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1. INTRODUCTION

Throughout this paper, let R be a commutative ring (with identity) and
M be a unital R-module. A proper submodule N of M with N :R M = p
is said to be prime or p-prime (p a prime ideal of R) if rx ∈ N for r ∈ R
and x ∈ M implies that either x ∈ N or r ∈ p. Another equivalent notion
of prime submodules was first introduced and systematically studied in [4].
Prime submodules have been studied by several authors; see, for example,
[1,2,5,7–10,12]. In Section 2, we study the chains of prime submodules and we
shall improve the results given in [9]. The prime avoidance theorem states that
if an ideal I of a ring is contained in the union of finite number of prime ideals,
then I must be contained in one of them. This result’s generalization for the
non-commutative case has been proved in [6]. In Section 3, we generalize this
theorem for modules in different states. Throughout, for any ideal b of R, the
radical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b for
some n ∈ N} and we denote {p ∈ Spec(R) : p ⊇ b} by V (b), where Spec(R)
denotes the set of all prime ideals of R. The symbol ⊆ denotes containment
and ⊂ denotes proper containment for sets. If N is a submodule of M , we
write N ≤ M . We denote the annihilator of a factor module M/N of M by
(N :R M). The set of all maximal ideals of R is denoted by Max(R). For
any ideal I of a ring R and for any R-module M , ΓI(M) is defined to be the
submodule of M consisting of all elements annihilated by some power of I, i.e.,⋃∞

n=1(0 :M In). For any unexplained notation and terminology we refer the
reader to [3, 11] and [13].
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2. CHAINS OF PRIME SUBMODULES

The results of this section are generalizations of some results given in [9]
and [2]. First, we need the following definition.

Definition 2.1. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p ∈ Spec(R) we define λp(M) as following:

λp(M) = dimRp/ pRp
(Mp/ pMp).

Remark 2.2. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p ∈ Spec(R), λp(M) is the number of elements of any
minimal generator set of the Rp-module Mp and so λp(M) <∞. Also we have
λp(M) = 0 if and only if p 6∈ Supp(M). Moreover, for any pair q ⊆ p of prime
ideals of R it is easy to see that λq(M) ≤ λp(M).

The following description of prime submodules will be useful in this paper.

Lemma 2.3. Let R be a Noetherian ring and p ∈ Spec(R). Let M be
a finitely generated R-module and N be a proper submodule of M . Then the
following are equivalent:
(i) N is p-prime submodule of M .
(ii) AssR(M/N) = {p} and (N :R M) = p.
(iii) (N :R x) = p, for each x ∈M\N .

Proof. Easily follows from definition. �

The following theorem is the first main result of this paper and a gene-
ralization of [9, Lemma 2.6].

Theorem 2.4. Let R be a Noetherian ring and p ∈ Supp(M). Let M be
a finitely generated R-module. Then the following statements hold:
(i) The length of any chain of p-prime submodules of M is bounded from above
by λp(M)− 1.
(ii) There is a chain of p-prime submodules of M , which is of length λp(M)−1.
(iii) Any saturated maximal chain of p-prime submodules of M is of length
λp(M)− 1.

Proof. (i) Let n := λp(M). Then it follows from the hypothesis p ∈
Supp(M) that n > 0. Suppose the contrary be true. Then there exists a chain
of p-prime submodules of M as:

N0 ⊂ N1 ⊂ · · · ⊂ Nn.

By Lemma 2.3 we have p ∈ Supp(M/Nn) and so lRp((M/Nn)p) ≥ 1. On the
other hand, since by assumption we have (N0 :R M) = p, it follows that there
is an exact sequence

M/ pM →M/N0 → 0.
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Hence we have the following exact sequence:

(M/ pM)p → (M/N0)p → 0.

Therefore, it follows from definition that

lRp((M/N0)p) = dimRp/ pRp
((M/N0)p) ≤ λp(M) = n.

On the other hand, for each 0 ≤ i ≤ n− 1 there is an exact sequence

0→ Ni+1/Ni →M/Ni.

