
ON THE PROPERTIES OF (p, q)-FIBONACCI
AND (p, q)-LUCAS QUATERNIONS

BIJAN KUMAR PATEL and PRASANTA KUMAR RAY

Communicated by Alexandru Zaharescu

Based on generalized Lucas numbers, (p, q)-Lucas quaternions are introduced.
Moreover, some identities such as Catalan identity, d’Ocagne’s identity etc.,
involving (p, q)-Fibonacci and (p, q)-Lucas quaternions are established.
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1. INTRODUCTION

As usual, generalized Fibonacci sequence {Fn}n≥1 is recursively defined
as

Fn+1 = pFn + qFn−1

with initial conditions F0 = 0 and F1 = 1. On the other hand, the recurrence
expression for generalized Lucas sequence {Ln}n≥1 is given by

Ln+1 = pLn + qLn−1,

with initials L0 = 2 and L1 = p. The closed forms popularly known as Binet
formulas for these two sequences are given by the expressions

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α =
p+
√
p2+4q
2 and β =

p−
√
p2+4q
2 with ∆ = p2 + 4q > 0. Moreover, it

can be observed that, αn = αFn + qFn−1 and βn = βFn + qFn−1.

The Irish mathematician and physicist William Rowan Hamilton intro-
duced quaternions as an extension of complex numbers. According to him, a
quaternion q is a hyper-complex number represented by an equation

q = ae0 + be1 + ce2 + de3,
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where a, b, c, d ∈ R and the set {e0, e1, e2, e3} forms a standard orthonormal
basis in R4. The collection of quaternions are usually denoted by H and con-
stitute a non-commutative field called a skew field that extends the complex
field C. It is well-known that, the standard basis vectors e0, e1, e2, e3 satisfy
the multiplication rule as per the following composition table:

TABLE 1

The multiplication table of basis for H

∗ 1 e1 e2 e3

1 1 e1 e2 e3

e1 e1 −1 e3 −e2

e2 e2 −e3 −1 e1

e3 e3 e2 −e1 −1

Horadam, in [4], defined Fibonacci and Lucas quaternions by the equati-
ons

QFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3,

and

QLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3,

where Fn and Ln denote n-th Fibonacci number and n-th Lucas number re-
spectively.

Fibonacci and Lucas quaternions are generalized in many ways. For de-
tails of these works, one can go through [1–3,6–8]. A recent generalization for
Fibonacci quaternion is due to İpek [6]. He introduced (p, q)-Fibonacci qua-
ternion sequence {Fn(p, q)}n≥0 which is defined recursively by the expression:

QFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3 =

3∑
s=0

Fn+ses,

where Fn andQFn denote the n-th (p, q)-Fibonacci number and the n-th (p, q)-
Fibonacci quaternion respectively. In [6], İpek has established the recurrence
relation for (p, q)-Fibonacci quaternions which is given by the equation

(1.1) QFn+1 = pQFn + qQFn−1, n ≥ 1

and derived some identities including Binet formula, generating functions and
certain bionomial sums involving (p, q)-Fibonacci quaternions.

In this article, we first introduce (p, q)-Lucas quaternions and then derive
some new identities such as Catalan identity, d’Ocagne’s identity etc., for both
these quaternions.
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Definition 1.1. The (p, q)-Lucas quaternion sequence {Ln(p, q)}n≥0 is de-
fined recursively by

QLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3 =
3∑
s=0

Ln+ses,

where Ln denotes generalized Lucas number.

In view of the above recursive definition, it can be easily observed that
(p, q)-Lucas quaternions has recurrence relation of the form

QLn+1 = pQLn + qQLn−1, n ≥ 1.

For α = p+
√

∆
2 , it can be seen that

αQFn + qQFn−1 = α

3∑
s=0

Fn+ses + q

3∑
s=0

Fn−1+ses

=
3∑
s=0

(αFn+s + qFn+s−1)es.

Since αn = αFn + qFn−1 [5] and setting A =
3∑
s=0

αses, the above expres-

sion reduces to

(1.2) αQFn + qQFn−1 = Aαn.

Similarly, since βn = βFn+qFn−1 [5] and letting B =
3∑
s=0

βses, we obtain

(1.3) βQFn + qQFn−1 = Bβn.

On subtraction of (1.3) from (1.2) gives the Binet formulas for (p, q)-
Fibonacci quaternions as

QFn =
Aαn −Bβn

α− β
,

where A =
3∑
s=0

αses and B =
3∑
s=0

βses. Similarly, adding (1.2) and (1.3), the

Binet formula for (p, q)-Lucas quaternions is obtained and it is given by

QLn = Aαn +Bβn.

