TOPICS IN PRIME SUBMODULES AND OTHER ASPECTS OF THE PRIME AVOIDANCE THEOREM

JAFAR A'ZAMI and MARYAM KHAJEPOUR

Communicated by Marian Aprodu

Abstract

Let R be a commutative ring with identity and M be a unital R-module. In this paper, we study some properties of prime submodules. Finally, we prove various statements about prime avoidance for modules.

AMS 2010 Subject Classification: Primary 16P60; Secondary: 16D80.
Key words: associated primes, height of a prime submodule, prime submodule.

1. INTRODUCTION

Throughout this paper, let R be a commutative ring (with identity) and M be a unital R-module. A proper submodule N of M with $N:_{R} M=\mathfrak{p}$ is said to be prime or \mathfrak{p}-prime (\mathfrak{p} a prime ideal of R) if $r x \in N$ for $r \in R$ and $x \in M$ implies that either $x \in N$ or $r \in \mathfrak{p}$. Another equivalent notion of prime submodules was first introduced and systematically studied in [4]. Prime submodules have been studied by several authors; see, for example, $[1,2,5,7-10,12]$. In Section 2, we study the chains of prime submodules and we shall improve the results given in [9]. The prime avoidance theorem states that if an ideal I of a ring is contained in the union of finite number of prime ideals, then I must be contained in one of them. This result's generalization for the non-commutative case has been proved in [6]. In Section 3, we generalize this theorem for modules in different states. Throughout, for any ideal \mathfrak{b} of R, the radical of \mathfrak{b}, denoted by $\operatorname{Rad}(\mathfrak{b})$, is defined to be the set $\left\{x \in R: x^{n} \in \mathfrak{b}\right.$ for some $n \in \mathbb{N}\}$ and we denote $\{\mathfrak{p} \in \operatorname{Spec}(R): \mathfrak{p} \supseteq \mathfrak{b}\}$ by $V(\mathfrak{b})$, where $\operatorname{Spec}(R)$ denotes the set of all prime ideals of R. The symbol \subseteq denotes containment and \subset denotes proper containment for sets. If N is a submodule of M, we write $N \leq M$. We denote the annihilator of a factor module M / N of M by $\left(N:_{R} M\right)$. The set of all maximal ideals of R is denoted by $\operatorname{Max}(R)$. For any ideal I of a ring R and for any R-module $M, \Gamma_{I}(M)$ is defined to be the submodule of M consisting of all elements annihilated by some power of I, i.e., $\bigcup_{n=1}^{\infty}\left(0:_{M} I^{n}\right)$. For any unexplained notation and terminology we refer the reader to [3,11] and [13].

2. CHAINS OF PRIME SUBMODULES

The results of this section are generalizations of some results given in [9] and [2]. First, we need the following definition.

Definition 2.1. Let R be a Noetherian ring and M be a finitely generated R-module. For each $\mathfrak{p} \in \operatorname{Spec}(R)$ we define $\lambda_{\mathfrak{p}}(M)$ as following:

$$
\lambda_{\mathfrak{p}}(M)=\operatorname{dim}_{R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}}\left(M_{\mathfrak{p}} / \mathfrak{p} M_{\mathfrak{p}}\right)
$$

Remark 2.2. Let R be a Noetherian ring and M be a finitely generated R-module. For each $\mathfrak{p} \in \operatorname{Spec}(R), \lambda_{\mathfrak{p}}(M)$ is the number of elements of any minimal generator set of the $R_{\mathfrak{p}}$-module $M_{\mathfrak{p}}$ and so $\lambda_{\mathfrak{p}}(M)<\infty$. Also we have $\lambda_{\mathfrak{p}}(M)=0$ if and only if $\mathfrak{p} \notin \operatorname{Supp}(M)$. Moreover, for any pair $\mathfrak{q} \subseteq \mathfrak{p}$ of prime ideals of R it is easy to see that $\lambda_{\mathfrak{q}}(M) \leq \lambda_{\mathfrak{p}}(M)$.

The following description of prime submodules will be useful in this paper.
Lemma 2.3. Let R be a Noetherian ring and $\mathfrak{p} \in \operatorname{Spec}(R)$. Let M be a finitely generated R-module and N be a proper submodule of M. Then the following are equivalent:
(i) N is \mathfrak{p}-prime submodule of M.
(ii) $\operatorname{Ass}_{R}(M / N)=\{\mathfrak{p}\}$ and $\left(N:_{R} M\right)=\mathfrak{p}$.
(iii) $\left(N:_{R} x\right)=\mathfrak{p}$, for each $x \in M \backslash N$.

Proof. Easily follows from definition.
The following theorem is the first main result of this paper and a generalization of [9, Lemma 2.6].

Theorem 2.4. Let R be a Noetherian ring and $\mathfrak{p} \in \operatorname{Supp}(M)$. Let M be a finitely generated R-module. Then the following statements hold:
(i) The length of any chain of \mathfrak{p}-prime submodules of M is bounded from above by $\lambda_{\mathfrak{p}}(M)-1$.
(ii) There is a chain of \mathfrak{p}-prime submodules of M, which is of length $\lambda_{\mathfrak{p}}(M)-1$. (iii) Any saturated maximal chain of \mathfrak{p}-prime submodules of M is of length $\lambda_{\mathfrak{p}}(M)-1$.

Proof. (i) Let $n:=\lambda_{\mathfrak{p}}(M)$. Then it follows from the hypothesis $\mathfrak{p} \in$ $\operatorname{Supp}(M)$ that $n>0$. Suppose the contrary be true. Then there exists a chain of \mathfrak{p}-prime submodules of M as:

$$
N_{0} \subset N_{1} \subset \cdots \subset N_{n}
$$

By Lemma 2.3 we have $\mathfrak{p} \in \operatorname{Supp}\left(M / N_{n}\right)$ and so $l_{R_{\mathfrak{p}}}\left(\left(M / N_{n}\right)_{\mathfrak{p}}\right) \geq 1$. On the other hand, since by assumption we have $\left(N_{0}:_{R} M\right)=\mathfrak{p}$, it follows that there is an exact sequence

$$
M / \mathfrak{p} M \rightarrow M / N_{0} \rightarrow 0
$$

Hence we have the following exact sequence:

$$
(M / \mathfrak{p} M)_{\mathfrak{p}} \rightarrow\left(M / N_{0}\right)_{\mathfrak{p}} \rightarrow 0
$$

