA 2.6. For any non-negative integer n, the exponential generating function for $Q\mathcal{F}_n$ is

$$G_{\mathcal{F}}(s) = \frac{Ae^{\alpha s} - Be^{\beta s}}{\alpha - \beta}.$$

LEMMA 2.7. Let m be a non-negative integer. Then,

$$\mathcal{QF}_{2n} = \sum_{j=0}^{n} \binom{n}{j} q^{n-j} p^{j} \mathcal{QF}_{j}.$$

3. SOME IDENTITIES INVOLVING (p, q)-FIBONACCI AND LUCAS QUATERNIONS

In this section, we derive some new identities concerning (p,q)-Fibonacci and (p,q)-Lucas quaternions.

THEOREM 3.1. If m, k and n are positive integers with $m \ge n$, then

(i)
$$\mathcal{QF}_{kn+m} = \mathcal{F}_m \mathcal{QF}_{kn+1} + q\mathcal{F}_{m-1}\mathcal{QF}_{kn}$$

(ii) $(-q)^{n-1}\mathcal{QF}_{m-kn} = \mathcal{F}_{kn}\mathcal{QF}_{m-1} - \mathcal{F}_{kn-1}\mathcal{QF}_m$
(iii) $\mathcal{QL}_{kn+m} = \mathcal{F}_{kn}\mathcal{QL}_{m+1} + q\mathcal{F}_{kn-1}\mathcal{QL}_m$

(iv) $(-q)^n \mathcal{QL}_{m-kn} = \mathcal{L}_{kn} \mathcal{QF}_{m+1} - \mathcal{L}_{kn+1} \mathcal{QF}_m$

Proof. In order to prove the identity (i), we use Lemma 2.1 to get

$$\mathcal{QF}_{kn+m} = \sum_{s=0}^{3} \mathcal{F}_{kn+m+s} e_s$$
$$= \mathcal{F}_m \sum_{s=0}^{3} \mathcal{F}_{kn+1+s} e_s + q \mathcal{F}_{m-1} \sum_{s=0}^{3} \mathcal{F}_{kn+s} e_s,$$

and the result follows. The proof of (ii) is similar as (i). The identities (iii) and (iv) can be done similarly using Lemma 2.2. \Box

THEOREM 3.2. Any natural numbers k, m and n, the generating functions of the quaternions $Q\mathcal{F}_{kn+m}$ and $Q\mathcal{L}_{kn+m}$ are given by

$$\sum_{n=0}^{\infty} \mathcal{QF}_{kn+m} s^n = \frac{\mathcal{QF}_m - (-q)^k \mathcal{QF}_{m-k} s}{1 - \mathcal{L}_k s + (-q)^k s^2}$$

 $\sum_{n=0}^{\infty} \mathcal{QL}_{kn+m} s^n = \frac{\mathcal{QL}_m - (-q)^k \mathcal{QL}_{m-k} s}{1 - \mathcal{L}_k s + (-q)^k s^2}.$

Proof. Using the Binet formula for \mathcal{QF}_n , we have

$$\sum_{n=0}^{\infty} \mathcal{QF}_{kn+m} s^n = \sum_{n=0}^{\infty} \left(\frac{A \alpha^{kn+m} - B \beta^{kn+m}}{\alpha - \beta} \right) s^n$$

$$\begin{split} &= \frac{1}{\alpha - \beta} \left(\frac{A\alpha^m}{1 - \alpha^k s} - \frac{B\beta^m}{1 - \beta^k s} \right) \\ &= \frac{1}{\alpha - \beta} \left[\frac{(A\alpha^m - B\beta^m) - (-q)^k (A\alpha^{m-k} - B\beta^{m-k}) s}{1 - (\alpha^k + \beta^k) s + (\alpha\beta)^k s^2} \right] \\ &= \frac{\mathcal{QF}_m - (-q)^k \mathcal{QF}_{m-k} s}{1 - \mathcal{L}_k s + (-q)^k s^2}, \end{split}$$

which is the desired result.