But, since Ni+1/Ni 6= 0, it follows from Lemma 2.3 and above exact sequence
that

∅ 6= AssR(Ni+1/Ni) ⊆ AssR(M/Ni) = {p},

which implies that AssR(Ni+1/Ni) = {p}. In particular p ∈ Supp(Ni+1/Ni),
and so (Ni+1/Ni)p 6= 0. Consequently, lRp((Ni+1/Ni)p) ≥ 1. Whence, we have

n = Σn−1
i=0 1 ≤ Σn−1

i=0 lRp((Ni+1/Ni)p) = lRp((Nn/N0)p) ≤ lRp((M/N0)p)− 1

≤ n− 1,

which is a contradiction.
(ii) Let λp(M) = n. Then n > 0. As p ∈ Supp(M) it follows that

(pM :R M) = p. Therefore, p ∈ AssR(M/ pM). Let N0 = pM , whenever
AssR(M/ pM) = {p}. In other case, suppose

AssR(M/ pM)\{p} := {q1, ..., qk}.

Let I = ∩kj=1 qj and N0/ pM := ΓI(M/ pM). Then we have

AssR(M/N0) = AssR((M/ pM)/ΓI(M/ pM)) = AssR(M/ pM)\V (I).

But, since for each 1 ≤ j ≤ k we have AnnR(M/ pM) = p ⊆ qj and qj 6= p, it
follows that p 6∈ V (qj). Therefore

p 6∈
k⋃

j=1

V (qj) = V (∩kj=1 qj) = V (I).

Therefore,
AssR(M/N0) = AssR(M/ pM)\V (I) = {p},

which results AnnR(M/N0) ⊆ p. Therefore, we have p = (pM :R M) ⊆ (N0 :R
M) ⊆ p and so (N0 :R M) = p. Also as

AssR(N0/ pM) = AssR(ΓI(M/ pM)) = AssR(M/ pM) ∩ V (I),

it follows that p 6∈ Supp(N0/ pM) and hence (N0/ pM)p = 0. Now in both
cases it follows from Lemma 2.3 that N0 is a p-prime submodule of M . We
shall construct the chain N0 ⊂ · · · ⊂ Nn−1 of p-prime submodules of M such
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that lRp((Ni+1/Ni)p) = 1, for each 0 ≤ i ≤ n − 2, by an inductive process.
To do this, assume that 0 ≤ j < n− 1, and that we have already constructed
N0 ⊂ N1 ⊂ · · · ⊂ Nj . We show how to construct Nj+1. To do this, since
by definition M 6= Nj it follows that there is an element x ∈ M\Nj . Let
L := Rx+Nj . In view of Lemma 2.3 we have L/Nj

∼= R/ p. In particular, we
have lRp((L/Nj)p) = 1. By inductive hypothesis we have

lRp((M/L)p) = lRp((M/N0)p)− lRp((L/N0)p) =

lRp((M/ pM)p)−[lRp((L/Nj)p)+Σj−1
i=0 lRp((Ni+1/Ni)p)]=n−(1+j)=n−j−1>0.

Therefore, (M/L)p 6= 0. Now it is easy to see that (L :R M) = p, and so
p ∈ AssR(M/L). Let Nj+1 = L, whenever AssR(M/L) = {p}. In other case
suppose

AssR(M/L)\{p} := {q′1, ..., q′t}.
Let J = ∩ti=1 q

′
i and Nj+1/L := ΓJ(M/L). Then we have

AssR(M/Nj+1) = AssR((M/L)/ΓJ(M/L)) = AssR(M/L)\V (J).

But, since for each 1 ≤ i ≤ t we have AnnR(M/L) = p ⊆ q′i and q′i 6= p, it
follows that p 6∈ V (q′i). Therefore,

AssR(M/Nj+1) = AssR(M/L)\V (J) = {p},

which results AnnR(M/Nj+1) ⊆ p. Therefore, we have p = (L :R M) ⊆
(Nj+1 :R M) ⊆ p and so (Nj+1 :R M) = p. Also as

AssR(Nj+1/L) = AssR(ΓJ(M/L)) = AssR(M/L) ∩ V (J),

it follows that p 6∈ Supp(Nj+1/L) and hence (Nj+1/L)p = 0. Whence,

lRp((Nj+1/Nj)p) = lRp((Nj+1/L)p) + lRp((L/Nj)p) = 1 + 0 = 1.

Now in both cases it follows from Lemma 2.3 that Nj+1 is a p-prime submodule
of M such that lRp((Nj+1/Nj)p) = 1. This completes the inductive step in the
construction.