Therefore, it follows from definition that

$$
l_{R_{\mathfrak{p}}}\left(\left(M / N_{0}\right)_{\mathfrak{p}}\right)=\operatorname{dim}_{R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}}\left(\left(M / N_{0}\right)_{\mathfrak{p}}\right) \leq \lambda_{\mathfrak{p}}(M)=n .
$$

On the other hand, for each $0 \leq i \leq n-1$ there is an exact sequence

$$
0 \rightarrow N_{i+1} / N_{i} \rightarrow M / N_{i}
$$

But, since $N_{i+1} / N_{i} \neq 0$, it follows from Lemma 2.3 and above exact sequence that

$$
\emptyset \neq \operatorname{Ass}_{R}\left(N_{i+1} / N_{i}\right) \subseteq \operatorname{Ass}_{R}\left(M / N_{i}\right)=\{\mathfrak{p}\}
$$

which implies that $\operatorname{Ass}_{R}\left(N_{i+1} / N_{i}\right)=\{\mathfrak{p}\}$. In particular $\mathfrak{p} \in \operatorname{Supp}\left(N_{i+1} / N_{i}\right)$, and so $\left(N_{i+1} / N_{i}\right)_{\mathfrak{p}} \neq 0$. Consequently, $l_{R_{\mathfrak{p}}}\left(\left(N_{i+1} / N_{i}\right)_{\mathfrak{p}}\right) \geq 1$. Whence, we have

$$
\begin{array}{r}
n=\Sigma_{i=0}^{n-1} 1 \leq \Sigma_{i=0}^{n-1} l_{R_{\mathfrak{p}}}\left(\left(N_{i+1} / N_{i}\right)_{\mathfrak{p}}\right)=l_{R_{\mathfrak{p}}}\left(\left(N_{n} / N_{0}\right)_{\mathfrak{p}}\right) \leq l_{R_{\mathfrak{p}}}\left(\left(M / N_{0}\right)_{\mathfrak{p}}\right)-1 \\
\leq n-1,
\end{array}
$$

which is a contradiction.
(ii) Let $\lambda_{\mathfrak{p}}(M)=n$. Then $n>0$. As $\mathfrak{p} \in \operatorname{Supp}(M)$ it follows that $\left(\mathfrak{p} M:_{R} M\right)=\mathfrak{p}$. Therefore, $\mathfrak{p} \in \operatorname{Ass}_{R}(M / \mathfrak{p} M)$. Let $N_{0}=\mathfrak{p} M$, whenever $\operatorname{Ass}_{R}(M / \mathfrak{p} M)=\{\mathfrak{p}\}$. In other case, suppose

$$
\operatorname{Ass}_{R}(M / \mathfrak{p} M) \backslash\{\mathfrak{p}\}:=\left\{\mathfrak{q}_{1}, \ldots, q_{k}\right\}
$$

Let $I=\cap_{j=1}^{k} \mathfrak{q}_{j}$ and $N_{0} / \mathfrak{p} M:=\Gamma_{I}(M / \mathfrak{p} M)$. Then we have

$$
\operatorname{Ass}_{R}\left(M / N_{0}\right)=\operatorname{Ass}_{R}\left((M / \mathfrak{p} M) / \Gamma_{I}(M / \mathfrak{p} M)\right)=\operatorname{Ass}_{R}(M / \mathfrak{p} M) \backslash V(I)
$$

But, since for each $1 \leq j \leq k$ we have $\operatorname{Ann}_{R}(M / \mathfrak{p} M)=\mathfrak{p} \subseteq \mathfrak{q}_{j}$ and $\mathfrak{q}_{j} \neq \mathfrak{p}$, it follows that $\mathfrak{p} \notin V\left(\mathfrak{q}_{j}\right)$. Therefore

$$
\mathfrak{p} \notin \bigcup_{j=1}^{k} V\left(\mathfrak{q}_{j}\right)=V\left(\cap_{j=1}^{k} \mathfrak{q}_{j}\right)=V(I)
$$

Therefore,

$$
\operatorname{Ass}_{R}\left(M / N_{0}\right)=\operatorname{Ass}_{R}(M / \mathfrak{p} M) \backslash V(I)=\{\mathfrak{p}\}
$$

which results $\operatorname{Ann}_{R}\left(M / N_{0}\right) \subseteq \mathfrak{p}$. Therefore, we have $\mathfrak{p}=\left(\mathfrak{p} M:_{R} M\right) \subseteq\left(N_{0}:_{R}\right.$ $M) \subseteq \mathfrak{p}$ and so $\left(N_{0}:_{R} M\right)=\mathfrak{p}$. Also as

$$
\operatorname{Ass}_{R}\left(N_{0} / \mathfrak{p} M\right)=\operatorname{Ass}_{R}\left(\Gamma_{I}(M / \mathfrak{p} M)\right)=\operatorname{Ass}_{R}(M / \mathfrak{p} M) \cap V(I)
$$

it follows that $\mathfrak{p} \notin \operatorname{Supp}\left(N_{0} / \mathfrak{p} M\right)$ and hence $\left(N_{0} / \mathfrak{p} M\right)_{\mathfrak{p}}=0$. Now in both cases it follows from Lemma 2.3 that N_{0} is a \mathfrak{p}-prime submodule of M. We shall construct the chain $N_{0} \subset \cdots \subset N_{n-1}$ of \mathfrak{p}-prime submodules of M such
that $l_{R_{\mathfrak{p}}}\left(\left(N_{i+1} / N_{i}\right)_{\mathfrak{p}}\right)=1$, for each $0 \leq i \leq n-2$, by an inductive process. To do this, assume that $0 \leq j<n-1$, and that we have already constructed $N_{0} \subset N_{1} \subset \cdots \subset N_{j}$. We show how to construct N_{j+1}. To do this, since by definition $M \neq N_{j}$ it follows that there is an element $x \in M \backslash N_{j}$. Let $L:=R x+N_{j}$. In view of Lemma 2.3 we have $L / N_{j} \cong R / \mathfrak{p}$. In particular, we have $l_{R_{\mathfrak{p}}}\left(\left(L / N_{j}\right)_{\mathfrak{p}}\right)=1$. By inductive hypothesis we have

$$
l_{R_{\mathfrak{p}}}\left((M / L)_{\mathfrak{p}}\right)=l_{R_{\mathfrak{p}}}\left(\left(M / N_{0}\right)_{\mathfrak{p}}\right)-l_{R_{\mathfrak{p}}}\left(\left(L / N_{0}\right)_{\mathfrak{p}}\right)=
$$

