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1. INTRODUCTION

Throughout this paper, let R be a commutative ring (with identity) and
M be a unital R-module. A proper submodule N of M with N :g M = p
is said to be prime or p-prime (p a prime ideal of R) if rz € N for r € R
and x € M implies that either z € N or » € p. Another equivalent notion
of prime submodules was first introduced and systematically studied in [4].
Prime submodules have been studied by several authors; see, for example,
[1,2,5,7-10,12]. In Section 2, we study the chains of prime submodules and we
shall improve the results given in [9]. The prime avoidance theorem states that
if an ideal I of a ring is contained in the union of finite number of prime ideals,
then I must be contained in one of them. This result’s generalization for the
non-commutative case has been proved in [6]. In Section 3, we generalize this
theorem for modules in different states. Throughout, for any ideal b of R, the
radical of b, denoted by Rad(b), is defined to be the set {x € R : 2™ € b for
some n € N} and we denote {p € Spec(R) : p D b} by V(b), where Spec(R)
denotes the set of all prime ideals of R. The symbol C denotes containment
and C denotes proper containment for sets. If IV is a submodule of M, we
write N < M. We denote the annihilator of a factor module M/N of M by
(N :g M). The set of all maximal ideals of R is denoted by Max(R). For
any ideal I of a ring R and for any R-module M, I';(M) is defined to be the
submodule of M consisting of all elements annihilated by some power of I, i.e.,
U;2,(0 :as I™). For any unexplained notation and terminology we refer the
reader to [3,11] and [13].
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2. CHAINS OF PRIME SUBMODULES

The results of this section are generalizations of some results given in [9]
and [2]. First, we need the following definition.

Definition 2.1. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p € Spec(R) we define \,(M) as following:

Mp(M) = dimp, /g, (Myp/ p My).

Remark 2.2. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p € Spec(R), A\y(M) is the number of elements of any
minimal generator set of the Ry-module M, and so A\y(M) < co. Also we have
Ap(M) = 0 if and only if p & Supp(M). Moreover, for any pair q C p of prime
ideals of R it is easy to see that A\q(M) < Ap(M).

The following description of prime submodules will be useful in this paper.

LEMMA 2.3. Let R be a Noetherian ring and p € Spec(R). Let M be
a finitely generated R-module and N be a proper submodule of M. Then the
following are equivalent:
(i) N is p-prime submodule of M.
(ii) Assp(M/N) ={p} and (N :g M) = p.
(iii) (N :g x) = p, for each x € M\N.

Proof. Easily follows from definition. [

The following theorem is the first main result of this paper and a gene-
ralization of [9, Lemma 2.6].

THEOREM 2.4. Let R be a Noetherian ring and p € Supp(M). Let M be
a finitely generated R-module. Then the following statements hold:
(i) The length of any chain of p-prime submodules of M is bounded from above
by N\p(M) — 1.
(ii) There is a chain of p-prime submodules of M, which is of length A\p(M)—1.
(iii) Any saturated mazimal chain of p-prime submodules of M is of length
Ap(M) — 1.

Proof. (i) Let n := Xy(M). Then it follows from the hypothesis p €
Supp(M) that n > 0. Suppose the contrary be true. Then there exists a chain
of p-prime submodules of M as:

N()CN1C"'CNn.

By Lemma 2.3 we have p € Supp(M/N,,) and so lg,((M/Ny),) > 1. On the
other hand, since by assumption we have (Ny :g M) = p, it follows that there

is an exact sequence
M/p M — M/Ny — 0.
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Hence we have the following exact sequence:
(M/p M)y — (M/No)p = 0.
Therefore, it follows from definition that
IR, ((M/No)p) = dimp, /g, (M/No)p) < Ap(M) = n.
On the other hand, for each 0 <7 < mn — 1 there is an exact sequence
0— Ni+1/Ni — M/Nz
But, since N;y1/N; # 0, it follows from Lemma 2.3 and above exact sequence

that
0 # Assr(Nip1/N;) C Assp(M/N;) = {p},
which implies that Assg(N;+1/N;) = {p}. In particular p € Supp(N;4+1/N;),
and so (Njy1/N;)p # 0. Consequently, Ig, ((Ni+1/N;)p) > 1. Whence, we have
n =01 < S5 Lr, (Niwt /Nidp) = Lr, (Na/No)p) < Lr, (M/No)p) — 1
<n-—1,
which is a contradiction.

