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We study elastic rectifying strips constructed from timelike curves constituting
one of the causal characters of a curve in Minkowski 3-space. Even if elastic
surfaces correspond to critical points of Willmore functional, we instead find ex-
tremals of the Sadowsky functional, because Willmore functional is proportional
to the Sadowsky functional for rectifying strips. We then provide a characteriza-
tion of timelike critical points of Sadowsky functional with two Euler-Lagrange
equations. When we choose different variations, we derive two conservation laws,
and by using these rules, we introduce two new kinds of elastic strips with time-
like directrix (the base curve). We next establish a relation between elastic strips
with timelike directrix and spacelike elastic curves on de Sitter 2-space and pseu-
dohyperbolic 2-space. Finally, we verify that the semi-Riemannian Hopf cylinder
associated to the tangent imagine of the timelike curve defining a force-free strip
with timelike directrix which is one of the new types elastic strips gives rise to a
Willmore surface in anti de Sitter 3-space.

AMS 2010 Subject Classification: 53A35, 53B30, 35A15, 74B99.

Key words: Euler-Lagrange equations, elastic strips, conservation laws.

1. INTRODUCTION

An inextensible strip is a thin shell that deforms in terms of only a pure
bending (not by stretching). Its surface is therefore developable, that is, it has
vanishing Gaussian curvature [16, 17]. The structure of such strips resembles
one dimensional structure of thin rods, and they can be described in terms of
the classical equations of thin elastic rods [6]. Surfaces of these thin rods are
completely determined (up to Euclidean motions) by curvature and torsion of
its centerline. A model for a narrow developable strip has been introduced by
Sadowsky (1930), and the extension of this model to a finite width is obtained
by Wunderlich (see for details [5, 10, 14, 15, 20, 21]). In particular, Wunderlich
proves that the Willmore functional (total squared mean curvature functio-
nal)

∫
S H

2dA of an infinitely narrow inextensible strip is proportional to the
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Sadowsky functional

(1) S =

∫
γ

κ2
(

1 +
τ2

κ2

)2

ds.

Thus, equilibrium configurations of elastic strips can be obtained in terms
of critical points of the Sadowsky functional when it is applied to all variations
having fixed end points and the fixed length. In recent years one observes
an increasing interest in studying one-dimensional elastic objects like curves,
thin rods and ribbons in Euclidean 3-space (see for several applications [4–9]).
Papers [15] and [21] which are written in the original language of the authors
have recently been translated into English [10] and [20]. In [7], the authors re-
examine derivation of the limit energy of an inextensible, isotropic, elastic strip
as the width goes to zero. They obtain a limit functional depending on three
orthonormal vectors [7]. Hangan [8], Chubelaschwili and Pinkall [4] derive two
Euler-Lagrange equations of the functional (1) at different times in Euclidean
3-space. The characterization of the centerline of an elastic strip presented by
Chubelaschwili and Pinkall corresponds to the conservation laws generated by
the symmetry group of Euclidean motions.

The squared curvature (the bending energy) integrated over a developed
surface may be reduced to a single integral over a reference curve (centerline)
and the Sadowsky functional is a limit of this quantity for an infinitesimally
narrow strip around the centerline. Thus, the Sadowsky functional is a mat-
hematical way to describe the physical model of a thin and narrow elastic
strip. This paper is devoted to the study of the Sadowsky strip model in a
non-Euclidean space because the knowledge of the balance form of the Euler-
Lagrange equations of the functional (1) may be useful for certain problems
involving non-Euclidean symmetry groups. One particular example can be
given by the description of world lines of relativistic particles in Minkowski
space with the Poincare group of isometries as symmetry group [17]. As vec-
tors, curves and surfaces have different causal character with respect to the
metric structure of Minkowski space, an elastic strip must separately be in-
vestigated in case of the causal character of the centerline. In this paper, we
especially study a strip whose directrix is timelike. The reason why we study
elastic strips with timelike directrix is to establish a connection between the
semi-Riemannian Hopf cylinder and some of such strips. The existence of such
a connection implies that the semi-Riemannian Hopf cylinder associated to
the tangent of a timelike elastic curve which is directrix of an elastic strip
corresponds to a Willmore surface in anti de Sitter 3-space H3