(iii) Let λp(M) = n and N0 ⊂ · · · ⊂ Nk be a saturated maximal chain of
p-prime submodules of M . We show that k = n− 1. By (i) we have k ≤ n− 1.
Since by assumption this chain is maximal it follows from the proof of (ii) that
lRp((M/Nk)p) = 1. Now suppose the contrary be true. Then the set

E := {N : N is a p -prime submodule of M},

has a unique minimal element N ′ := ∩N∈EN with respect to ” ⊆ ”. So it
follows from hypothesis that N0 = N ′. Also using (i) it follows from the proof
of (ii) that (N0/ pM)p = 0. Therefore,

lRp((Nk/N0)p) = n− 1.



5 Topics in prime submodules and other aspects of the prime avoidance theorem 53

Now suppose the contrary be true and k < n−1. Then we deduce that there is
0 ≤ j ≤ k−1, such that lRp((Nj+1/Nj)p) ≥ 2. Then there is x ∈ Nj+1\Nj . By
Lemma 2.3 we have (Nj + Rx)/Nj

∼= R/ p and so lRp(((Nj + Rx)/Nj)p) = 1.
Let L := Nj +Rx. Since Nj+1/L is the unique minimal element of the set

{N/L : N/L is a p -prime submodule of M/L},

again using (i) it follows from the proof of (ii) that (Nj+1/L)p = 0. Thus we
have

2 ≤ lRp((Nj+1/Nj)p) = lRp((Nj+1/L)p) + lRp((L/Nj)p) = 0 + 1 = 1,

which is a contradiction. This completes the proof. �

Now we need the following definitions.

Definition 2.5. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p-prime submodule N of M we define p-height of N as:

p -ht(N) := sup{k ∈ N0 : ∃ N0 ⊂ · · · ⊂ Nk = N, with Ni ∈ SpecpR(M), ∀ i},

where SpecpR(M) denotes to the set of all p-prime submodules of M as an
R-module.

Definition 2.6. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p-prime submodule N of M we define height of N as:

ht(N) := sup{k ∈ N0 : ∃ N0 ⊂ · · · ⊂ Nk = N, with Ni ∈ SpecR(M), ∀ i},

where SpecR(M) denotes to the set of all prime submodules of M as an R-
module.

Definition 2.7. Let R be a Noetherian ring and M be a finitely generated
R-module. Then we define dimSpecR(M) as:

dimSpecR(M) := sup{ht(N) : N ∈ SpecR(M)}.

The following result is an immediate consequence of Theorem 2.4.

Corollary 2.8. Let R be a Noetherian ring and M be a finitely generated
R-module and N be a p-prime submodule of M . Then

p -ht(N) = lRp((N/ pM)p) = dimRp/ pRp
(Np/ pMp).

Proof. Let k := p -ht(N). Then there is saturated chain of p-prime sub-
modules of M as N0 ⊂ · · · ⊂ Nk = N . By the proof of Theorem 2.4 this chain
can be extended to a maximal saturated chain of p-prime submodules of M as

N0 ⊂ · · · ⊂ Nk = N ⊂ · · · ⊂ Nn−1,
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Where n = λp(M). Then by the proof of Theorem 2.4 we have (N0/ pM)p = 0
and lRp((Ni+1/Ni)p) = 1, for each 0 ≤ i ≤ n − 2. Now clearly the assertion
holds. �

As an application of Theorem 2.4 we prove the following.

Theorem 2.9. Let R be a Noetherian ring and M be a finitely generated
R-module and N be a p-prime submodule of M . Then

ht(N) ≤ (λp(M))(dimRp(Mp)) <∞.

Proof. Let Nk ⊂ · · · ⊂ N0 = N be a chain of prime submodules of M ,
such that for each 0 ≤ i ≤ k, Ni is pi-prime, where p0 = p. Then it easily
follows from definition that

pk ⊆ · · · ⊆ p0 = p .