Moreover, it can be seen that QLn = QFn+1 + qQFn−1 = pQFn +
2qQFn−1 and ∆QFn = QLn+1 + qQLn−1.
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2. PRELIMINARIES

In this section, we present some known formulas that are used subse-
quently.

The following results are given in [5].

Lemma 2.1. Let n ∈ N and m be a non-zero integer, then

Fm+n = FmFn+1 + qFm−1Fn

and

(−q)n−1Fm−n = Fm−1Fn −FmFn−1.

Lemma 2.2. Let n,m ∈ Z, then

Lm+n = FnLm+1 + qFn−1Lm

and

(−q)nLm−n = Fm+1Ln − Ln+1Fm.
Lemma 2.3. Let m, r ∈ Z with m 6= 0 and m 6= 1. Then

Fmn+r =

n∑
j=0

(
n
j

)
qn−jF jmF

n−j
m−1Fj+r

and

Lmn+r =

n∑
j=0

(
n
j

)
qn−jF jmF

n−j
m−1Lj+r.

The following results are found in [6].

Lemma 2.4. (Binet Formula) Let QFn be the n-th (p, q)-Fibonacci qua-
ternion. Then,

QFn =
Aαn −Bβn

α− β
,

where A =
3∑
s=0

αses and B =
3∑
s=0

βses.

Lemma 2.5. For any non-negative integer n, the ordinary generating function
for QFn is

GF (s) =
QF0 + (−pQF0 +QF1)s

1− ps− qs2
.

Lemma 2.6. For any non-negative integer n, the exponential generating
function for QFn is

GF (s) =
Aeαs −Beβs

α− β
.
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Lemma 2.7. Let m be a non-negative integer. Then,

QF2n =

n∑
j=0

(
n
j

)
qn−jpjQFj .

3. SOME IDENTITIES INVOLVING (p, q)-FIBONACCI
AND LUCAS QUATERNIONS

In this section, we derive some new identities concerning (p, q)-Fibonacci
and (p, q)-Lucas quaternions.

Theorem 3.1. If m, k and n are positive integers with m ≥ n, then

(i) QFkn+m = FmQFkn+1 + qFm−1QFkn
(ii) (−q)n−1QFm−kn = FknQFm−1 −Fkn−1QFm
(iii) QLkn+m = FknQLm+1 + qFkn−1QLm
(iv) (−q)nQLm−kn = LknQFm+1 − Lkn+1QFm

Proof. In order to prove the identity (i), we use Lemma 2.1 to get

QFkn+m =
3∑
s=0

Fkn+m+ses

= Fm
3∑
s=0

Fkn+1+ses + qFm−1

3∑
s=0

Fkn+ses,

and the result follows. The proof of (ii) is similar as (i). The identities (iii)
and (iv) can be done similarly using Lemma 2.2. �

Theorem 3.2. Any natural numbers k,m and n, the generating functions
of the quaternions QFkn+m and QLkn+m are given by

∞∑
n=0

QFkn+ms
n =
QFm − (−q)kQFm−ks

1− Lks+ (−q)ks2

and
∞∑
n=0

QLkn+ms
n =
QLm − (−q)kQLm−ks

1− Lks+ (−q)ks2
.

Proof. Using the Binet formula for QFn, we have

∞∑
n=0

QFkn+ms
n =

∞∑
n=0

(
Aαkn+m −Bβkn+m

α− β

)
sn
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=
1

α− β

(
Aαm

1− αks
− Bβm

1− βks

)
=

1

α− β

[
(Aαm −Bβm)− (−q)k(Aαm−k −Bβm−k)s

1− (αk + βk)s+ (αβ)ks2

]
=
QFm − (−q)kQFm−ks

1− Lks+ (−q)ks2
,

which is the desired result.

For
∞∑
n=0
QLkn+ms

n, the proof is similar as
∞∑
n=0
QFkn+ms

n. �

Observation 3.3. It can be seen that for k = 1 and m = 0 in the first
result of Theorem 3.2, we get the generating functions for QFn as

∞∑
n=0

QFnsn =
QF0 + qQF−1s

1− ps− qs2
=
QF0 + (−pQF0 +QF1)s

1− ps− qs2
.