For $\sum_{n=0}^{\infty} \mathcal{QL}_{kn+m} s^n$, the proof is similar as $\sum_{n=0}^{\infty} \mathcal{QF}_{kn+m} s^n$. \Box

Observation 3.3. It can be seen that for k = 1 and m = 0 in the first result of Theorem 3.2, we get the generating functions for $Q\mathcal{F}_n$ as

$$\sum_{n=0}^{\infty} \mathcal{QF}_n s^n = \frac{\mathcal{QF}_0 + q\mathcal{QF}_{-1}s}{1 - ps - qs^2} = \frac{\mathcal{QF}_0 + (-p\mathcal{QF}_0 + \mathcal{QF}_1)s}{1 - ps - qs^2}.$$

This result which is given in Lemma 2.5 is already shown in [6].

Again putting for k = 1 and m = 0 in the second result of Theorem 3.2, we obtain the generating functions for (p, q)-Lucas quaternions \mathcal{QL}_n as

$$\sum_{n=0}^{\infty} \mathcal{QL}_n s^n = \frac{\mathcal{QL}_0 + q\mathcal{QL}_{-1}s}{1 - ps - qs^2} = \frac{\mathcal{QL}_0 + (-p\mathcal{QL}_0 + \mathcal{QL}_1)s}{1 - ps - qs^2}.$$

THEOREM 3.4. For $k, m, n \in \mathbb{N}$, the exponential generating functions for \mathcal{QF}_{kn+m} and \mathcal{QL}_{kn+m} are

$$\sum_{n=0}^{\infty} \frac{\mathcal{QF}_{kn+m}}{n!} s^n = \frac{A\alpha^m e^{\alpha^k s} - B\beta^m e^{\beta^k s}}{\alpha - \beta}$$

and

$$\sum_{n=0}^{\infty} \frac{\mathcal{QL}_{kn+m}}{n!} s^n = A \alpha^m e^{\alpha^k s} + B \beta^m e^{\beta^k s},$$

where $A = \sum_{s=0}^3 \alpha^s e_s$ and $B = \sum_{s=0}^3 \beta^s e_s.$

Proof. Using Binet formula for \mathcal{QL}_n , we obtain

$$\sum_{n=0}^{\infty} \frac{\mathcal{QL}_{kn+m}}{n!} s^n = \sum_{n=0}^{\infty} \left(A \alpha^{kn+m} + B \beta^{kn+m} \right) \frac{s^n}{n!}$$
$$= A \alpha^m \sum_{n=0}^{\infty} \frac{(\alpha^k s)^n}{n!} + B \beta^m \sum_{n=0}^{\infty} \frac{(\beta^k s)^n}{n!}$$
$$= A \alpha^m e^{\alpha^k s} + B \beta^m e^{\beta^k s},$$

which ends the proof. The proof is similar for (p,q)-Fibonacci quaternions \mathcal{QF}_{kn+m} . \Box

THEOREM 3.5 (Catalan's identity). Let $n, r \in \mathbb{N}$ with $n \geq r$, then

$$\mathcal{QF}_{n-r}\mathcal{QF}_{n+r} - \mathcal{QF}_n^2 = \frac{(-q)^{n-r}(\alpha^r - \beta^r)\left[\beta^r AB - \alpha^r BA\right]}{\Delta}$$

and

 $\begin{aligned} \mathcal{QL}_{n-r}\mathcal{QL}_{n+r} - \mathcal{QL}_n^2 &= (-q)^{n-r}(\alpha^r - \beta^r)\left[\alpha^r BA - \beta^r AB\right], \\ where \ \Delta &= p^2 + 4q. \end{aligned}$

Proof. Using the Binet formula for \mathcal{QF}_n and the fact $\alpha\beta = -q$, we have

$$\begin{aligned} \mathcal{QF}_{n-r}\mathcal{QF}_{n+r} &- \mathcal{QF}_n^2 \\ &= \left(\frac{A\alpha^{n-r} - B\beta^{n-r}}{\alpha - \beta}\right) \left(\frac{A\alpha^{n+r} - B\beta^{n+r}}{\alpha - \beta}\right) - \left(\frac{A\alpha^n - B\beta^n}{\alpha - \beta}\right)^2 \\ &= \frac{AB(-q)^n \left(1 - \left(\frac{\beta}{\alpha}\right)^r\right) + BA(-q)^n \left(1 - \left(\frac{\alpha}{\beta}\right)^r\right)}{(\alpha - \beta)^2} \\ &= \frac{AB(-q)^{n-r}\beta^r (\alpha^r - \beta^r) - BA(-q)^{n-r}\alpha^r (\alpha^r - \beta^r)}{\Delta}, \end{aligned}$$

which completes the proof. The proof for the (p,q)-Lucas quaternions is similar. \Box

The next result directly follows from Theorem 3.5 for r = 1.