$l_{R_{\mathfrak{p}}}\left((M / \mathfrak{p} M)_{\mathfrak{p}}\right)-\left[l_{R_{\mathfrak{p}}}\left(\left(L / N_{j}\right)_{\mathfrak{p}}\right)+\Sigma_{i=0}^{j-1} l_{R_{\mathfrak{p}}}\left(\left(N_{i+1} / N_{i}\right)_{\mathfrak{p}}\right)\right]=n-(1+j)=n-j-1>0$.
Therefore, $(M / L)_{\mathfrak{p}} \neq 0$. Now it is easy to see that $\left(L:_{R} M\right)=\mathfrak{p}$, and so $\mathfrak{p} \in \operatorname{Ass}_{R}(M / L)$. Let $N_{j+1}=L$, whenever $\operatorname{Ass}_{R}(M / L)=\{\mathfrak{p}\}$. In other case suppose

$$
\operatorname{Ass}_{R}(M / L) \backslash\{\mathfrak{p}\}:=\left\{\mathfrak{q}_{1}^{\prime}, \ldots, q_{t}^{\prime}\right\}
$$

Let $J=\cap_{i=1}^{t} \mathfrak{q}_{i}^{\prime}$ and $N_{j+1} / L:=\Gamma_{J}(M / L)$. Then we have

$$
\operatorname{Ass}_{R}\left(M / N_{j+1}\right)=\operatorname{Ass}_{R}\left((M / L) / \Gamma_{J}(M / L)\right)=\operatorname{Ass}_{R}(M / L) \backslash V(J)
$$

But, since for each $1 \leq i \leq t$ we have $\operatorname{Ann}_{R}(M / L)=\mathfrak{p} \subseteq \mathfrak{q}_{i}^{\prime}$ and $\mathfrak{q}_{i}^{\prime} \neq \mathfrak{p}$, it follows that $\mathfrak{p} \notin V\left(\mathfrak{q}_{i}^{\prime}\right)$. Therefore,

$$
\operatorname{Ass}_{R}\left(M / N_{j+1}\right)=\operatorname{Ass}_{R}(M / L) \backslash V(J)=\{\mathfrak{p}\}
$$

which results $\operatorname{Ann}_{R}\left(M / N_{j+1}\right) \subseteq \mathfrak{p}$. Therefore, we have $\mathfrak{p}=\left(L:_{R} M\right) \subseteq$ $\left(N_{j+1}:_{R} M\right) \subseteq \mathfrak{p}$ and so $\left(N_{j+1}:_{R} M\right)=\mathfrak{p}$. Also as

$$
\operatorname{Ass}_{R}\left(N_{j+1} / L\right)=\operatorname{Ass}_{R}\left(\Gamma_{J}(M / L)\right)=\operatorname{Ass}_{R}(M / L) \cap V(J)
$$

it follows that $\mathfrak{p} \notin \operatorname{Supp}\left(N_{j+1} / L\right)$ and hence $\left(N_{j+1} / L\right)_{\mathfrak{p}}=0$. Whence,

$$
l_{R_{\mathfrak{p}}}\left(\left(N_{j+1} / N_{j}\right)_{\mathfrak{p}}\right)=l_{R_{\mathfrak{p}}}\left(\left(N_{j+1} / L\right)_{\mathfrak{p}}\right)+l_{R_{\mathfrak{p}}}\left(\left(L / N_{j}\right)_{\mathfrak{p}}\right)=1+0=1 .
$$

Now in both cases it follows from Lemma 2.3 that N_{j+1} is a \mathfrak{p}-prime submodule of M such that $l_{R_{\mathfrak{p}}}\left(\left(N_{j+1} / N_{j}\right)_{\mathfrak{p}}\right)=1$. This completes the inductive step in the construction.
(iii) Let $\lambda_{\mathfrak{p}}(M)=n$ and $N_{0} \subset \cdots \subset N_{k}$ be a saturated maximal chain of \mathfrak{p}-prime submodules of M. We show that $k=n-1$. By (i) we have $k \leq n-1$. Since by assumption this chain is maximal it follows from the proof of (ii) that $l_{R_{\mathfrak{p}}}\left(\left(M / N_{k}\right)_{\mathfrak{p}}\right)=1$. Now suppose the contrary be true. Then the set

$$
E:=\{N: N \text { is a } \mathfrak{p} \text {-prime submodule of } M\}
$$

has a unique minimal element $N^{\prime}:=\cap_{N \in E} N$ with respect to $" \subseteq "$. So it follows from hypothesis that $N_{0}=N^{\prime}$. Also using (i) it follows from the proof of (ii) that $\left(N_{0} / \mathfrak{p} M\right)_{\mathfrak{p}}=0$. Therefore,

$$
l_{R_{\mathfrak{p}}}\left(\left(N_{k} / N_{0}\right)_{\mathfrak{p}}\right)=n-1
$$

Now suppose the contrary be true and $k<n-1$. Then we deduce that there is $0 \leq j \leq k-1$, such that $l_{R_{\mathfrak{p}}}\left(\left(N_{j+1} / N_{j}\right)_{\mathfrak{p}}\right) \geq 2$. Then there is $x \in N_{j+1} \backslash N_{j}$. By Lemma 2.3 we have $\left(N_{j}+R x\right) / N_{j} \cong R / \mathfrak{p}$ and so $l_{R_{\mathfrak{p}}}\left(\left(\left(N_{j}+R x\right) / N_{j}\right)_{\mathfrak{p}}\right)=1$. Let $L:=N_{j}+R x$. Since N_{j+1} / L is the unique minimal element of the set

$$
\{N / L: N / L \text { is a } \mathfrak{p} \text {-prime submodule of } M / L\}
$$

again using (i) it follows from the proof of (ii) that $\left(N_{j+1} / L\right)_{\mathfrak{p}}=0$. Thus we have