This result which is given in Lemma 2.5 is already shown in [6].
Again putting for k = 1 and m = 0 in the second result of Theorem 3.2,

we obtain the generating functions for (p, q)-Lucas quaternions QLn as

∞∑
n=0

QLnsn =
QL0 + qQL−1s

1− ps− qs2
=
QL0 + (−pQL0 +QL1)s

1− ps− qs2
.

Theorem 3.4. For k,m, n ∈ N, the exponential generating functions for
QFkn+m and QLkn+m are

∞∑
n=0

QFkn+m

n!
sn =

Aαmeα
ks −Bβmeβks

α− β

and
∞∑
n=0

QLkn+m

n!
sn = Aαmeα

ks +Bβmeβ
ks,

where A =
3∑
s=0

αses and B =
3∑
s=0

βses.

Proof. Using Binet formula for QLn, we obtain
∞∑
n=0

QLkn+m

n!
sn =

∞∑
n=0

(
Aαkn+m +Bβkn+m

) sn
n!

= Aαm
∞∑
n=0

(αks)n

n!
+Bβm

∞∑
n=0

(βks)n

n!

= Aαmeα
ks +Bβmeβ

ks,
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which ends the proof. The proof is similar for (p, q)-Fibonacci quaternions
QFkn+m. �

Theorem 3.5 (Catalan’s identity). Let n, r ∈ N with n ≥ r, then

QFn−rQFn+r −QF2
n =

(−q)n−r(αr − βr) [βrAB − αrBA]

∆

and

QLn−rQLn+r −QL2
n = (−q)n−r(αr − βr) [αrBA− βrAB] ,

where ∆ = p2 + 4q.

Proof. Using the Binet formula for QFn and the fact αβ = −q, we have

QFn−rQFn+r −QF2
n

=

(
Aαn−r −Bβn−r

α− β

)(
Aαn+r −Bβn+r

α− β

)
−
(
Aαn −Bβn

α− β

)2

=
AB(−q)n

(
1−

(
β
α

)r)
+BA(−q)n

(
1−

(
α
β

)r)
(α− β)2

=
AB(−q)n−rβr(αr − βr)−BA(−q)n−rαr(αr − βr)

∆
,

which completes the proof. The proof for the (p, q)-Lucas quaternions is
similar. �

The next result directly follows from Theorem 3.5 for r = 1.

Corollary 3.6 (Cassini’s identity). Let n ∈ N, then

QFn−1QFn+1 −QF2
n =

(−q)n−1 (βAB − αBA)√
∆

and
QLn−1QLn+1 −QL2

n = (−q)n−1
√

∆ [αBA− βAB] .

Theorem 3.7 (d’Ocagne’s identity). Let m,n ∈ N with n ≥ m, then

QFm+1QFn −QFmQFn+1 =
(−q)m [BAαn−m −ABβn−m]√

∆

and

QLm+1QLn −QLmQLn+1 = (−q)m
√

∆
[
ABβn−m −BAαn−m

]
.

Proof. Using the Binet formula for QLn, we have

QLm+1QLn −QLmQLn+1

=
(
Aαm+1 +Bβm+1

)
(Aαn +Bβn)− (Aαm +Bβm)

(
Aαn+1 +Bβn+1

)
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= (−q)m
[
ABβn−m(α− β) +BAαn−m(β − α)

]
= (−q)m

√
∆
[
ABβn−m −BAαn−m

]
,

and the result follows. Similarly, using Binet formula for (p, q)-Fibonacci qua-
ternions, the second part can be easily shown. �

Theorem 3.8. For any natural numbers m and k with m > k ≥ 0, we
have

n∑
r=0

QFmr+k =
(−q)mQFmn+k −QFmn+m+k − (−q)mQFk−m +QFk

1 + (−q)m − Lm
and

n∑
r=0

QLmr+k =
(−q)mQLmn+k −QLmn+m+k − (−q)mQLk−m +QLk

1 + (−q)m − Lm
.

Proof. Using the Binet formula of QFk, we have

n∑
r=0

QFmr+k =

n∑
r=0

Aαmr+k −Bβmr+k

α− β

=
1

α−β

[
Aαk

(
αmn+m − 1

αm − 1

)
−Bβk

(
βmn+m − 1

βm − 1

)]
=

1

α−β

[
(−q)m(Aαmn+k−Bβmn+k)−(Aαmn+m+k−Bβmn+m+k)

1 + (−q)m − (αm + βm)

+
(Aαk −Bβk)− (−q)m(Aαk−m −Bβk−m)

1 + (−q)m − (αm + βm)

]
,

which follows the result. The proof for the (p, q)-Lucas quaternions is
similar. �

Theorem 3.9. For m,n ≥ 0,

QFmn =
n∑
j=0

(
n
j

)
qn−jF jmF

j
m−1QFj

and

QLmn =
n∑
j=0

(
n
j

)
qn−jF jmF

n−j
m−1QLj .