COROLLARY 3.6 (Cassini's identity). Let $n \in \mathbb{N}$, then

$$\mathcal{QF}_{n-1}\mathcal{QF}_{n+1} - \mathcal{QF}_n^2 = \frac{(-q)^{n-1} \left(\beta AB - \alpha BA\right)}{\sqrt{\Delta}}$$

and

$$\mathcal{QL}_{n-1}\mathcal{QL}_{n+1} - \mathcal{QL}_n^2 = (-q)^{n-1}\sqrt{\Delta} \left[\alpha BA - \beta AB\right].$$

THEOREM 3.7 (d'Ocagne's identity). Let $m, n \in \mathbb{N}$ with $n \geq m$, then

$$\mathcal{QF}_{m+1}\mathcal{QF}_n - \mathcal{QF}_m\mathcal{QF}_{n+1} = \frac{(-q)^m \left[BA\alpha^{n-m} - AB\beta^{n-m}\right]}{\sqrt{\Delta}}$$

and

$$\mathcal{QL}_{m+1}\mathcal{QL}_n - \mathcal{QL}_m\mathcal{QL}_{n+1} = (-q)^m \sqrt{\Delta} \left[AB\beta^{n-m} - BA\alpha^{n-m} \right].$$

Proof. Using the Binet formula for \mathcal{QL}_n , we have

$$\mathcal{QL}_{m+1}\mathcal{QL}_n - \mathcal{QL}_m\mathcal{QL}_{n+1} = (A\alpha^{m+1} + B\beta^{m+1})(A\alpha^n + B\beta^n) - (A\alpha^m + B\beta^m)(A\alpha^{n+1} + B\beta^{n+1})$$

$$= (-q)^m \left[AB\beta^{n-m}(\alpha - \beta) + BA\alpha^{n-m}(\beta - \alpha) \right]$$
$$= (-q)^m \sqrt{\Delta} \left[AB\beta^{n-m} - BA\alpha^{n-m} \right],$$

and the result follows. Similarly, using Binet formula for (p, q)-Fibonacci quaternions, the second part can be easily shown. \Box

THEOREM 3.8. For any natural numbers m and k with $m > k \ge 0$, we have

$$\sum_{r=0}^{n} \mathcal{QF}_{mr+k} = \frac{(-q)^{m} \mathcal{QF}_{mn+k} - \mathcal{QF}_{mn+m+k} - (-q)^{m} \mathcal{QF}_{k-m} + \mathcal{QF}_{k}}{1 + (-q)^{m} - \mathcal{L}_{m}}$$

and
$$\sum_{r=0}^{n} \mathcal{QL}_{mr+k} = \frac{(-q)^{m} \mathcal{QL}_{mn+k} - \mathcal{QL}_{mn+m+k} - (-q)^{m} \mathcal{QL}_{k-m} + \mathcal{QL}_{k}}{1 + (-q)^{m} - \mathcal{L}_{m}}.$$

Proof. Using the Binet formula of \mathcal{QF}_k , we have

$$\begin{split} \sum_{r=0}^{n} \mathcal{QF}_{mr+k} &= \sum_{r=0}^{n} \frac{A\alpha^{mr+k} - B\beta^{mr+k}}{\alpha - \beta} \\ &= \frac{1}{\alpha - \beta} \left[A\alpha^{k} \left(\frac{\alpha^{mn+m} - 1}{\alpha^{m} - 1} \right) - B\beta^{k} \left(\frac{\beta^{mn+m} - 1}{\beta^{m} - 1} \right) \right] \\ &= \frac{1}{\alpha - \beta} \left[\frac{(-q)^{m} (A\alpha^{mn+k} - B\beta^{mn+k}) - (A\alpha^{mn+m+k} - B\beta^{mn+m+k})}{1 + (-q)^{m} - (\alpha^{m} + \beta^{m})} \\ &+ \frac{(A\alpha^{k} - B\beta^{k}) - (-q)^{m} (A\alpha^{k-m} - B\beta^{k-m})}{1 + (-q)^{m} - (\alpha^{m} + \beta^{m})} \right], \end{split}$$

which follows the result. The proof for the (p,q)-Lucas quaternions is similar. \Box