$$
2 \leq l_{R_{\mathfrak{p}}}\left(\left(N_{j+1} / N_{j}\right)_{\mathfrak{p}}\right)=l_{R_{\mathfrak{p}}}\left(\left(N_{j+1} / L\right)_{\mathfrak{p}}\right)+l_{R_{\mathfrak{p}}}\left(\left(L / N_{j}\right)_{\mathfrak{p}}\right)=0+1=1,
$$

which is a contradiction. This completes the proof.
Now we need the following definitions.
Definition 2.5. Let R be a Noetherian ring and M be a finitely generated R-module. For each \mathfrak{p}-prime submodule N of M we define \mathfrak{p}-height of N as: $\mathfrak{p}-\operatorname{ht}(N):=\sup \left\{k \in \mathbb{N}_{0}: \exists N_{0} \subset \cdots \subset N_{k}=N\right.$, with $\left.N_{i} \in \operatorname{Spec}_{R}^{\mathfrak{p}}(M), \forall i\right\}$, where $\operatorname{Spec}_{R}^{\mathfrak{p}}(M)$ denotes to the set of all \mathfrak{p}-prime submodules of M as an R-module.

Definition 2.6. Let R be a Noetherian ring and M be a finitely generated R-module. For each \mathfrak{p}-prime submodule N of M we define height of N as:

$$
\operatorname{ht}(N):=\sup \left\{k \in \mathbb{N}_{0}: \exists N_{0} \subset \cdots \subset N_{k}=N, \text { with } N_{i} \in \operatorname{Spec}_{R}(M), \forall i\right\}
$$

where $\operatorname{Spec}_{R}(M)$ denotes to the set of all prime submodules of M as an R module.

Definition 2.7. Let R be a Noetherian ring and M be a finitely generated R-module. Then we define $\operatorname{dimSpec}_{R}(M)$ as:

$$
\operatorname{dimSpec}_{R}(M):=\sup \left\{\operatorname{ht}(N): N \in \operatorname{Spec}_{R}(M)\right\}
$$

The following result is an immediate consequence of Theorem 2.4.
Corollary 2.8. Let R be a Noetherian ring and M be a finitely generated R-module and N be a \mathfrak{p}-prime submodule of M. Then

$$
\mathfrak{p}-\operatorname{ht}(N)=l_{R_{\mathfrak{p}}}\left((N / \mathfrak{p} M)_{\mathfrak{p}}\right)=\operatorname{dim}_{R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}}\left(N_{\mathfrak{p}} / \mathfrak{p} M_{\mathfrak{p}}\right)
$$

Proof. Let $k:=\mathfrak{p}-\mathrm{ht}(N)$. Then there is saturated chain of \mathfrak{p}-prime submodules of M as $N_{0} \subset \cdots \subset N_{k}=N$. By the proof of Theorem 2.4 this chain can be extended to a maximal saturated chain of \mathfrak{p}-prime submodules of M as

$$
N_{0} \subset \cdots \subset N_{k}=N \subset \cdots \subset N_{n-1}
$$

Where $n=\lambda_{\mathfrak{p}}(M)$. Then by the proof of Theorem 2.4 we have $\left(N_{0} / \mathfrak{p} M\right)_{\mathfrak{p}}=0$ and $l_{R_{\mathfrak{p}}}\left(\left(N_{i+1} / N_{i}\right)_{\mathfrak{p}}\right)=1$, for each $0 \leq i \leq n-2$. Now clearly the assertion holds.

As an application of Theorem 2.4 we prove the following.
Theorem 2.9. Let R be a Noetherian ring and M be a finitely generated R-module and N be a \mathfrak{p}-prime submodule of M. Then

$$
\operatorname{ht}(N) \leq\left(\lambda_{\mathfrak{p}}(M)\right)\left(\operatorname{dim}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)\right)<\infty
$$

Proof. Let $N_{k} \subset \cdots \subset N_{0}=N$ be a chain of prime submodules of M, such that for each $0 \leq i \leq k, N_{i}$ is \mathfrak{p}_{i}-prime, where $\mathfrak{p}_{0}=\mathfrak{p}$. Then it easily follows from definition that

$$
\mathfrak{p}_{k} \subseteq \cdots \subseteq \mathfrak{p}_{0}=\mathfrak{p}
$$

Therefore, the set $\left\{\mathfrak{p}_{i}\right\}_{i=0}^{k}$ has at most $\operatorname{dim}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)$ elements. (Note that $\mathfrak{p}_{i} \in$ $\operatorname{Supp}(M)$, for all $0 \leq i \leq k)$. Let

$$
\left\{\mathfrak{p}_{i}\right\}_{i=0}^{k}=\left\{\mathfrak{q}_{0}=\mathfrak{p}, \ldots, \mathfrak{q}_{t}\right\}
$$

where $t \leq \operatorname{dim}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)$ and $\mathfrak{p}=\mathfrak{q}_{0} \supset \cdots \supset \mathfrak{q}_{t}$. Let $A_{j}:=\operatorname{Spec}_{R}^{\mathfrak{q}_{j}}(M) \cap\left\{N_{i}\right\}_{i=0}^{k}$, for each $0 \leq j \leq t$. Then by Theorem 2.4 the set A_{j} has at most $\lambda_{\mathfrak{q}_{j}}(M)$ elements. But $\lambda_{\mathfrak{q}_{j}}(M) \leq \lambda_{\mathfrak{p}}(M)$, because $\mathfrak{q}_{j} \subseteq \mathfrak{p}$. Therefore as

$$
\bigcup_{j=1}^{t} A_{j}=\left\{N_{i}\right\}_{i=0}^{k}
$$

it follows that $k \leq t \lambda_{\mathfrak{p}}(M) \leq\left(\operatorname{dim}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)\right) \lambda_{\mathfrak{p}}(M)$. Which implies that

$$
\operatorname{ht}(N) \leq\left(\lambda_{\mathfrak{p}}(M)\right)\left(\operatorname{dim}_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)\right)<\infty
$$

as required.