(ii) Let \y(M) = n. Then n > 0. As p € Supp(M) it follows that
(pM :g M) = p. Therefore, p € Assgr(M/pM). Let Ny = p M, whenever
Assp(M/p M) = {p}. In other case, suppose

Assp(M/p M)O\{p} :={q1, ., ar}-
Let I = ﬂé?:l q; and No/p M :=T[(M/p M). Then we have
Assp(M/No) = Assg((M/p M) /T (M/p M)) = Assp(M/p M)\V(I).

But, since for each 1 < j < k we have Anng(M/p M) =p C q; and q; # p, it
follows that p ¢ V(q;). Therefore

k
pe Vi) =vniia) =vU).
j=1

Therefore,

Assp(M/No) = Assp(M/p M)\V(I) = {p},
which results Anng(M/Ny) C p. Therefore, we have p = (p M :g M) C (No :r
M) Cpandso (Nyg:gr M)=p. Also as

Assp(No/p M) = Assp(I't(M/pM)) = Assp(M/p M)NV(I),

it follows that p ¢ Supp(No/p M) and hence (No/p M), = 0. Now in both
cases it follows from Lemma 2.3 that Ny is a p-prime submodule of M. We
shall construct the chain Ny C --- C N,_1 of p-prime submodules of M such



52 Jafar A’zami and Maryam Khajepour 4

that Ig,((Niy1/Ni)p) = 1, for each 0 < i < n — 2, by an inductive process.
To do this, assume that 0 < j < n — 1, and that we have already constructed
No C Ny C --- C Nj. We show how to construct N;yi. To do this, since
by definition M # Nj it follows that there is an element x € M\N;. Let
L := Rz + Nj;. In view of Lemma 2.3 we have L/N; = R/ p. In particular, we
have I, ((L/Nj),) = 1. By inductive hypothesis we have

Uy (M/L)y) = L, (M/No)y) — U, (L/Noy) =
Ly (M 9 M) [y (L/N )+ Sk, (Nis1 /Ng)y)] =n—(145) =n—j—1 >0,

Therefore, (M/L), # 0. Now it is easy to see that (L :r M) = p, and so
p € Assp(M/L). Let Nj41 = L, whenever Assp(M/L) = {p}. In other case
suppose

Assp(M/L)\{p} := {d1, .. q;}-

Let J =n!_,q; and N;41/L :=T;(M/L). Then we have

Assp(M/Nji1) = Assp((M/L)/T ;(M/L)) = Assp(M/L)\V (J).
But, since for each 1 < ¢ < t we have Anng(M/L) = p C q; and ¢} # p, it
follows that p & V'(q;). Therefore,

Assp(M/Njy1) = Assg(M/L)\V(J) = {p},
which results Anng(M/Njy1) C p. Therefore, we have p = (L :g M) C
(Njy1:r M) Cpand so (Nj41 :r M) =p. Also as
ASSR(Nj+1/L) = ASSR(FJ(M/L)) = ASSR(M/L) N V(J),

it follows that p ¢ Supp(N;j4+1/L) and hence (N;11/L), = 0. Whence,

IR, (Nj+1/Nj)p) = IR, (Nj+1/L)p) + Ir, ((L/Nj)p) =1+ 0= 1.

Now in both cases it follows from Lemma 2.3 that N1 is a p-prime submodule
of M such that Ir,((Nj+1/Nj)p) = 1. This completes the inductive step in the
construction.