1 .
In Section 2, we obtain two Euler-Lagrange equations for elastic strips

with timelike directrix in Minkowski 3-space. By using this differential equa-
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tion system, we provide a relation between elastic curves and the elastic strips
without torsion. We derive two conservation laws in Section 3 in order to find
two new classes of integrable elastic strips with timelike directrix. Such results
allow us to show that binormal and tangent vectors of the timelike directrix
of an elastic strip correspond to a spacelike elastic curve on de Sitter 2-space
(pseudosphere with 2-dimension) and pseudohyperbolic 2-space in Section 4.
We also introduce momentum strips and force–free strips with timelike di-
rectrix. Finally, we verify that semi-Riemannian Hopf cylinder associated to
the tangent imagine of the timelike curve defining a force-free strip corresponds
to a Willmore surface in anti de Sitter 3-space.

2. ELASTIC STRIPS WITH TIMELIKE DIRECTRIX

In Euclidean or Minkowski 3-space, the Euler-Lagrange equation is given
by the fourth order equation

∆H + 2H
(
H2 −K

)
= 0

where ∆ denotes the Laplace-Beltrami operator and K is the Gaussian cur-
vature [3]. Thus, as Euclidean 3-space, Willmore functional of a developable
ruled surface with directrix choosing with regard to the Darboux vector is pro-
portional to the Sadowsky functional in Minkowski 3-space R3

1. In this section,
we introduce timelike rectifying strips, build the variational problem for elastic
strips with timelike directrix, and then find two Euler-Lagrange equations for
the critical points of modified Sadowsky functional. In particular, we provide
an example solving this system of equations.

We recall that Minkowski 3-space R3
1 is a three-dimensional real vector

space equipped with the metric

< x, y >= x1y1 + x2y2 − x3y3, x = (x1, x2, x3) , y = (y1, y2, y3) ∈ R3
1

which is a non-degenerate, symmetric and bilinear form. A smooth curve in
R3
1 is a timelike (resp., a spacelike and a lightlike), if its tangent vector is a

timelike (resp., a spacelike and a lightlike) [11].
An elastic strip is a surface with the minimum bending energy. For a

detailed description of these strips, we first introduce a developable ruled sur-
face whose directrix is a timelike curve. For that reason, assume that γ (s) is a
timelike curve in Minkowski 3-space and consider the ruled surface with γ (s):

(2)
Fγ : [0, `]× [−ε, ε] → R3

1

(t, δ) → Fγ (t, δ) = γ (t) + δ (B (t) + λT (t)) ,

where T is the unit timelike tangent vector, B is the unit spacelike binormal

and λ =
τ

κ
is the modified torsion in which κ and τ are the curvature and the
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torsion of γ respectively, which are defined by

(3) κ =
‖γ′ × γ′′‖
‖γ′‖3

and τ =
det (γ′, γ′′, γ′′′)

‖γ′ × γ′′‖2
.

Definition 1. Any developable ruled surface defined as in (2) is called a
timelike rectifying strip.

We next study infinitely narrow timelike rectifying strips constructed by
using critical points of the Sadowsky functional (1) within all space curves with
fixed end points and

(4)
·
` :=

∂

∂δ
` (γt)

∣∣∣∣
δ=0

= 0,

where γ (t) is the timelike directrix curve of the timelike rectifying surface.
The results obtained by Wunderlich imply that we can work on a variational
problem finding the critical base curve constituting the surface, instead of the
variational problem finding the critical surface. We therefore look for elastic
strips with timelike directrix defined as the following.

Definition 2. Let Fγ be a timelike rectifying strip in Minkowski 3-space.
If the timelike directrix γ of Fγ is an extremal for the modified Sadowsky
functional

(5) Sµ (γ) =

`∫
0

(
κ2
(
1 + λ2

)2 − µ) υds,

then Fγ is an elastic strip with timelike directrix. Here µ is a Lagrange multi-
plier, standing for the length constraint.