3. PRIME AVOIDANCE THEOREM

The results of this section improve some well known results given in [7].
Proposition 3.1. Let R be any ring and M be a non-zero R-module and N be a submodule of M. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct prime ideals of R. Let for each $1 \leq i \leq n$, N_{i} be a \mathfrak{p}_{i}-prime submodule of M. If $N \subseteq \cup_{i=1}^{n} N_{i}$, then $N \subseteq N_{j}$ for some $1 \leq j \leq n$.

Proof. We use induction on n. The case $n=2$ is easy. Now let $n \geq 3$ and the case $n-1$ is settled. By definition for each $1 \leq i \leq n$ we have $\mathfrak{p}_{i}=\left(N_{i}:_{R} M\right)$. From the hypothesis $N \subseteq \cup_{i=1}^{n} N_{i}$ it follows that $N=$
$\cup_{i=1}^{n}\left(N_{i} \cap N\right)$. Now let the contrary be true. Then $N \nsubseteq N_{i}$ and hence $\left(N_{i} \cap\right.$ $N) \neq N$, for any $1 \leq i \leq n$. Also from the inductive hypothesis it follows that $N \neq \cup_{i \in(\{1, \ldots, n\} \backslash\{k\})}\left(N_{i} \cap N\right)$ for each $1 \leq k \leq n$ and so $\left(N_{k} \cap N\right) \nsubseteq$ $\cup_{i \in(\{1, \ldots, n\} \backslash\{k\})}\left(N_{i} \cap N\right)$. Let \mathfrak{q} be a minimal element of the set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ with respect to " \subseteq ". Then $\mathfrak{p}_{i} \nsubseteq \mathfrak{q}$ for each $\mathfrak{p}_{i} \in\left(\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\} \backslash\{q\}\right)$. Without loss of generality we may assume that $\mathfrak{q}=\mathfrak{p}_{n}$. Let $J_{i}:=\left(N_{i}:_{R} N\right)$, for all $i=1, \ldots, n$. Then from the definition it follows that $\mathfrak{p}_{i} \subseteq J_{i}$, for all $i=1, \ldots, n$. On the other hand, for each $x \in N$ and $r \in R$, if $r x \in\left(N_{i} \cap N\right)$ and $x \notin\left(N_{i} \cap N\right)$, then $r x \in N_{i}$ and $x \notin N_{i}$. Therefore it follows from the definition that $r \in \mathfrak{p}_{i}$. So $r M \subseteq N_{i}$, and consequently, $r N \subseteq\left(N_{i} \cap N\right)$. As $\left(N_{i} \cap N\right) \neq N$ it follows that there exists an element $y \in\left(N \backslash\left(N_{i} \cap N\right)\right)$. Now for each $s \in J_{i}$ we have $s y \in\left(N_{i} \cap N\right) \subseteq N_{i}$ and $y \notin N_{i}$. So it follows from the definition that $s \in \mathfrak{p}_{i}$. Therefore, $\left(N_{i}:_{R} N\right)=J_{i}=\mathfrak{p}_{i}=\left(N_{i}:_{R} M\right)$. But it is easy to see that $\left(N_{i}:_{R} N\right)=\left(\left(N_{i} \cap N\right):_{R} N\right)$. Thus for each $1 \leq i \leq n, N_{i} \cap N$ is \mathfrak{p}_{i}-prime submodule of N. Therefore without loss of generality we may assume that $N=$ $M=\cup_{i=1}^{n} N_{i}$ and $N_{n} \nsubseteq \cup_{i=1}^{n-1} N_{i}$. Next let $T:=\cap_{i=1}^{n} N_{i}$. Then it is not difficult to see that for each $1 \leq i \leq n, N_{i} / T$ is \mathfrak{p}_{i}-prime submodule of M / T and $M / T=$ $\cup_{i=1}^{n} N_{i} / T$. Therefore, without loss of generality we may assume $M=\cup_{i=1}^{n} N_{i}$ and $\cap_{i=1}^{n} N_{i}=0$ and $N_{n} \nsubseteq \cup_{i=1}^{n-1} N_{i}$. Then there is an exact sequence $0 \rightarrow M \rightarrow$ $\oplus_{i=1}^{n} M / N_{i}$, which implies that $\cap_{i=1}^{n} \mathfrak{p}_{i}=\operatorname{Ann}_{R}\left(\oplus_{i=1}^{n} M / N_{i}\right) \subseteq \operatorname{Ann}_{R}(M)$. On the other hand for each $1 \leq i \leq n$ we have $\operatorname{Ann}_{R}(M) \subseteq\left(N_{i}:_{R} M\right)=\mathfrak{p}_{i}$. So $\operatorname{Ann}_{R}(M) \subseteq \cap_{i=1}^{n} \mathfrak{p}_{i}$. Hence $\operatorname{Ann}_{R}(M)=\cap_{i=1}^{n} \mathfrak{p}_{i}$. Now if we have $\cap_{i=1}^{n-1} N_{i}=0$, then there is an exact sequence $0 \rightarrow M \xrightarrow{\rightarrow} \oplus_{i=1}^{n-1} M / N_{i}$, which implies that $\cap_{i=1}^{n-1} \mathfrak{p}_{i}=\operatorname{Ann}_{R}\left(\oplus_{i=1}^{n-1} M / N_{i}\right) \subseteq \operatorname{Ann}_{R}(M)=\cap_{i=1}^{n} \mathfrak{p}_{i} \subseteq \mathfrak{p}_{n}$. So $\mathfrak{p}_{t} \subseteq \mathfrak{p}_{n}$, for some $1 \leq t \leq n-1$, which is a contradiction. So $\cap_{i=1}^{n-1} N_{i} \neq 0$. Then there is an element $0 \neq a \in \cap_{i=1}^{n-1} N_{i}$. As $\cap_{i=1}^{n} N_{i}=0$, it follows that $a \notin N_{n}$. On the other hand since $N_{n} \nsubseteq \cup_{i=1}^{n-1} N_{i}$, it follows that there is an element $b \in N_{n}$ such that $b \notin \cup_{i=1}^{n-1} N_{i}$. Now as $a+b \in \cup_{i=1}^{n} N_{i}$, it follows that $a+b \in N_{k}$ for some $1 \leq k \leq n$, which is a contradiction. This completes the inductive step.