(iii) Let A\y(M) =n and No C --- C Nj, be a saturated maximal chain of
p-prime submodules of M. We show that k =n—1. By (i) we have k <n — 1.
Since by assumption this chain is maximal it follows from the proof of (ii) that
Ir,((M/Ny)p) = 1. Now suppose the contrary be true. Then the set

E:={N : N isa p-prime submodule of M},

has a unique minimal element N’ := NycgN with respect to 7 C 7. So it
follows from hypothesis that Nog = N’. Also using (i) it follows from the proof
of (ii) that (No/p M), = 0. Therefore,

Ir,((Ng/No)p) =n — 1.
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Now suppose the contrary be true and £ < n—1. Then we deduce that there is
0 <j < k—1, such that Ir,((Njy1/Nj)p) > 2. Then there is x € N;;1\N;. By
Lemma 2.3 we have (N; + Rz)/N; = R/p and so Ir,(((N; + Rz)/Nj),) = 1.
Let L := N;j + Rz. Since Nji1/L is the unique minimal element of the set

{N/L : N/L is a p-prime submodule of M/L},

again using (i) it follows from the proof of (ii) that (Nj;1/L), = 0. Thus we
have

2 < lr,(Nj+1/Nj)p) = lr,(Nj1/L)p) + lr,((L/Nj)p) =0+ 1 =1,
which is a contradiction. This completes the proof. [
Now we need the following definitions.

Definition 2.5. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p-prime submodule N of M we define p-height of N as:

p-ht(N) :=sup{k € Ng : I3 Ny C--- C Ny = N, with N; € Spech(M), Vi},

where Spech, (M) denotes to the set of all p-prime submodules of M as an
R-module.

Definition 2.6. Let R be a Noetherian ring and M be a finitely generated
R-module. For each p-prime submodule N of M we define height of N as:

ht(N) :=sup{k € Ny : I Ny C--- C Ny =N, with N; € Specr(M), Vi},

where Specp(M) denotes to the set of all prime submodules of M as an R-
module.

Definition 2.7. Let R be a Noetherian ring and M be a finitely generated
R-module. Then we define dimSpecr(M) as:

dimSpecg(M) := sup{ht(N) : N € Specr(M)}.
The following result is an immediate consequence of Theorem 2.4.

COROLLARY 2.8. Let R be a Noetherian ring and M be a finitely generated
R-module and N be a p-prime submodule of M. Then

p-ht(N) = Ir,(N/pM),) = dime/pRp(Np/pMp).

Proof. Let k := p-ht(IN). Then there is saturated chain of p-prime sub-
modules of M as Ny C --- C N = N. By the proof of Theorem 2.4 this chain
can be extended to a maximal saturated chain of p-prime submodules of M as

NoC---CN,=NC---CNp_1,
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Where n = \y(M). Then by the proof of Theorem 2.4 we have (No/p M), =0
and [g,((Niy1/Ni)p) = 1, for each 0 < i < n — 2. Now clearly the assertion
holds. O

As an application of Theorem 2.4 we prove the following.

THEOREM 2.9. Let R be a Noetherian ring and M be a finitely generated
R-module and N be a p-prime submodule of M. Then

h(V) < (Ap(M))(dimg, (M) < oc.

Proof. Let N, C --- C Ng = N be a chain of prime submodules of M,
such that for each 0 < ¢ < k, N; is p;-prime, where py = p. Then it easily
follows from definition that

P S CSPo=p.

Therefore, the set {p;}*_; has at most dimpg, (M,) elements. (Note that p; €
Supp(M), for all 0 <i < k). Let

{pi}fzo ={q0 =9, ., 9},

where t < dimpg, (Mp) and p =gy D --- D q;. Let A; := Specj{(M) N{N;}F,
for each 0 < j < ¢. Then by Theorem 2.4 the set A; has at most Aq, (M)
elements. But Aq, (M) < Ay(M), because q; C p. Therefore as

t
U Aj = {Ni}fzm
j=1

it follows that k& < tAy(M) < (dimpg, (My))Ap(M). Which implies that
ht(NV) < (Ap(M))(dimp, (My)) < oo,

as required. [

3. PRIME AVOIDANCE THEOREM

The results of this section improve some well known results given in [7].

PROPOSITION 3.1. Let R be any ring and M be a non-zero R-module and
N be a submodule of M. Let pq,...,p,, be distinct prime ideals of R. Let for
each 1 < i < n, N; be a p;-prime submodule of M. If N C U N;, then
N C Nj for some 1< j <n.