In Definition 2, observe that timelike curve γ : (0, `) → R3
1 defines an

elastic strip, so does γ : [0, `]→ R3
1.

In order to determine the timelike directrix γ for which Fγ is an elastic
strip, we denote the Frenet frame {T,N,B} of γ at the point γ(s). Note that
for the curve γ with velocity υ = ‖γ′‖, the Frenet formulas are given by

(6)
T ′ = υκN
N ′ = υκT + υλκB
B′ = −υλκN.

Before finding the critical points of the Sadowsky functional, we need to de-
termine a variation first, and then, calculate some derivatives related to the
variation in the following lemma.
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Lemma 1. If γ0 : [0, `]→ R3
1 is an arc length parametrized timelike curve

and
γ : [0, `]× [−ε, ε] → R3

1

(s, δ) → γ (s, δ) = γδ (s) = γ0 (s) + δ
·
γ (s)

is a variation of γ0 with variational vector

(7)
·
γ (s) = ∂

∂δ

∣∣
δ=0

γδ (s)

= u1 (s)T (s) + u2 (s)N (s) + u3 (s)B (s) ,

where u1(s) =−< ·
γ (s) , T (s)>, u2=<

·
γ (s) , N (s)> and u3=<

·
γ (s), B (s)>,

then we have

(8)
·
υ = u′1 + u2κ,

(9)
·
κ = u1κ

′ − u2κ2
(
1 + λ2

)
− 2u′3λκ− u3 (λκ)′ + u′′2,

(10)
·
λ = u1λ

′ + u2

(
(λκ)′′

κ2
− (λκ)′ κ′

κ3
+ λ3κ− λκ

)
+ u′2

(
2
λ′

κ
+

(λκ)′

κ2

)
+u′′2

λ

κ
− u3λλ′ − u′3

(
1− λ2

)
− u′′3

κ′

κ3
+ u′′′3

1

κ2
.

Proof. By using the fact
( ·
γ
)′

=
·

(γ′), we obtain the equality

·
υT +

·
T =

(
u′1 + u2κ

)
T +

(
u1κ+ u′2 − u3λκ

)
N +

(
u2λκ+ u′3

)
B,

from which we derive (8) and

(11)
·
T =

(
u1κ+ u′2 − u3λκ

)
N +

(
u2λκ+ u′3

)
B.

Employing (6) and (11), we conclude the following equalities

·(
T ′
)

=
·
υκN +

·
κN + κ

·
N,(

·
T

)′
=

(
u1κ+ u′2 − u3λκ

)′
N +

(
u1κ+ u′2 − u3λκ

)
(κT + λκB)

+
(
u2λκ+ u′3

)′
B −

(
u2λκ+ u′3

)
λκN.

The equation (9) directly follows from the equation (8) and the fact

(
·
T

)′
=

·
(T ′), both of which imply that

(12)

·
N = (u1κ+ u′2 − u3λκ)T

+ 1
κ

(
(u2λκ+ u′3)

′ + λκ (u1κ+ u′2 − u3λκ)
)
B.
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Similarly, by the equality

(
·
N

)′
=

·
(N ′) and equations (8) and (9), we obtain

·
λκ = u1λ

′κ+ u2

(
(λκ)′′

κ − (λκ)′κ′

κ2
+ λ3κ2 − λκ2

)
+u′2

(
2λ′ + (λκ)′

κ

)
+ u′′2λ− u3 (λλ′κ) + u′3

(
−1 + λ2

)
κ

−u′′3 κ
′

κ2
+ u′′′3

1
κ ,

from which the equality (10) follows.