Remark. Proposition 3.1 does not hold in general. For example, let $p \geq 2$ be a prime number and $2 \leq n \in \mathbb{N}$. Let $R=\mathbb{Z}_{p}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$ and $M=\oplus_{i=1}^{n} \mathbb{Z}_{p}$. Let

$$
\mathfrak{A}=\{N: N=R x, \text { for some } 0 \neq x \in M\} .
$$

Then \mathfrak{A} is a finite set that has at most $2^{p^{n}}$ elements and for each $N \in \mathfrak{A}, N$ is a $\{\overline{0}\}$-prime submodule of M such that $M \subseteq \cup_{N \in \mathfrak{A}} N$. But $M \nsubseteq N$ for any $N \in \mathfrak{A}$.

The following proposition is a generalization of [11, Ex. 16.8].
Proposition 3.2. Let R be a ring, M a non-zero R-module, N a submodule of M and $x \in M$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be distinct prime ideals of R. Let for
each $1 \leq i \leq n$, N_{i} be a \mathfrak{p}_{i}-prime submodule of M. If $N+R x \nsubseteq \cup_{i=1}^{n} N_{i}$, then there exists $a \in N$ such that $a+x \notin \cup_{i=1}^{n} N_{i}$.

Proof. We use induction on n. Let $n=1$. If $x \in N_{1}$ then $N \nsubseteq N_{1}$. So there is $a \in N \backslash N_{1}$ and it is easy to see that $a+x \notin N_{1}$. But if $x \notin N_{1}$, then by choosing $a=0 \in N$ the assertion holds. Now suppose $n \geq 2$ and the case $n-1$ is settled. Let \mathfrak{q} be a minimal element of the set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ with respect to $" \subseteq "$. Then $\mathfrak{p}_{i} \nsubseteq \mathfrak{q}$ for each $\mathfrak{p}_{i} \in\left(\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\} \backslash\{q\}\right)$. Without loss of generality we may assume that $\mathfrak{q}=\mathfrak{p}_{n}$. Then it is easy to see that $\cap_{i=1}^{n-1} \mathfrak{p}_{i} \nsubseteq \mathfrak{p}_{n}$. By inductive hypothesis there is an element $b \in N$ such that $b+x \notin \cup_{i=1}^{n-1} N_{i}$. So the assertion holds for $a=b$, whenever $b+x \notin N_{n}$. So we may assume $b+x \in N_{n}$. Then we claim that $N \nsubseteq N_{n}$. Because, if $N \subseteq N_{n}$ then $x \in N_{n}$ and so $N+R x \subseteq N_{n} \subseteq \cup_{i=1}^{n} N_{i}$, which is a contradiction. Therefore, there exists an element $c \in N \backslash N_{n}$. As $\cap_{i=1}^{n-1} \mathfrak{p}_{i} \nsubseteq \mathfrak{p}_{n}$ it follows that there exists an element $r \in\left(\cap_{i=1}^{n-1} \mathfrak{p}_{i}\right) \backslash \mathfrak{p}_{n}$. Then it easily follows from the definition of the \mathfrak{p}_{n}-prime submodule that $r c \notin N_{n}$. Moreover, since $r \in \cap_{i=1}^{n-1} \mathfrak{p}_{i}$ it follows from the definition that $r c \in \cap_{i=1}^{n-1} N_{i}$. Now it is easy to see that $r c+b+x \notin \cup_{i=1}^{n} N_{i}$. Therefore, the assertion holds for $a:=r c+b \in N$. This completes the induction step.

Remark. Proposition 3.2 does not hold in general. For example, let $p \geq 2$ be a prime number and $R=\mathbb{Z}_{p}=\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$ and $M=\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$. Let $N=(\overline{1}, \overline{0}) \mathbb{Z}_{p}, x=(\overline{0}, \overline{1})$ and $N_{i}=(\bar{i}, \overline{1}) \mathbb{Z}_{p}$, for $i=0, \ldots, p-1$. Then N_{i} is $\{\overline{0}\}$-prime submodule of the R-module M, for all $i=0, \ldots, p-1$. Also as $(\overline{1}, \overline{0}) \in N+R x$ and $(\overline{1}, \overline{0}) \notin \cup_{i=0}^{p-1} N_{i}$, it follows that $N+R x \nsubseteq \cup_{i=0}^{p-1} N_{i}$. But for any $a \in N$ we have $a+x \in \cup_{i=0}^{p-1} N_{i}$.

Now we give other aspects of prime avoidance Theorem in different states.
Proposition 3.3. Let R be a ring, M a non-zero R-module, N a submodule of M and $k \in \mathbb{N}$. Let for each $1 \leq i \leq k, n_{i} \in \mathbb{N}$ and for $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$, the ideals $\mathfrak{p}_{i, j}$ be distinct elements of $\operatorname{Spec}(R)$. Let for each $1 \leq i \leq k$ and $1 \leq j \leq n_{i}, N_{i, j}$ be a $\mathfrak{p}_{i, j}$-prime submodule of M. Let for each $1 \leq i \leq k, N_{i}=\cap_{j=1}^{n_{i}} N_{i, j}$. If $N \subseteq \cup_{i=1}^{k} N_{i}$, then $N \subseteq N_{t}$ for some $1 \leq t \leq k$.

Proof. Let the contrary be true. Then for each $1 \leq i \leq k$ we have $N \nsubseteq N_{i}$. Therefore there exists $1 \leq s_{i} \leq n_{i}$ such that $N \nsubseteq N_{i, s_{i}}$. But in this situation we have

$$
N \subseteq \cup_{i=1}^{k} N_{i} \subseteq \cup_{i=1}^{k} N_{i, s_{i}}
$$

Consequently, it follows from Proposition 3.1 that there is $1 \leq l \leq k$, such that $N \subseteq N_{l, s_{l}}$, which is a contradiction.

Proposition 3.4. Let R be a ring, M a non-zero R-module, N a submodule of $M, x \in M$ and $k \in \mathbb{N}$. Let for each $1 \leq i \leq k, n_{i} \in \mathbb{N}$ and for $1 \leq i \leq k$ and $1 \leq j \leq n_{i}$, the ideals $\mathfrak{p}_{i, j}$ be distinct elements of $\operatorname{Spec}(R)$. Let for each $1 \leq i \leq k$ and $1 \leq j \leq n_{i}, N_{i, j}$ be a $\mathfrak{p}_{i, j}$-prime submodule of M. Let for each $1 \leq i \leq k, N_{i}=\cap_{j=1}^{n_{i}} N_{i, j}$. If $N+R x \nsubseteq \cup_{i=1}^{k} N_{i}$, then there exists $a \in N$ such that $a+x \notin \cup_{i=1}^{k} N_{i}$.