Therefore, the set {pi}ki=0 has at most dimRp(Mp) elements. (Note that pi ∈
Supp(M), for all 0 ≤ i ≤ k ). Let

{pi}ki=0 = {q0 = p, ..., qt},

where t ≤ dimRp(Mp) and p = q0 ⊃ · · · ⊃ qt. Let Aj := Spec
qj
R (M) ∩ {Ni}ki=0,

for each 0 ≤ j ≤ t. Then by Theorem 2.4 the set Aj has at most λqj (M)
elements. But λqj (M) ≤ λp(M), because qj ⊆ p. Therefore as

t⋃
j=1

Aj = {Ni}ki=0,

it follows that k ≤ tλp(M) ≤ (dimRp(Mp))λp(M). Which implies that

ht(N) ≤ (λp(M))(dimRp(Mp)) <∞,

as required. �

3. PRIME AVOIDANCE THEOREM

The results of this section improve some well known results given in [7].

Proposition 3.1. Let R be any ring and M be a non-zero R-module and
N be a submodule of M . Let p1, ..., pn be distinct prime ideals of R. Let for
each 1 ≤ i ≤ n, Ni be a pi-prime submodule of M . If N ⊆ ∪ni=1Ni, then
N ⊆ Nj for some 1 ≤ j ≤ n.

Proof. We use induction on n. The case n = 2 is easy. Now let n ≥ 3
and the case n − 1 is settled. By definition for each 1 ≤ i ≤ n we have
pi = (Ni :R M). From the hypothesis N ⊆ ∪ni=1Ni it follows that N =
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∪ni=1(Ni ∩ N). Now let the contrary be true. Then N 6⊆ Ni and hence (Ni ∩
N) 6= N , for any 1 ≤ i ≤ n. Also from the inductive hypothesis it follows
that N 6= ∪i∈({1,...,n}\{k})(Ni ∩ N) for each 1 ≤ k ≤ n and so (Nk ∩ N) 6⊆
∪i∈({1,...,n}\{k})(Ni∩N). Let q be a minimal element of the set {p1, ..., pn} with
respect to ” ⊆ ”. Then pi 6⊆ q for each pi ∈ ({p1, ..., pn}\{q}). Without loss of
generality we may assume that q = pn. Let Ji := (Ni :R N), for all i = 1, ..., n.
Then from the definition it follows that pi ⊆ Ji, for all i = 1, ..., n. On the
other hand, for each x ∈ N and r ∈ R, if rx ∈ (Ni ∩ N) and x 6∈ (Ni ∩ N),
then rx ∈ Ni and x 6∈ Ni. Therefore it follows from the definition that r ∈ pi.
So rM ⊆ Ni, and consequently, rN ⊆ (Ni ∩ N). As (Ni ∩ N) 6= N it follows
that there exists an element y ∈ (N\(Ni ∩N)). Now for each s ∈ Ji we have
sy ∈ (Ni ∩N) ⊆ Ni and y 6∈ Ni. So it follows from the definition that s ∈ pi.
Therefore, (Ni :R N) = Ji = pi = (Ni :R M). But it is easy to see that
(Ni :R N) = ((Ni ∩ N) :R N). Thus for each 1 ≤ i ≤ n, Ni ∩ N is pi-prime
submodule of N . Therefore without loss of generality we may assume that N =
M = ∪ni=1Ni and Nn 6⊆ ∪n−1i=1 Ni. Next let T := ∩ni=1Ni. Then it is not difficult
to see that for each 1 ≤ i ≤ n, Ni/T is pi-prime submodule of M/T and M/T =
∪ni=1Ni/T . Therefore, without loss of generality we may assume M = ∪ni=1Ni

and ∩ni=1Ni = 0 and Nn 6⊆ ∪n−1i=1 Ni. Then there is an exact sequence 0→M →
⊕n

i=1M/Ni, which implies that ∩ni=1 pi = AnnR(⊕n
i=1M/Ni) ⊆ AnnR(M). On

the other hand for each 1 ≤ i ≤ n we have AnnR(M) ⊆ (Ni :R M) = pi. So
AnnR(M) ⊆ ∩ni=1 pi. Hence AnnR(M) = ∩ni=1 pi. Now if we have ∩n−1i=1 Ni = 0,
then there is an exact sequence 0 → M → ⊕n−1

i=1M/Ni, which implies that
∩n−1i=1 pi = AnnR(⊕n−1

i=1M/Ni) ⊆ AnnR(M) = ∩ni=1 pi ⊆ pn . So pt ⊆ pn, for
some 1 ≤ t ≤ n − 1, which is a contradiction. So ∩n−1i=1 Ni 6= 0. Then there is
an element 0 6= a ∈ ∩n−1i=1 Ni. As ∩ni=1Ni = 0, it follows that a 6∈ Nn. On the
other hand since Nn 6⊆ ∪n−1i=1 Ni, it follows that there is an element b ∈ Nn such
that b 6∈ ∪n−1i=1 Ni. Now as a + b ∈ ∪ni=1Ni, it follows that a + b ∈ Nk for some
1 ≤ k ≤ n, which is a contradiction. This completes the inductive step. �

Remark. Proposition 3.1 does not hold in general. For example, let p ≥ 2
be a prime number and 2 ≤ n ∈ N. Let R = Zp = {0, 1, ..., p− 1} and
M = ⊕n

i=1Zp. Let

A = {N : N = Rx, for some 0 6= x ∈M}.

Then A is a finite set that has at most 2p
n

elements and for each N ∈ A, N
is a {0}-prime submodule of M such that M ⊆ ∪N∈AN . But M 6⊆ N for any
N ∈ A. �

The following proposition is a generalization of [11, Ex. 16.8].

Proposition 3.2. Let R be a ring, M a non-zero R-module, N a sub-
module of M and x ∈ M . Let p1, ..., pn be distinct prime ideals of R. Let for
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each 1 ≤ i ≤ n, Ni be a pi-prime submodule of M . If N +Rx 6⊆ ∪ni=1Ni, then
there exists a ∈ N such that a+ x 6∈ ∪ni=1Ni.

Proof. We use induction on n. Let n = 1. If x ∈ N1 then N 6⊆ N1. So

there is a ∈ N\N1 and it is easy to see that a+x 6∈ N1. But if x 6∈ N1, then by

choosing a = 0 ∈ N the assertion holds. Now suppose n ≥ 2 and the case n−1

is settled. Let q be a minimal element of the set {p1, ..., pn} with respect to

” ⊆ ”. Then pi 6⊆ q for each pi ∈ ({p1, ..., pn}\{q}). Without loss of generality

we may assume that q = pn. Then it is easy to see that ∩n−1i=1 pi 6⊆ pn. By

inductive hypothesis there is an element b ∈ N such that b + x 6∈ ∪n−1i=1 Ni.

So the assertion holds for a = b, whenever b + x 6∈ Nn. So we may assume

b + x ∈ Nn. Then we claim that N 6⊆ Nn. Because, if N ⊆ Nn then x ∈ Nn

and so N + Rx ⊆ Nn ⊆ ∪ni=1Ni, which is a contradiction. Therefore, there

exists an element c ∈ N\Nn. As ∩n−1i=1 pi 6⊆ pn it follows that there exists an

element r ∈ (∩n−1i=1 pi)\ pn. Then it easily follows from the definition of the

pn-prime submodule that rc 6∈ Nn. Moreover, since r ∈ ∩n−1i=1 pi it follows from

the definition that rc ∈ ∩n−1i=1 Ni. Now it is easy to see that rc+b+x 6∈ ∪ni=1Ni.

Therefore, the assertion holds for a := rc+b ∈ N . This completes the induction

step. �

Remark. Proposition 3.2 does not hold in general. For example, let p ≥ 2

be a prime number and R = Zp = {0, 1, ..., p− 1} and M = Zp ⊕ Zp. Let

N = (1, 0)Zp, x = (0, 1) and Ni = (i, 1)Zp, for i = 0, ..., p − 1. Then Ni

is {0}-prime submodule of the R-module M , for all i = 0, ..., p − 1. Also as

(1, 0) ∈ N + Rx and (1, 0) 6∈ ∪p−1i=0Ni, it follows that N + Rx 6⊆ ∪p−1i=0Ni. But

for any a ∈ N we have a+ x ∈ ∪p−1i=0Ni.

Now we give other aspects of prime avoidance Theorem in different states.

Proposition 3.3. Let R be a ring, M a non-zero R-module, N a sub-

module of M and k ∈ N. Let for each 1 ≤ i ≤ k, ni ∈ N and for 1 ≤ i ≤ k

and 1 ≤ j ≤ ni, the ideals pi,j be distinct elements of Spec(R). Let for each

1 ≤ i ≤ k and 1 ≤ j ≤ ni, Ni,j be a pi,j-prime submodule of M . Let for each

1 ≤ i ≤ k, Ni = ∩ni
j=1Ni,j. If N ⊆ ∪ki=1Ni, then N ⊆ Nt for some 1 ≤ t ≤ k.