Theorem 3.9. For $m, n \ge 0$,

$$\mathcal{QF}_{mn} = \sum_{j=0}^{n} \binom{n}{j} q^{n-j} \mathcal{F}_{m}^{j} \mathcal{F}_{m-1}^{j} \mathcal{QF}_{j}$$

and

$$\mathcal{QL}_{mn} = \sum_{j=0}^{n} \binom{n}{j} q^{n-j} \mathcal{F}_{m}^{j} \mathcal{F}_{m-1}^{n-j} \mathcal{QL}_{j}$$

Proof. By virtue of Lemma 2.3, we have

$$\mathcal{QL}_{mn} = \sum_{s=0}^{3} \mathcal{L}_{mn+s} e_s$$

$$=\sum_{s=0}^{3}\left(\sum_{j=0}^{n}\binom{n}{j}q^{n-j}\mathcal{F}_{m}^{j}\mathcal{F}_{m-1}^{j}\mathcal{L}_{j+s}\right)e_{s}$$
$$=\sum_{j=0}^{n}\binom{n}{j}q^{n-j}\mathcal{F}_{m}^{j}\mathcal{F}_{m-1}^{j}\left(\sum_{s=0}^{3}\mathcal{L}_{j+s}e_{s}\right),$$

which completes the proof. The first part can be proved similarly using Lemma 2.3. \Box

Observation 3.10. Setting m = 2 in the first result of Theorem 3.9, we obtain $\mathcal{QF}_{2n} = \sum_{j=0}^{n} \binom{n}{j} q^{n-j} p^{j} \mathcal{QF}_{j}$. This result is given in Lemma 2.7 which is already shown in [6]. Putting m = 2 in the second result of Theorem 3.9, we have

$$\mathcal{QL}_{2n} = \sum_{j=0}^{n} {n \choose j} q^{n-j} p^{j} \mathcal{QL}_{j}.$$

THEOREM 3.11. For every $n \in \mathbb{N}$, $\mathcal{QL}_n^2 - \Delta \mathcal{QF}_n^2 = 2(-q)^n (AB + BA)$. Proof. Using the Binet formula of \mathcal{QF}_k and \mathcal{QL}_k , we have

$$\mathcal{QL}_n^2 - \Delta \mathcal{QF}_n^2 = (A\alpha^n + B\beta^n)^2 - \Delta \left(\frac{A\alpha^n - B\beta^n}{\alpha - \beta}\right)^2$$
$$= \left[A^2\alpha^{2n} + AB(\alpha\beta)^n + BA(\alpha\beta)^n + B^2\beta^{2n}\right]$$
$$- \left[A^2\alpha^{2n} - AB(\alpha\beta)^n - BA(\alpha\beta)^n + B^2\beta^{2n}\right]$$
$$= 2(-q)^n(AB + BA),$$

which ends the proof. \Box

Matrix methods are useful tools to obtain results for different identities and algebraic representations in the study of recurrence relations. (p,q)-Fibonacci numbers are also generated through matrices. That is, $Q_{\mathcal{F}} = \begin{pmatrix} p & q \\ 1 & 0 \end{pmatrix}$

and shown that
$$Q_{\mathcal{F}}^n = \begin{pmatrix} \mathcal{F}_{n+1} & q\mathcal{F}_n \\ \mathcal{F}_n & q\mathcal{F}_{n-1} \end{pmatrix}$$
.