Proof. For each $1 \leq i \leq k$ we have $N+R x \nsubseteq N_{i}$. Therefore there exists $1 \leq s_{i} \leq n_{i}$ such that $N+R x \nsubseteq N_{i, s_{i}}$. But in this situation using Proposition 3.1 we have

$$
N+R x \nsubseteq \cup_{i=1}^{k} N_{i, s_{i}} .
$$

Consequently, it follows from Proposition 3.2 that there is $a \in N$, such that $a+x \notin \cup_{i=1}^{k} N_{i, s_{i}}$. But since $\cup_{i=1}^{k} N_{i} \subseteq \cup_{i=1}^{k} N_{i, s_{i}}$, it follows that $a+x \notin \cup_{i=1}^{k} N_{i}$, as required.

Proposition 3.5. Let R be a ring, I an ideal of R and $x \in R$. Let $J_{1}, \ldots, J_{n},(n \geq 1)$ be ideals of R such that for each $1 \leq i \leq n$ we have $\operatorname{Rad}\left(J_{i}\right)=$ J_{i}. If $I+R x \nsubseteq \cup_{i=1}^{n} J_{i}$, then there exists an element $a \in I$ such that $a+x \notin$ $\cup_{i=1}^{n} J_{i}$.

Proof. For each $1 \leq i \leq n$ we have $I+R x \nsubseteq J_{i}$. Therefore for each $1 \leq i \leq n$, since $J_{i}=\cap_{\mathfrak{q} \in V\left(J_{i}\right)} \mathfrak{q}$ it follows that there exists $\mathfrak{p}_{i} \in V\left(J_{i}\right)$ such that $I+R x \nsubseteq \mathfrak{p}_{i}$. But in this situation we have $I+R x \nsubseteq \cup_{i=1}^{n} \mathfrak{p}_{i}$. Consequently, it follows from [11, Ex. 16.8] that there is $a \in I$, such that $a+x \notin \cup_{i=1}^{n} \mathfrak{p}_{i}$. But since $\cup_{i=1}^{n} J_{i} \subseteq \cup_{i=1}^{n} \mathfrak{p}_{i}$, it follows that $a+x \notin \cup_{i=1}^{n} J_{i}$, as required.

Before bringing the next result we need the following well known lemma.
Lemma 3.6. Let (R, \mathfrak{m}) be a commutative local ring such that R / \mathfrak{m} is infinite. Let M be an R-module and N_{1}, \ldots, N_{t} be submodules of M such that $M=\bigcup_{i=1}^{t} N_{i}$. Then there exists $1 \leq j \leq t, M=N_{i}$

Proof. The assertion follows using NAK Lemma.
Proposition 3.7. Let R be a commutative ring, M be an R-module and N_{1}, \ldots, N_{t} be submodules of M such that $M=\bigcup_{i=1}^{t} N_{i}$. Then $\bigcap_{i=1}^{t} \operatorname{Supp} M / N_{i} \subseteq$ $\operatorname{Max}(R)$.

Proof. Suppose the contrary be true. Then there exists $\mathfrak{p} \in\left(\bigcap_{i=1}^{t}\right.$ Supp M $\left./ N_{i}\right) \backslash \operatorname{Max}(R)$. So R / \mathfrak{p} is an integral domain but not a field and therefore $R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}$ is infinite. By hypothesis and Proposition 3.6 there exists $1 \leq j \leq t$ such that $\left(M / N_{j}\right)_{\mathfrak{p}}=0$ and so $\mathfrak{p} \notin \operatorname{Supp} M / N_{j}$ which is a contradiction.

Corollary 3.8. Let R be a commutative ring and $\mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Max}(R)$. Let M be an R-module and N_{1}, \ldots, N_{t} be \mathfrak{p}-prime submodules of M and N a
submodule of M such that $N \subseteq \bigcup_{i=1}^{t} N_{i}$. Then there exists $1 \leq j \leq t$ such that $N \subseteq N_{j}$.

Proof. Let for any $1 \leq j \leq t, N \nsubseteq N_{j}$. Then for all $1 \leq j \leq t$, we have $N \cap N_{j} \neq N$. Since $\mathfrak{p} M \subseteq N_{j}$, it follows that $\mathfrak{p} N \subseteq N_{j}$ and so $\mathfrak{p} N \subseteq N \cap N_{j}$. Hence $\mathfrak{p} \subseteq\left(N \cap N_{j}: N\right)$. On the other hand there exists $x \in N \backslash N \cap N_{j}$ and so $x \notin N_{i}$. Let $r \in\left(N_{i} \cap N: N\right)$. Then $r x \in N_{i} \cap N \subseteq N_{i}$ and $x \notin N_{i}$, so $r \in\left(N_{i}: M\right)=\mathfrak{p}$. Consequently $\left(N_{i} \cap N: N\right) \subseteq \mathfrak{p}$ and so $\left(N_{i} \cap N: N\right)=\mathfrak{p}$. Now it is easy to show that $N_{i} \cap N$ is a \mathfrak{p}-prime submodule of N. Since $N \subseteq \bigcup_{i=1}^{t} N_{i}$ it follows that $N=\bigcup_{i=1}^{t}\left(N \cap N_{i}\right)$. But in this case $\mathfrak{p} \in \bigcap_{i=1}^{t} \operatorname{Supp}\left(N / N_{i} \cap N\right)$. Since $\mathfrak{p} \in \operatorname{Spec}(R) \backslash \operatorname{Max}(R)$ this is impossible by Proposition 3.7.

Proposition 3.9. Let R be a commutative ring and $\mathfrak{p} \in \operatorname{Spec}(R)$ such that R / \mathfrak{p} infinite. Let M be an R-module and N_{1}, \ldots, N_{t} be \mathfrak{p}-prime submodules of M and N a submodule of M such that $N \subseteq \bigcup_{i=1}^{t} N_{i}$. Then there exists $1 \leq j \leq t$ such that $N \subseteq N_{j}$.