Proof. We use induction on n. The case n = 2 is easy. Now let n > 3

and the case n — 1 is settled. By definition for each 1 < i < n we have
p;, = (N; :g M). From the hypothesis N C U! | N; it follows that N =
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» 1(N;NN). Now let the contrary be true. Then N € N; and hence (N; N
N) # N, for any 1 < i < n. Also from the inductive hypothesis it follows
that N # Uic(qu,...np\ (&) (Vi N N) for each 1 < k& < n and so (Ny N N) &
Uie({1,..n}\{k}) (NiNN). Let q be a minimal element of the set {py, ..., p,, } with
respect to 7 C 7. Then p; Z q for each p; € ({py,....»,}\{¢}). Without loss of
generality we may assume that q =p,,. Let J; :== (V; ;g N), foralli =1,...,n
Then from the definition it follows that p; C J;, for all ¢ = 1,...,n. On the
other hand, for each x € N and r € R, if re € (N; N N) and = ¢ (N; N N),
then rx € N; and x € N;. Therefore it follows from the definition that r € p;.
So rM C Nj;, and consequently, rN C (N; N N). As (N; N N) # N it follows
that there exists an element y € (N\(N; N N)). Now for each s € J; we have
sy € (N;NN) C N; and y € N;. So it follows from the definition that s € p,.
Therefore, (N; :g N) = J; = p;, = (N; :r M). But it is easy to see that
(Ni :r N) ((N;N'N) :g N). Thus for each 1 <1i <n, N; NN is p;-prime
submodule of N. Therefore without loss of generality we may assume that N =
M =U}_N; and N,, € U?;llNi. Next let T := N}_; N;. Then it is not difficult
to see that for each 1 < ¢ < n, N;/T is p;-prime submodule of M /T and M /T =

U N;/T. Therefore, without loss of generality we may assume M = U} N;
and Ny N; =0and N,, € U} N Then there is an exact sequence 0 - M —

o M/Nz, which implies that N, p; = Anng(®]; M/N;) € Anng(M). On
the other hand for each 1 < i < n we have AnnR(M) C (N;:r M) =p,;. So
Anngp(M) C N, p;. Hence Anng(M) =nN7, p,. Now if we have N'"' N; = 0,
then there is an exact sequence 0 — M — @]~ M /N;, which 1mphes that

N~ lp, = Anng(@! M/N;) C Anng(M) —ﬂ”lpl gpn So p; C p,, fo
some 1 <t<n-— 1 Wthh is a contradiction. So N} N # 0. Then there is
an element 0 # a € ﬂlelN As N N; =0, it follows that a € N,. On the
other hand since N,, U?:_llNi, it follows that there is an element b € NV,, such
that b ¢ U'"'N;. Now as a +b € UP_| N;, it follows that a 4+ b € Ny, for some
1 < k < n, which is a contradiction. This completes the inductive step. [

Remark. Proposition 3.1 does not hold in general. For example, let p > 2
be a prime number and 2 < n € N. Let R = Z, = {0,1,...,p— 1} and
M = ®}_Zp. Let

A={N : N = Rz, for some 0 #z € M}.

Then 2 is a finite set that has at most 27" elements and for each N € A, N
is a {0}-prime submodule of M such that M C UyegN. But M ¢ N for any
Ne. O

The following proposition is a generalization of [11, Ex. 16.8].

PROPOSITION 3.2. Let R be a ring, M a non-zero R-module, N a sub-
module of M and x € M. Let pq,....p,, be distinct prime ideals of R. Let for
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each 1 <i <n, N; be a p;-prime submodule of M. If N + Rz € U} | N;, then
there exists a € N such that a +x & U | N;.

Proof. We use induction on n. Let n = 1. If x € N; then N € Ny. So
there is a € N\ NV} and it is easy to see that a+x ¢ N;j. But if 2 € Ny, then by
choosing a = 0 € N the assertion holds. Now suppose n > 2 and the case n—1
is settled. Let q be a minimal element of the set {py,...,p, } with respect to
? C 7. Then p; Z q for each p; € ({py,-..,p,}\{¢}). Without loss of generality
we may assume that ¢ = p,,. Then it is easy to see that ﬁnfll p; £ p,. By