We define (p,q)-Fibonacci quaternion matrix as a second order matrix whose entries being (p,q)-Fibonacci quaternions as follows.

$$M_{Q_{\mathcal{F}}^{n}} = \begin{pmatrix} \mathcal{Q}\mathcal{F}_{n+1} & q\mathcal{Q}\mathcal{F}_{n} \\ \mathcal{Q}\mathcal{F}_{n} & q\mathcal{F}_{n-1} \end{pmatrix}.$$

THEOREM 3.12. For an integer $n \geq 1$,

$$\begin{pmatrix} \mathcal{Q}\mathcal{F}_{n+1} & q\mathcal{Q}\mathcal{F}_n \\ \mathcal{Q}\mathcal{F}_n & q\mathcal{Q}\mathcal{F}_{n-1} \end{pmatrix} = \begin{pmatrix} \mathcal{Q}\mathcal{F}_2 & q\mathcal{Q}\mathcal{F}_1 \\ \mathcal{Q}\mathcal{F}_1 & q\mathcal{Q}\mathcal{F}_0 \end{pmatrix} \begin{pmatrix} p & q \\ 1 & 0 \end{pmatrix}^{n-1}$$

Proof. We will use the method of induction to prove this result. Basis step is clear for n = 2. As an inductive hypothesis, assume that the relation holds for all positive integers n < k ($k \in \mathbb{Z}_{\geq 1}$). Finally, in the inductive step,

$$\begin{pmatrix} \mathcal{Q}\mathcal{F}_2 & q\mathcal{Q}\mathcal{F}_1 \\ \mathcal{Q}\mathcal{F}_1 & q\mathcal{Q}\mathcal{F}_0 \end{pmatrix} \begin{pmatrix} p & q \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} p & q \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \mathcal{Q}\mathcal{F}_{n+1} & q\mathcal{Q}\mathcal{F}_n \\ \mathcal{Q}\mathcal{F}_n & q\mathcal{Q}\mathcal{F}_{n-1} \end{pmatrix} \begin{pmatrix} p & q \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} p\mathcal{Q}\mathcal{F}_{n+1} + q\mathcal{Q}\mathcal{F}_n & q\mathcal{Q}\mathcal{F}_{n+1} \\ p\mathcal{Q}\mathcal{F}_n + q\mathcal{Q}\mathcal{F}_{n-1} & q\mathcal{Q}\mathcal{F}_n \end{pmatrix}.$$

Hence, by definition (1.1), the result holds for k = n. \Box

Cassini formula for (p, q)-Fibonacci quaternion can also be obtained from (p, q)-Fibonacci quaternion matrix. The following result demonstrates this fact.

COROLLARY 3.13. For an integer $n \geq 1$,

$$\mathcal{QF}_{n+1}\mathcal{QF}_{n-1} - \mathcal{QF}_n^2 = \frac{(-q)^{n-1}\left(\beta AB - \alpha BA\right)}{(\alpha - \beta)}.$$

Proof. Evaluating the determinants from both sides of the above result and after some algebraic manipulation, the desired result is obtained. \Box

4. CONCLUSION

In this article, we have introduced (p,q)-Lucas quaternions which are based on generalized Lucas numbers. Some new identities of (p,q)-Fibonacci and Lucas quaternions are also established. Some results of İpek [6] are the particular cases of the present work.

REFERENCES

- M. Akyigit, H.H. Kosal and M. Tosun, *Fibonacci generalized quaternions*. Adv. Appl. Clifford Algebr. 24 (2014), 3, 631–641.
- P. Catarino, A note on h(x)-Fibonacci quaternion polynomials. Chaos Solitons Fractals 77 (2015), 1–5.
- [3] S. Halici, On Fibonacci quaternions. Adv. Appl. Clifford Algebr. 22 (2012), 321–327.
- [4] A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Monthly 70 (1963), 289–291.
- [5] Z.S. Iar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers. Hacet. J. Math. Stat. 42 (2013), 211–222.
- [6] A. Ipek, On (p,q)-Fibonacci quaternions and their Binet formulas, generating functions and certain binomial sums. Adv. Appl. Clifford Algebr. 27 (2017), 1343–1351.

11

- [7] E. Polatl and S. Kesim, On quaternions with generalized Fibonacci and Lucas number components. Adv. Difference Equ. **2015** (2015), 169.
- [8] E. Tan, S. Yilmaz and M. Sahin, On a new generalization of Fibonacci quaternions. Chaos Solitons Fractals 82 (2016), 1–4.

Received 5 October 2016 International Institute of Information Technology, Bhubaneswar-751003, India iiit.bijan@gmail.com

> Sambalpur University, School of Mathematical Sciences, Sambalpur-768019, India prasantamath@suniv.ac.in