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Based on generalized Lucas numbers, (p, ¢)-Lucas quaternions are introduced.
Moreover, some identities such as Catalan identity, d’Ocagne’s identity etc.,
involving (p, ¢)-Fibonacci and (p, ¢)-Lucas quaternions are established.
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1. INTRODUCTION

As usual, generalized Fibonacci sequence {F,},>1 is recursively defined
as

fn+1:pfn+qfn—l

with initial conditions Fy = 0 and F; = 1. On the other hand, the recurrence
expression for generalized Lucas sequence {L,},>1 is given by

Ln+1 =pLy, +qLln1,

with initials L9 = 2 and £; = p. The closed forms popularly known as Binet
formulas for these two sequences are given by the expressions
a — IBTL

Fo=—"n
a—p

and £, = a" 4+ 8",

where o = p+7§2+4q and 8 = 1)_7”52%1 with A = p? 4 4¢q > 0. Moreover, it
can be observed that, o™ = aF,, + qFn_1 and " = 8F, + qFn_1.

The Irish mathematician and physicist William Rowan Hamilton intro-
duced quaternions as an extension of complex numbers. According to him, a
quaternion ¢ is a hyper-complex number represented by an equation

q = aeg + bey + ceq + des,
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where a,b,c,d € R and the set {eg,e1,e9,e3} forms a standard orthonormal
basis in R*. The collection of quaternions are usually denoted by H and con-
stitute a non-commutative field called a skew field that extends the complex
field C. It is well-known that, the standard basis vectors eg, e1, es, e3 satisfy
the multiplication rule as per the following composition table:

TABLE 1
The multiplication table of basis for H
* 1 e1 ) €3
1 1 el €2 es
e1r er —1 es —e2
e e —e3 —1 el
€3 €3 €2 —e1 —1

Horadam, in [4], defined Fibonacci and Lucas quaternions by the equati-
ons

QF, = Fheq + Fyy1e1 + Fp2ea + Fq3e3,
and
QLy = Lpeg + Lyy1e1 + Lpgoes + Ly yses,

where F,, and L,, denote n-th Fibonacci number and n-th Lucas number re-
spectively.

Fibonacci and Lucas quaternions are generalized in many ways. For de-
tails of these works, one can go through [1-3,6-8|. A recent generalization for
Fibonacci quaternion is due to Ipek [6]. He introduced (p,q)-Fibonacci qua-
ternion sequence {F,(p, ¢) }n>0 which is defined recursively by the expression:

3
QF, = Fneo + Fni1e1 + Fpyoes + Frizez = Z]:n—‘rses’
s=0
where F,, and QF,, denote the n-th (p, ¢)-Fibonacci number and the n-th (p, q)-
Fibonacci quaternion respectively. In [6], Ipek has established the recurrence
relation for (p, ¢)-Fibonacci quaternions which is given by the equation

(11) an—‘,—l - prn + qun—la n Z 1

and derived some identities including Binet formula, generating functions and
certain bionomial sums involving (p, ¢)-Fibonacci quaternions.

In this article, we first introduce (p, ¢)-Lucas quaternions and then derive
some new identities such as Catalan identity, d’Ocagne’s identity etc., for both
these quaternions.
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Definition 1.1. The (p, g)-Lucas quaternion sequence { L, (p, ) }n>0 is de-
fined recursively by

3

QL = Lypeg+ Lyy1e1 + Lpjoes + L1363 = Z Lpts€s,
s=0

where £, denotes generalized Lucas number.

In view of the above recursive definition, it can be easily observed that
(p, ¢)-Lucas quaternions has recurrence relation of the form

Q['n—f—l =pQL, +qQL,_ 1, n> 1.

For o = p+2\/Z’ it can be seen that
3 3
aQF, +qQF 1=« Z]:nJrses + qz}-nflJrses
s=0 s=0
3
= Z(a]:nJrs + qFnts—1)es.
s=0
3
Since a" = aF, + ¢Fn—1 [5] and setting A = 3 a’es, the above expres-
s=0
sion reduces to
(1.2) aQF, + qQF,—1 = Aa".
3
Similarly, since 8" = BF,, +qFn—1 [5] and letting B = > (e, we obtain
s=0
(1.3) BOFn +qQFn1 = Bp".