i—
inductive hypothesis there is an element b € N such that b+ x ¢ U?;llNz-.
So the assertion holds for a = b, whenever b + x ¢ N,. So we may assume
b+ x € N,. Then we claim that N € N,,. Because, if N C N,, then x € N,
and so N + Rx C N,, C U} N;, which is a contradiction. Therefore, there
exists an element ¢ € N\N,. As N}'"'p; Z p,, it follows that there exists an
element v € (N?'p;)\p,. Then it easily follows from the definition of the
p,,-prime submodule that rc € N,,. Moreover, since r € ﬂ?z_ll p; it follows from
the definition that rc € ﬁ?z_llNi. Now it is easy to see that rc+b+x & Ul | N;.
Therefore, the assertion holds for a := rc¢+b € N. This completes the induction

step. O

Remark. Proposition 3.2 does not hold in general. For example, let p > 2
be a prime number and R = Z, = {0,1,...,p—1} and M = Z, ® Z,. Let
N = (1,0)Zy, z = (0,1) and N; = (i,1)Zy, for i = 0,...,p — 1. Then N;
is {0}-prime submodule of the R-module M, for all i = 0,...,p — 1. Also as
(1,0) € N + Rz and (1,0) ¢ UY_; N;, it follows that N + Rz ¢ U’_; N;. But
for any a € N we have a + z € Uf;OINZ-.

Now we give other aspects of prime avoidance Theorem in different states.

PRrOPOSITION 3.3. Let R be a ring, M a non-zero R-module, N a sub-
module of M and k € N. Let for each 1 <1 <k, n; € Nand for1 <i <k
and 1 < j < n;, the ideals p; ; be distinct elements of Spec(R). Let for each
1<i<kandl<j<mn; N;jbeap,;-prime submodule of M. Let for each
1<i<k, N; = ﬂ?;lNi,j. If N C UleNi, then N C N; for some 1 <t < k.

Proof. Let the contrary be true. Then for each 1 < ¢ < k we have N € N;.
Therefore there exists 1 < s; < n; such that N € N; . But in this situation
we have

N CUr N, CUt N

Consequently, it follows from Proposition 3.1 that there is 1 <[ < k, such that
N C Ny, which is a contradiction. [
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PROPOSITION 3.4. Let R be a ring, M a non-zero R-module, N a submo-
dule of M, x € M and k € N. Let foreach1 <i<k,n; € Nand for1 <i<k
and 1 < j < ny, the ideals p, ; be distinct elements of Spec(R). Let for each
1<i<kandl<j<mn; Nij beap,;-prime submodule of M. Let for each
1<i<k, N;= ﬂ?;le-. IfN+Rx ¢ UleNi, then there exists a € N such
that a +x ¢ US| N;.

Proof. For each 1 < ¢ < k we have N + Rx € N;. Therefore there
exists 1 < s; < n; such that N + Rx € N;,. But in this situation using
Proposition 3.1 we have

N + Rz Z Ui Ni,.

Consequently, it follows from Proposition 3.2 that there is a € N, such that
at+zx & UleNi,si. But since UleNi - Uf:1N¢7Si, it follows that a+x & UleNi,
as required. [

PROPOSITION 3.5. Let R be a ring, I an ideal of R and © € R. Let
J1y ey In, (> 1) be ideals of R such that for each 1 < i < n we have Rad(J;) =
Ji. If I + Rx € U}, J;, then there exists an element a € I such that a + = &
U, Ji.

Proof. For each 1 < i < n we have I + Rx ¢ J;. Therefore for each
1 <4 < n,since J; = Ngey (s, q it follows that there exists p; € V' (J;) such that
I+ Rz < p,;. But in this situation we have I + Rx € U}, p, . Consequently, it
follows from [11, Ex. 16.8] that there is a € I, such that a +z ¢ U}' ; p, . But
since U}, J; C U p;, it follows that a + = € U}, J;, as required. [J

Before bringing the next result we need the following well known lemma.

LEMMA 3.6. Let (R,m) be a commutative local ring such that R/m is
infinite. Let M be an R-module and Ny, ..., Ny be submodules of M such that
M = U';f:l N;. Then there exists 1 < j <t, M = N;

Proof. The assertion follows using NAK Lemma.

PROPOSITION 3.7. Let R be a commutative ring, M be an R-module and
N1, ..., N¢ be submodules of M such that M = U§:1 N;. Then ﬂle SuppM/N; C
Mazx(R).