Assume that an arc length parametrized timelike curve γ : [0, `] → R3
1

becomes the directrix of an elastic strip with timelike directrix. We next con-
sider a variation of γ having the variational vector field (7). We may calculate
the first variation of the Sadowsky functional

Sµ (γδ) =

∫ `

0

(
κ2δ
(
1 + λ2δ

)2 − µ) υδdt
as

∂

∂δ
Sµ (γδ)

∣∣∣∣
δ=0

=
∂

∂δ
` (γt)

∣∣∣∣
δ=0

((
κ2δ
(
1 + λ2δ

)2 − µ) υδ)∣∣∣
δ=`(γt)

+

∫ `

0

∂

∂δ

(
κ2δ
(
1 + λ2δ

)2 − µ) υδ∣∣∣∣
δ=0

dt,

and then by taking the condition (4) into consideration, we obtain the following
equality

∂

∂δ
Sµ (γδ)

∣∣∣∣
δ=0

=

∫ `

0

∂

∂δ

(
κ2δ
(
1 + λ2δ

)2 − µ) υδ∣∣∣∣
δ=0

dt.

Now from the equalities (8), (9) and (10), we conclude that

(13)
1

2

∫ `

0

∂

∂δ

(
κ2δ
(
1 + λ2δ

)2 − µ) υδ∣∣∣∣
δ=0

dt =

∫ `

0

(
u2f1 + u3f2 + b′

)
dt,

where

(14)

f1 =
(
κ′
(
1 + λ2

)2
+ 2κ

(
1 + λ2

)
λλ′
)′

− κ
2

(
κ2
(
1 + λ2

)
(1 + 9λ2) + µ

)
+ λκ

(
κ2
(
1 + λ2

)2
λ+

(
κ′

κ

(
1 + λ2

)
2λ
)′

+
((

1 + λ2
)

2λ
)′′)

,

(15)

f2 = −(κ2
(
1 + λ2

)2
λ+

(
κ′

κ

(
1 + λ2

)
2λ
)′

− 4κ2λ
(
1 + λ2

)
+
((

1 + λ2
)

2λ
)′′

)′

+ κλ
(
κ′
(
1 + λ2

)2
+ 2κ

(
1 + λ2

)
λλ′
)
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and

(16)

b = u1

(
1
2

(
κ2
(
1 + λ2

)2 − µ))
+ u2

((
6λλ′κ+ 2λ2κ′

) (
1 + λ2

)
−
(
κ
(
3λ2 + 1

) (
1 + λ2

))′)
+ u′2

(
κ
(
3λ2 + 1

) (
1 + λ2

))
+ u3

((
−4κ2λ

(
1 + λ2

))
+
(

2λκ
′

κ

(
1 + λ2

))′
+
(
2λ
(
1 + λ2

))′′)
− u′3

(
2λκ

′

κ

(
1 + λ2

)
+
(
2λ
(
1 + λ2

))′)
+ u′′3

(
2λ
(
1 + λ2

))
. �

Theorem 1. If Fγ is an elastic strip with timelike directrix γ, then γ
satisfies Euler-Lagrange equations

(17) f1 = f2 = 0 and b′ = 0.

Proof. Suppose that a timelike curve γ is an extremal for Sµ in which γ
is parametrized with respect to the arclength. From (13), we obtain

∂

∂δ
Sµ (γδ)

∣∣∣∣
δ=0

=

∫ `

0
(u2 (s) f1 (s) + u3 (s) f2 (s)) ds+ b (`)− b (0) = 0.

On the other hand, since b (`) = b (0) = 0 for a suitable variation, claimed
Euler-Lagrange equations hold. Furthermore, when γ is a critical for Sµ it
satisfies Euler-Lagrange equations stated in the first part of (17) so that

1

2

∂

∂δ

∣∣∣∣
δ=0

(
κ2δ
(
1 + λ2δ

)2 − µ) υδ = u2f1 + u3f2 + b′ = b′ = 0 �.

One of the consequences of Theorem 1 is that the critical points with
no torsion of the functional (5) in Minkowski 3-space correspond to timelike
elastic curves on pseudo-plane [1].

Recall that if a timelike curve in Minkowski 3-space is a helix, then λ = τ
κ

is a constant function [10]. We next provide two examples for elastic strips with
directrix which is a timelike helix.