On subtraction of (1.3) from (1.2) gives the Binet formulas for (p,q)-
Fibonacci quaternions as
Aa™ — Bp"
Q-/—"n = B )
a—p

3 3

where A = ) a’es; and B = ) (°es. Similarly, adding (1.2) and (1.3), the
s=0 s=0

Binet formula for (p, ¢)-Lucas quaternions is obtained and it is given by

QL, = Aa™ + BS".

Moreover, it can be seen that QL, = QF,+1 + qQFn—1 = pQF, +
2qQF,—1 and AQF, = QL1 +qQLy 1.
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2. PRELIMINARIES

In this section, we present some known formulas that are used subse-

quently.
The following results are given in [5].

LEMMA 2.1. Let n € N and m be a non-zero integer, then
Fman = FmFnt1 + q¢Fm-1Fn
and
(=@)" ' Frnen = Fn1Fn — FnFn-1.-
LEMMA 2.2. Let n,m € 7Z, then
Lign = Fpnlmt1 + qFn-1Lm
and
(=0)"L—n = Fm+1Ln — Lns1Fm.
LEMMA 2.3. Let m,r € Z with m # 0 and m # 1. Then

n

e (e

j=0
and
Lomir =3 (J) L L
§=0

The following results are found in [6].

LEMMA 2.4. (Binet Formula) Let QF, be the n-th (p,q)-Fibonacci qua-
ternion. Then,

Aa™ — BB™
oF, = 2B
a—p
3 3
where A = )" a’es and B =) [%es.
s=0 s=0

LEMMA 2.5. For any non-negative integer n, the ordinary generating function

for QF, is
_ QFo + (—pQFo + QF1)s

1 — ps — gs?

Gr(s)

LEMMA 2.6. For any non-negative integer n, the exponential generating
function for QF, is
Ae®s — BePs

Gr(s) = ——— 3
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LEMMA 2.7. Let m be a non-negative integer. Then,

QFon = (;‘) ¢ QF;.

j=0

3. SOME IDENTITIES INVOLVING (p, q)-FIBONACCI
AND LUCAS QUATERNIONS

In this section, we derive some new identities concerning (p, ¢)-Fibonacci
and (p, ¢)-Lucas quaternions.

THEOREM 3.1. If m, k and n are positive integers with m > n, then
(1) Q-Fkner =Fm Q]:knJrl +qFm— 19Fkn
(11) ( )n 1Q]:m—kn = ]:an]:mfl — Frn-1 QFm
(iii) QLrnym = FknQLm+1 + ¢Fkn-19Lm
(IV) ( ) Qﬁm kn — ﬁkzn Q]:m—o—l - Ekn-l—l Q]:m

Proof. In order to prove the identity (i), we use Lemma 2.1 to get

3
kan+m = § Fkn+m+s€s
s=0

3 3
=Fm Z}—kn—i-l-i-ses +qFm—1 Z]:kn-i-sem
5=0 s=0
and the result follows. The proof of (i7) is similar as (i). The identities (i:7)

and (iv) can be done similarly using Lemma 2.2. [

THEOREM 3.2. Any natural numbers k,m and n, the generating functions
of the quaternions QFkn+m and QLgp+m are given by

= n_ QFm— (*Q)kQ‘Fm—kS
T;) kan—i-ms - 1 o EkS _I_ (—q)kSQ
and
= no__ Qﬁm - (_Q)kQ['m—kS
nz% QLn+ms 1 — Lis+ (—q)Fs?