Proof. Let the contrary be true. Then for each 1 ≤ i ≤ k we have N 6⊆ Ni.

Therefore there exists 1 ≤ si ≤ ni such that N 6⊆ Ni,si . But in this situation

we have

N ⊆ ∪ki=1Ni ⊆ ∪ki=1Ni,si .

Consequently, it follows from Proposition 3.1 that there is 1 ≤ l ≤ k, such that
N ⊆ Nl,sl , which is a contradiction. �
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Proposition 3.4. Let R be a ring, M a non-zero R-module, N a submo-
dule of M , x ∈M and k ∈ N. Let for each 1 ≤ i ≤ k, ni ∈ N and for 1 ≤ i ≤ k
and 1 ≤ j ≤ ni, the ideals pi,j be distinct elements of Spec(R). Let for each
1 ≤ i ≤ k and 1 ≤ j ≤ ni, Ni,j be a pi,j-prime submodule of M . Let for each

1 ≤ i ≤ k, Ni = ∩ni
j=1Ni,j. If N + Rx 6⊆ ∪ki=1Ni, then there exists a ∈ N such

that a+ x 6∈ ∪ki=1Ni.

Proof. For each 1 ≤ i ≤ k we have N + Rx 6⊆ Ni. Therefore there
exists 1 ≤ si ≤ ni such that N + Rx 6⊆ Ni,si . But in this situation using
Proposition 3.1 we have

N +Rx 6⊆ ∪ki=1Ni,si .

Consequently, it follows from Proposition 3.2 that there is a ∈ N , such that
a+x 6∈ ∪ki=1Ni,si . But since ∪ki=1Ni ⊆ ∪ki=1Ni,si , it follows that a+x 6∈ ∪ki=1Ni,
as required. �

Proposition 3.5. Let R be a ring, I an ideal of R and x ∈ R. Let
J1, ..., Jn, (n ≥ 1) be ideals of R such that for each 1 ≤ i ≤ n we have Rad(Ji) =
Ji. If I + Rx 6⊆ ∪ni=1Ji, then there exists an element a ∈ I such that a + x 6∈
∪ni=1Ji.

Proof. For each 1 ≤ i ≤ n we have I + Rx 6⊆ Ji. Therefore for each
1 ≤ i ≤ n, since Ji = ∩q∈V (Ji) q it follows that there exists pi ∈ V (Ji) such that
I +Rx 6⊆ pi. But in this situation we have I +Rx 6⊆ ∪ni=1 pi . Consequently, it
follows from [11, Ex. 16.8] that there is a ∈ I, such that a+ x 6∈ ∪ni=1 pi . But
since ∪ni=1Ji ⊆ ∪ni=1 pi, it follows that a+ x 6∈ ∪ni=1Ji, as required. �

Before bringing the next result we need the following well known lemma.

Lemma 3.6. Let (R,m) be a commutative local ring such that R/m is
infinite. Let M be an R-module and N1, ..., Nt be submodules of M such that
M =

⋃t
i=1Ni. Then there exists 1 ≤ j ≤ t, M = Ni

Proof. The assertion follows using NAK Lemma.

Proposition 3.7. Let R be a commutative ring, M be an R-module and
N1, ..., Nt be submodules of M such that M =

⋃t
i=1Ni. Then

⋂t
i=1 SuppM/Ni ⊆

Max(R).

Proof. Suppose the contrary be true. Then there exists p ∈ (
⋂t

i=1 SuppM
/Ni)\Max(R). So R/p is an integral domain but not a field and therefore
Rp/pRp is infinite. By hypothesis and Proposition 3.6 there exists 1 ≤ j ≤ t
such that (M/Nj)p = 0 and so p /∈ SuppM/Nj which is a contradiction.

Corollary 3.8. Let R be a commutative ring and p ∈ Spec(R)\Max(R).
Let M be an R-module and N1, ..., Nt be p-prime submodules of M and N a
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submodule of M such that N ⊆
⋃t

i=1Ni. Then there exists 1 ≤ j ≤ t such that
N ⊆ Nj.