Example 1. Let ψ (t) =
(
t,
√

2 cosh t,
√

2 sinh t
)

be a unit speed timelike
helix [18] with the curvature, the torsion and the modified torsion given by

(18) κ
ψ

=
√

2, τ
ψ

= 1 and λ
ψ

=
1√
2
.

From these values (18) together with Euler-Lagrange equations (17) , it easily
follows that the timelike rectifying strip with directrix ψ

Fψ (t, δ) =

(
t−
√

2

2
δ,
√

2 cosh t,
√

2 sinh t

)
is an elastic strip with timelike directrix if we choose µ = −12.
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3. CONSERVATION LAWS OF ELASTIC STRIPS
WITH TIMELIKE DIRECTRIX

In this section, we set up two different variations including only Lorent-
zian translations or rotations. We then state the first and second conservation
laws of elastic strips with timelike directrix in R3

1.

We recall that
(
κ2
(
1 + λ2

)2 − µ) is invariant under Lorentzian motions.

We only consider translations in the following variation

γδ (s) = γ (s) + δΓ,

with the variation vector field

⇒ ·
γδ (s) = Γ = − < Γ, T >︸ ︷︷ ︸T

u1

+< Γ, N >︸ ︷︷ ︸
u2

N +< Γ, B >︸ ︷︷ ︸
u3

B,

where Γ is an arbitrary point in Minkowski 3-space. The derivatives u′2, u
′
3, u
′′
3

are calculated as

(19)
u′2 = κ < Γ, T > +λκ < Γ, B >,
u′3 = −λκ < Γ, N >,
u′′3 = − (λκ)′ < Γ, N > −λκ2 < Γ, T > −λ2κ2 < Γ, B > .

Combined the equation (16) with the derivatives (19), we obtain

(20) b =< Γ,W0 >,

where

(21)

W0 = −1
2

(
κ2
(
1 + λ2

)2
+ µ

)
T +

(
κ′
(
1 + λ2

)2
+ 2κλλ′

(
1 + λ2

))
N

−
(
λκ2

(
1 + λ2

)2 − 4κ2λ
(
1 + λ2

)
+
(

2κ
′

κ λ
(
1 + λ2

))′
+
(
2λ
(
1 + λ2

))′′)
B.

Observe that when the timelike curve γ is a critical for the Sadowsky functional,
b is a constant. Therefore, in the equation (21), W0 is a constant for any Γ ∈ R3

1

in the equation (20).
By taking into account that

∂

∂δ

∣∣∣∣
δ=0

Aδγ (s)=Γ̃×γ (s)=− < Γ̃× γ, T >︸ ︷︷ ︸
u1

T+< Γ̃× γ,N >︸ ︷︷ ︸
u2

N+< Γ̃× γ,B >︸ ︷︷ ︸
u3

B

for Γ̃ ∈ R3
1 and Aδ ∈ SO1 (3), we find

(22)

u′2 =< Γ̃, B > +κ < Γ̃, γ × T > +λκ < Γ̃, γ ×B >,

u′3 = − < Γ̃, N > −λκ < Γ̃, γ ×N >,

u′′3 = −κ < Γ̃, T > −2λκ < Γ̃, B > − (λκ)′ < Γ̃, γ ×N >

− λκ2 < Γ̃, γ × T > −λ2κ2 < Γ̃, γ ×B > .
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Finally employing derivatives (22) into the equations (16), we conclude that

b =< Γ̃,W1 >,

where

W1 = −2λκ
(
1 + λ2

)
T +

((
2
κ′

κ
λ
(
1 + λ2

))
+
(
2λ
(
1 + λ2

))′)
N

+κ
(
1 + λ2

) (
1− λ2

)
B − γ ×W0.

Therefore W1 becomes constant when the timelike curve γ is a critical for the
modified Sadowsky functional.

Our next task is to show that elastic strips with timelike directrix are
characterized by W0 and W1.