Proof. Suppose the contrary be true. Then there exists p € (ﬂle SuppM
/Ni)\Max(R). So R/p is an integral domain but not a field and therefore
R, /pR, is infinite. By hypothesis and Proposition 3.6 there exists 1 < j <t
such that (M/N;), =0 and so p ¢ Supp M/N; which is a contradiction.

COROLLARY 3.8. Let R be a commutative ring and p € Spec(R)\ Max(R).
Let M be an R-module and N1, ..., Ny be p-prime submodules of M and N a
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submodule of M such that N C Uﬁzl N;. Then there exists 1 < j <t such that
N C Nj.

Proof. Let for any 1 < j <t, N ¢ N;. Then for all 1 < j < ¢, we have
NN Nj; # N. Since pM C Nj, it follows that pN C N; and so pN € N N N;.
Hence p € (NN N : N). On the other hand there exists z € N\N N N; and
sox ¢ N;. Letr € (NN N : N). Then re € N;N N C N; and x ¢ N;, so
r € (N; : M) =p. Consequently (N;NAN : N) C pandso (N;AN : N) =p. Now
it is easy to show that NV; NN is a p-prime submodule of N. Since N C U§:1 N;
it follows that N = |Ji_; (N N N;). But in this case p € ()., Supp(N/N; N N).
Since p € Spec(R)\ Max(R) this is impossible by Proposition 3.7.

PROPOSITION 3.9. Let R be a commutative ring and p € Spec(R) such
that R/p infinite. Let M be an R-module and Ny, ..., Ny be p-prime submodules
of M and N a submodule of M such that N C Ule N;. Then there exists
1 <5 <t such that N C Nj.

Proof. If p ¢ Max(R), the assertion follows from Corollary 3.8. So let
p € Max(R) and for all 1 < i < ¢, we have N ¢ N;. Hence for any 1 <
J < t, there exists z; € N\N,. Set N = (z1,...,2¢) € N and so we have
N'/pN'" = UL_ ((N' N N;) + pN")/pN’. Since R/p is infinite, there exists
1 < j <t such that N'/pN’ = ((N' N N;) + pN’)/pN’. This implies that
N' = (N'NNj) +pN') € pM + N; = N;j. Hence N' C N; which is a
contradiction.

PROPOSITION 3.10. Let R be a commutative ring and p € Spec(R) such
that R/p infinite. Let M be an R-module and Ny, ..., Ny be p-prime submodules
of M and N a submodule of M. Let x € M such that N + Rz ¢ Uzt':1 N;.
Then there exists a € N such that a +z ¢ | J'_, Ni.

Proof. Tt is certainly true for ¢t = 1. Let t > 1 and the result has been
proved for t —1. If N C U§:1 N, then by Proposition 3.9 there exists 1 < j < ¢,
such that N C IN;. Without loss of generality we may assume that j = ¢. By
induction hypothesis there exists b € N such that b+ x ¢ Uf;} N;. Since
b+ ¢ Ny it follows that b4 2 ¢ J'_, N; and so the assertion follows. Now
suppose that N ¢ Ji_; N;, then there exists ¢ € N\|J'_, N;. In this case
if 2 ¢ Ui_; N; we set @ = 0 and if € N{_,N; then we set a = c¢. Now
suppose that the above conditions are not true. We may assume that there
exists 1 < k <t — 1 such that z € N*_|N; and = ¢ UE:kJrl N;. Since R/p
is infinite, so there exist t — k + 1 non-zero distinct elements in R/p such as
S1+ P,y St—pr1 +p. Set A= {sic+z|i =1,....,t —k+ 1}. If there exists an
element sjc + x in A such that sjc+ = ¢ UEZI N; then the proof is complete.
Otherwise, for each 1 <1 <t—k+1, thereis 1 < j <t such that s;c+x € N;.
If1 <j5 < kthen s; € p and so s; +p = p which is a contradiction. So
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k+1<j<tand hence A C Uf:k, 41 Ni. Whence, according to the Dirichlet
drawer principle, there exists k+1 < j <tand 1<} <lp <t—k—+1such
that s;, ¢+ x and s;,c + x belong to N;. Therefore s;, +p = 57, + p which is a
contradiction. [J

(10]
(11]
[12]
(13]

(14]
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