Proof. If $\mathfrak{p} \notin \operatorname{Max}(R)$, the assertion follows from Corollary 3.8. So let $\mathfrak{p} \in \operatorname{Max}(R)$ and for all $1 \leq i \leq t$, we have $N \nsubseteq N_{i}$. Hence for any $1 \leq$ $j \leq t$, there exists $x_{j} \in N \backslash N_{j}$. Set $N^{\prime}=\left(x_{1}, \ldots, x_{t}\right) \subseteq N$ and so we have $N^{\prime} / \mathfrak{p} N^{\prime}=\bigcup_{i=1}^{t}\left(\left(N^{\prime} \cap N_{i}\right)+\mathfrak{p} N^{\prime}\right) / \mathfrak{p} N^{\prime}$. Since R / \mathfrak{p} is infinite, there exists $1 \leq j \leq t$ such that $N^{\prime} / \mathfrak{p} N^{\prime}=\left(\left(N^{\prime} \cap N_{j}\right)+\mathfrak{p} N^{\prime}\right) / \mathfrak{p} N^{\prime}$. This implies that $\left.N^{\prime}=\left(N^{\prime} \cap N_{j}\right)+\mathfrak{p} N^{\prime}\right) \subseteq \mathfrak{p} M+N_{j}=N_{j}$. Hence $N^{\prime} \subseteq N_{j}$ which is a contradiction.

Proposition 3.10. Let R be a commutative ring and $\mathfrak{p} \in \operatorname{Spec}(R)$ such that R / \mathfrak{p} infinite. Let M be an R-module and N_{1}, \ldots, N_{t} be \mathfrak{p}-prime submodules of M and N a submodule of M. Let $x \in M$ such that $N+R x \nsubseteq \bigcup_{i=1}^{t} N_{i}$. Then there exists $a \in N$ such that $a+x \notin \bigcup_{i=1}^{t} N_{i}$.

Proof. It is certainly true for $t=1$. Let $t>1$ and the result has been proved for $t-1$. If $N \subseteq \bigcup_{i=1}^{t} N_{i}$ then by Proposition 3.9 there exists $1 \leq j \leq t$, such that $N \subseteq N_{j}$. Without loss of generality we may assume that $j=t$. By induction hypothesis there exists $b \in N$ such that $b+x \notin \bigcup_{i=1}^{t-1} N_{i}$. Since $b+x \notin N_{t}$ it follows that $b+x \notin \bigcup_{i=1}^{t} N_{i}$ and so the assertion follows. Now suppose that $N \nsubseteq \bigcup_{i=1}^{t} N_{i}$, then there exists $c \in N \backslash \bigcup_{i=1}^{t} N_{i}$. In this case if $x \notin \bigcup_{i=1}^{t} N_{i}$ we set $a=0$ and if $x \in \cap_{i=1}^{t} N_{i}$ then we set $a=c$. Now suppose that the above conditions are not true. We may assume that there exists $1 \leq k \leq t-1$ such that $x \in \cap_{i=1}^{k} N_{i}$ and $x \notin \bigcup_{i=k+1}^{t} N_{i}$. Since R / \mathfrak{p} is infinite, so there exist $t-k+1$ non-zero distinct elements in R / \mathfrak{p} such as $s_{1}+\mathfrak{p}, \ldots, s_{t-k+1}+\mathfrak{p}$. Set $A=\left\{s_{i} c+x \mid i=1, \ldots, t-k+1\right\}$. If there exists an element $s_{j} c+x$ in A such that $s_{j} c+x \notin \bigcup_{i=1}^{t} N_{i}$ then the proof is complete. Otherwise, for each $1 \leq l \leq t-k+1$, there is $1 \leq j \leq t$ such that $s_{l} c+x \in N_{j}$. If $1 \leq j \leq k$ then $s_{l} \in \mathfrak{p}$ and so $s_{l}+\mathfrak{p}=\mathfrak{p}$ which is a contradiction. So
$k+1 \leq j \leq t$ and hence $A \subseteq \bigcup_{i=k+1}^{t} N_{i}$. Whence, according to the Dirichlet drawer principle, there exists $k+1 \leq j \leq t$ and $1 \leq l_{1}<l_{2} \leq t-k+1$ such that $s_{l_{1}} c+x$ and $s_{l_{2}} c+x$ belong to N_{j}. Therefore $s_{l_{1}}+\mathfrak{p}=s_{l_{2}}+\mathfrak{p}$ which is a contradiction.

Acknowledgements. The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions.

REFERENCES

[1] S. Abu-Saymeh, On dimensions of finitely generated modules, Comm. Algebra 23 (1995), 1131-1144.
[2] M. Behboodi, A generalization of the classical Krull dimension for modules, J. Algebra 305 (2006), 1128-1148.
[3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, UK, 1993.
[4] J. Dauns, Prime modules. J. Reine Angew. Math. 298 (1978), 156-181.
[5] J. Jenkins and P.F. Smith, On the prime radical of a module over commutative ring, Comm. Algebra 20 (1992), 3593-3602.
[6] O.A. Karamzadeh, The prime avoidance lemma revisited, Kyungpook Math. J. 52 (2012), 149-153.
[7] C.P. Lu, Unions of prime submodules, Houston J. Math. 23 (1997), 2, 203-213.
[8] K.H. Leung and S.H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasg. Math. J. 39 (1997), 285-293.
[9] S.H. Man and P.F. Smith, On chains of prime submodules, Israel J. Math. 127 (2002), 131-155.
[10] A. Marcelo and J. Munoz Maque, Prime submodules, the descent invariant, and modules of finite length, J. Algebra 189 (1997), 273-293.
[11] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, UK, 1986.
[12] R.L. McCasland and P.F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), 1041-1062.
[13] J.J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math. 85, Academic Press, New York, 1979.
[14] D. Pusat-Yilmaz and P.F. Smith, Chain conditions in modules with Krull dimension, Comm. Algebra 24(13) (1996), 4123-4133.

Received 17 October 2016 University of Mohaghegh Ardabili, Faculty of Sciences, Department of Mathematics, Ardabil, Iran jafar.azami@gmail.com azami@uma.ac.ir

University of Mohaghegh Ardabili, Faculty of Sciences, Department of Mathematics, Ardabil, Iran maryamkhajepour@uma.ac.ir