Proof. Using the Binet formula for QF,,, we have

o0 & A kn+m __ kn+m
7;) QF kntms" = Z ( “ — gﬁ > s"

n=0
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1 Aa™ Bp™
T a-8 (1—aks_ 1—6ks>
1 [(Aa™ = BB™) — (=¢)*(Aa™* — BE™*)s
T a-p [ 1—(a¥ + B%)s + (af)Fs?
_ QFm— (—q)"QF s
1— Lgs+ (—q)ks?
which is tlrég desired result.

(o]
For >  OLppims", the proof is similar as > QFgpims™. O
n=0 n=0

Observation 3.3. It can be seen that for £k = 1 and m = 0 in the first
result of Theorem 3.2, we get the generating functions for QF, as

i oF g - Qo +aQF s _ QFo+ (=pQFo+ QF1)s.
" 1—ps—qs? 1—ps — qs?

This result which is given in Lemma 2.5 is already shown in [6].
Again putting for £k = 1 and m = 0 in the second result of Theorem 3.2,
we obtain the generating functions for (p, ¢)-Lucas quaternions QL,, as

igﬁ o QLo+aQL s _ QLo+ (—pQLo + QL1)s.

1—ps—qs2 1 — ps — qs?

THEOREM 3.4. For k,m,n € N, the exponential generating functions for
QFinim and QLyn1m are

Z OFkntm o Aames Bﬁmeﬂk

| _
= n! a—

and

Z Q»Ckn—i-m " = Aa™e ak S+Bﬁm Bk s

|
.
n=0

3 3
where A=Y a’es and B =) B%¢;.
s=0 s=0

Proof. Using Binet formula for QL,,, we obtain

Z Q»Ckn-HTI o i <Aakn+m + B/Bkn+m) %T:

|
n.

P S
n=0

= Aa™e®"s Bﬁmeﬁks,

e k\n

n!
n=0
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which ends the proof. The proof is similar for (p,q)-Fibonacci quaternions
kan+m- O

THEOREM 3.5 (Catalan’s identity). Let n,r € N with n > r, then
(—g)" "(a" = B") [BTAB — o" BA|
A

an—rQ]:n—i-r - Q-Frz;, ==
and

QL QL r — QL2 = (—q)" " (" — B") [a"BA — B"AB],
where A = p? + 4q.

Proof. Using the Binet formula for QF, and the fact af = —¢q, we have
an—r an—i-r - Q-Fﬁ
B (Aan—r _Bﬁn—r> <Aan+r —Bﬁn—H) - (Aan —Bﬁn>2

a—f a—p "
a1 ) e (o))
: (a = 5)?
_ AB(—q)" "B (a" — B7) — BA(—q)" " (o — B7)
A ;

which completes the proof. The proof for the (p,q)-Lucas quaternions is
similar. [

The next result directly follows from Theorem 3.5 for r = 1.

COROLLARY 3.6 (Cassini’s identity). Let n € N, then

(—q)""' (BAB — aBA)
VA

Q]:nflg]:n+1 - Q]:y% =
and
QLy 1QLns1 — QL = (—¢)" WA [aBA - SAB].
THEOREM 3.7 (d’Ocagne’s identity). Let m,n € N with n > m, then
(—q)™ [BAa"™™ — ABB™™™]

Q-Fm+1QFn_Q-FmQ-Fn+1: \/Z

and
QL 19Ln — QL1 OL, 41 = (—¢)™VA [ABﬁ”’m — BAo/”’m] :
Proof. Using the Binet formula for QL,,, we have

Q£m+1 Qﬁn - Qﬁm Q£n+1
= (Aa™ + BA™ ) (Aa™ + BB"™) — (Aa™ + BE™) (At + Bp™)
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= (—q)" [ABB" ™ (a — ) + BA"""(3 — )]
= (—q)™VA [ABB"™™ — BAa"™],

and the result follows. Similarly, using Binet formula for (p, ¢)-Fibonacci qua-
ternions, the second part can be easily shown. [J

THEOREM 3.8. For any natural numbers m and k with m > k > 0, we
have

Z Q]:mr—l—k: =

r=0

(_Q)mgfmn—‘rk - Q—an—i-m—I—k - (_Q)mgfk—m + Q]:k
L+ (=)™~ L

and

Z”: or .~ 0" Lk = Lmimir = (=0)" QLrm + QL
S T ()™ — L ’