Proof. By virtue of Lemma 2.3, we have

QLmn =
3∑
s=0

Lmn+ses
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=
3∑
s=0

 n∑
j=0

(
n
j

)
qn−jF jmF

j
m−1Lj+s

 es

=
n∑
j=0

(
n
j

)
qn−jF jmF

j
m−1

(
3∑
s=0

Lj+ses

)
,

which completes the proof. The first part can be proved similarly using
Lemma 2.3. �

Observation 3.10. Setting m = 2 in the first result of Theorem 3.9, we

obtain QF2n =
n∑
j=0

(
n
j

)
qn−jpjQFj . This result is given in Lemma 2.7 which

is already shown in [6]. Putting m = 2 in the second result of Theorem 3.9,
we have

QL2n =
n∑
j=0

(
n
j

)
qn−jpjQLj .

Theorem 3.11. For every n ∈ N, QL2
n −∆QF2

n = 2(−q)n(AB +BA).

Proof. Using the Binet formula of QFk and QLk, we have

QL2
n −∆QF2

n = (Aαn +Bβn)2 −∆

(
Aαn −Bβn

α− β

)2

=
[
A2α2n +AB(αβ)n +BA(αβ)n +B2β2n

]
−
[
A2α2n −AB(αβ)n −BA(αβ)n +B2β2n

]
= 2(−q)n(AB +BA),

which ends the proof. �

Matrix methods are useful tools to obtain results for different identi-
ties and algebraic representations in the study of recurrence relations. (p, q)-

Fibonacci numbers are also generated through matrices. That is, QF =

(
p q
1 0

)
and shown that QnF =

(
Fn+1 qFn
Fn qFn−1

)
.

We define (p, q)-Fibonacci quaternion matrix as a second order matrix
whose entries being (p, q)-Fibonacci quaternions as follows.

MQn
F

=

(
QFn+1 qQFn
QFn qFn−1

)
.

Theorem 3.12. For an integer n ≥ 1,(
QFn+1 qQFn
QFn qQFn−1

)
=

(
QF2 qQF1

QF1 qQF0

)(
p q
1 0

)n−1

.
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Proof. We will use the method of induction to prove this result. Basis
step is clear for n = 2. As an inductive hypothesis, assume that the relation
holds for all positive integers n < k (k ∈ Z≥1). Finally, in the inductive step,(

QF2 qQF1

QF1 qQF0

)(
p q
1 0

)n−1(
p q
1 0

)
=

(
QFn+1 qQFn
QFn qQFn−1

)(
p q
1 0

)
=

(
pQFn+1 + qQFn qQFn+1

pQFn + qQFn−1 qQFn

)
.

Hence, by definition (1.1), the result holds for k = n. �

Cassini formula for (p, q)-Fibonacci quaternion can also be obtained from
(p, q)-Fibonacci quaternion matrix. The following result demonstrates this
fact.

Corollary 3.13. For an integer n ≥ 1,

QFn+1QFn−1 −QF2
n =

(−q)n−1 (βAB − αBA)

(α− β)
.

Proof. Evaluating the determinants from both sides of the above result
and after some algebraic manipulation, the desired result is obtained. �

4. CONCLUSION

In this article, we have introduced (p, q)-Lucas quaternions which are
based on generalized Lucas numbers. Some new identities of (p, q)-Fibonacci
and Lucas quaternions are also established. Some results of İpek [6] are the
particular cases of the present work.

REFERENCES

[1] M. Akyigit, H.H. Kosal and M. Tosun, Fibonacci generalized quaternions. Adv. Appl.
Clifford Algebr. 24 (2014), 3, 631–641.

[2] P. Catarino, A note on h(x)-Fibonacci quaternion polynomials. Chaos Solitons Fractals
77 (2015), 1–5.

[3] S. Halici, On Fibonacci quaternions. Adv. Appl. Clifford Algebr. 22 (2012), 321–327.

[4] A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math.
Monthly 70 (1963), 289–291.

[5] Z.S. Iar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas
numbers. Hacet. J. Math. Stat. 42 (2013), 211–222.
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