Proof. Let for any 1 ≤ j ≤ t, N * Nj . Then for all 1 ≤ j ≤ t, we have
N ∩Nj 6= N . Since pM ⊆ Nj , it follows that pN ⊆ Nj and so pN ⊆ N ∩Nj .
Hence p ⊆ (N ∩Nj : N). On the other hand there exists x ∈ N\N ∩Nj and
so x /∈ Ni. Let r ∈ (Ni ∩ N : N). Then rx ∈ Ni ∩ N ⊆ Ni and x /∈ Ni, so
r ∈ (Ni : M) = p. Consequently (Ni∩N : N) ⊆ p and so (Ni∩N : N) = p. Now
it is easy to show that Ni∩N is a p-prime submodule of N . Since N ⊆

⋃t
i=1Ni

it follows that N =
⋃t

i=1(N ∩Ni). But in this case p ∈
⋂t

i=1 Supp(N/Ni ∩N).
Since p ∈ Spec(R)\Max(R) this is impossible by Proposition 3.7.

Proposition 3.9. Let R be a commutative ring and p ∈ Spec(R) such
that R/p infinite. Let M be an R-module and N1, ..., Nt be p-prime submodules
of M and N a submodule of M such that N ⊆

⋃t
i=1Ni. Then there exists

1 ≤ j ≤ t such that N ⊆ Nj.

Proof. If p 6∈ Max(R), the assertion follows from Corollary 3.8. So let
p ∈ Max(R) and for all 1 ≤ i ≤ t, we have N * Ni. Hence for any 1 ≤
j ≤ t, there exists xj ∈ N\Nj . Set N ′ = (x1, ..., xt) ⊆ N and so we have
N ′/pN ′ =

⋃t
i=1((N

′ ∩ Ni) + pN ′)/pN ′. Since R/p is infinite, there exists
1 ≤ j ≤ t such that N ′/pN ′ = ((N ′ ∩ Nj) + pN ′)/pN ′. This implies that
N ′ = (N ′ ∩ Nj) + pN ′) ⊆ pM + Nj = Nj . Hence N ′ ⊆ Nj which is a
contradiction.

Proposition 3.10. Let R be a commutative ring and p ∈ Spec(R) such
that R/p infinite. Let M be an R-module and N1, ..., Nt be p-prime submodules
of M and N a submodule of M . Let x ∈ M such that N + Rx *

⋃t
i=1Ni.

Then there exists a ∈ N such that a+ x /∈
⋃t

i=1Ni.

Proof. It is certainly true for t = 1. Let t > 1 and the result has been
proved for t−1. If N ⊆

⋃t
i=1Ni then by Proposition 3.9 there exists 1 ≤ j ≤ t,

such that N ⊆ Nj . Without loss of generality we may assume that j = t. By

induction hypothesis there exists b ∈ N such that b + x /∈
⋃t−1

i=1Ni. Since

b + x /∈ Nt it follows that b + x /∈
⋃t

i=1Ni and so the assertion follows. Now

suppose that N *
⋃t

i=1Ni, then there exists c ∈ N\
⋃t

i=1Ni. In this case

if x /∈
⋃t

i=1Ni we set a = 0 and if x ∈ ∩ti=1Ni then we set a = c. Now
suppose that the above conditions are not true. We may assume that there
exists 1 ≤ k ≤ t − 1 such that x ∈ ∩ki=1Ni and x /∈

⋃t
i=k+1Ni. Since R/p

is infinite, so there exist t − k + 1 non-zero distinct elements in R/p such as
s1 + p, ..., st−k+1 + p. Set A = {sic + x|i = 1, ..., t − k + 1}. If there exists an
element sjc + x in A such that sjc + x 6∈

⋃t
i=1Ni then the proof is complete.

Otherwise, for each 1 ≤ l ≤ t−k+ 1, there is 1 ≤ j ≤ t such that slc+x ∈ Nj .
If 1 ≤ j ≤ k then sl ∈ p and so sl + p = p which is a contradiction. So
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k + 1 ≤ j ≤ t and hence A ⊆
⋃t

i=k+1Ni. Whence, according to the Dirichlet
drawer principle, there exists k + 1 ≤ j ≤ t and 1 ≤ l1 < l2 ≤ t − k + 1 such
that sl1c+ x and sl2c+ x belong to Nj . Therefore sl1 + p = sl2 + p which is a
contradiction. �
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