Proof. Using the Binet formula of QF}, we have

r=0 r=0 @~ ﬁ

1 amntm mn+m _ |
~ [ () o ()|
_ L [0 (A - B t) — (Ao gy
Ca-p [ L+ (=¢)™ = (o™ + ™)
(40 ~ BAY) - (~q"(Aab~ - BEA)
e
which follows the result. The proof for the (p,q)-Lucas quaternions is
similar. [

9

THEOREM 3.9. For m,n > 0,

n

QFmn = <j> "I FLF QF;

=0
and
" n
QL = <> IR F QL.

Proof. By virtue of Lemma 2.3, we have

3
Q/v‘mn = Z Emn+ses

s=0
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3 n
Z Z() "IFLFL (Livs | es

S=

n 3
<';l> qn_]fﬂn]:fn_l <Z £j+s€s) ,
7=0 s=0

which completes the proof. The first part can be proved similarly using
Lemma 2.3. [

Observation 3.10. Setting m = 2 in the first result of Theorem 3.9, we

n

obtain QFy, = > <;L> g Ipt QF;. This result is given in Lemma 2.7 which
=0
is already shown in [6]. Putting m = 2 in the second result of Theorem 3.9,

we have N
QLo =Y (?) "I oL,
j=0
THEOREM 3.11. For every n € N, QL2 — AQF?2 = 2(—q)"(AB + BA).
Proof. Using the Binet formula of QF;, and QLj, we have
QL. — AQF. = (A" + BB")? — A <AC“Z — gﬁn)
= [A%a®" + AB(ap)" + BA(aB)" + B**"]
~ [A%0®" — AB(aB)" ~ BA(ap)" + B*6¥"
=2(—q)"(AB + BA),
which ends the proof. [

Matrix methods are useful tools to obtain results for different identi-
ties and algebraic representations in the study of recurrence relations. (p,q)-

p q

Fibonacci numbers are also generated through matrices. That is, Q7 = 10

and shown that Q" = (J:;__H qg_.fn )
n n—1

We define (p, q)-Fibonacci quaternion matrix as a second order matrix
whose entries being (p, ¢)-Fibonacci quaternions as follows.

M o an-i-l QQ]:n
QF N an qfn—l '

THEOREM 3.12. For an integer n > 1,

<an+1 4QF, > _ (QFz qQF1> (p q)”‘l
Q]:n C]Q}—nfl Q]'—1 qQ]'—g 1 0 )



24 Bijan Kumar Patel and Prasanta Kumar Ray 10

Proof. We will use the method of induction to prove this result. Basis
step is clear for n = 2. As an inductive hypothesis, assume that the relation
holds for all positive integers n < k (k € Z>1). Finally, in the inductive step,

QF, qQF\ (p a\" ' (p 4
Q]:1 qQ]:o 1 0 1 0
o an+l CIQ]-"n p q
T\ QF, ¢QF,1)\1 0
_ <pQFn+1 +qQF, qun-H)
pQJ_"n + qgfn—l QQ]:n ’

Hence, by definition (1.1), the result holds for k =n. O

Cassini formula for (p, ¢)-Fibonacci quaternion can also be obtained from
(p, q)-Fibonacci quaternion matrix. The following result demonstrates this
fact.

COROLLARY 3.13. For an integer n > 1,
(—¢)" ! (BAB — aBA)
(a—B)
Proof. Evaluating the determinants from both sides of the above result
and after some algebraic manipulation, the desired result is obtained. [

QFni1QF, 1 — QF2 =

4. CONCLUSION

In this article, we have introduced (p,q)-Lucas quaternions which are
based on generalized Lucas numbers. Some new identities of (p, ¢)-Fibonacci
and Lucas quaternions are also established. Some results of Ipek [6] are the
particular cases of the present work.
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