Theorem 2 (First conservation law of elastic strips with timelike di-
rectrix). Fγ is an elastic strip with timelike directrix if and only if the force
vector W0 = a1T + a2N + a3B is a constant, where

(23) a1 = −1

2

(
κ2
(
1 + λ2

)2
+ µ

)
,

(24) a2 = κ′
(
1 + λ2

)2
+ 2κλλ′

(
1 + λ2

)
and

(25)
a3 = −

(
λκ2

(
1 + λ2

)2 − 4κ2λ
(
1 + λ2

))
−
((

2κ
′

κ λ
(
1 + λ2

))′
+
(
2λ
(
1 + λ2

))′′)
.

Proof. It suffices to show

(26) W ′0 = f1N + f2B,

since the force vector W0 is a constant if and only if f1 = f2 = 0 in equation
(26). We use Frenet equations (6) to obtain

W ′0 = (a′1 + κa2)T +
(
a′2 + κa1 − λκa3

)
N +

(
a′3 + λκa2

)
B.

On the other hand, from (23) and (24), we find

a2 = −1

κ
a′1.

It then follows that the coefficient of T in the equation (26) vanishes. Now, by
using (23), (24) and (25), the coefficients of N and B can be stated as

(27) a′2 + κa1 − λκa3 = f1,

(28) a′3 + λκa2 = f2,

respectively. However Eq. (27) and (28) show that γ defines an elastic strip
with timelike directrix if and only if f1 = f2 = 0. �
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Theorem 3 (Second conservation law of elastic strips with timelike di-
rectrix). Fγ is an elastic strip with timelike directrix if and only if the torque
vector W1 = s1T + s2N + s3B − γ ×W0 is a constant, where

(29)

s1 = −2λκ
(
1 + λ2

)
,

s2 = 2κ
′

κ λ
(
1 + λ2

)
+
(
2λ
(
1 + λ2

))′
,

s3 = κ
(
1 + λ2

) (
1− λ2

)
.

Moreover, if W1 is a constant while γ does not define an elastic strip with
timelike directrix, then ‖γ‖ is conserved.

Proof. We take first the derivative of W1 as follow

(30)

W ′1 =
(
s′1 + κs2

)︸ ︷︷ ︸
0

T +

κs1 + s′2 − λκs3︸ ︷︷ ︸
−a3

−< T ×W0, N >︸ ︷︷ ︸
−a3

N

+

s′3 + λκs2︸ ︷︷ ︸
a2

−< T ×W0, B >︸ ︷︷ ︸
a2

B − γ ×W ′0

Note that the coefficients of T, N and B vanish by equations (29). Then
the equation (30) reduces to

(31) W ′1 = −γ ×W ′0.

However Eq. (31) implies that W ′1 is zero if and only if W0 is a constant. This
completes the first part of the proof as we already know that W0 is constant if
and only if γ defines an elastic strip with timelike directrix.

On the contrary, suppose that γ does not define an elastic strip with ti-
melike directrix while W ′1 = 0. Then, substituting W ′0 = f1N+f2B in Eq. (29),
we obtain

W ′1 = −γ × (f1N + f2B) = 0;

hence, γ ∈ Sp{N,B} that in turn implies

< γ, γ >′= 2 < γ, T >= 0

from which the claim follows. �

4. RELATIONS BETWEEN NEW TYPES ELASTIC STRIPS
WITH TIMELIKE DIRECTRIX AND ELASTIC CURVES

ON HYPERQUADRATICS

We begin this section by recalling hyperquadrics of Minkowski 3-space and
elastic curves on hyperquadrics. We then introduce two new integrable systems
of elastic strips with timelike directrix. We also state some relations between
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these strips and elastic curves on de Sitter 2-space and pseudohyperbolic 2-
space. Finally, we establish a connection between semi−Riemannian Hopf
cylinder and Willmore surface in anti de Sitter 3-space.

We recall that de Sitter 2-space of radius r > 0 in R3
1 is the hyperquadric

S2
1 = {p ∈ R3

1

∣∣ < p, p >= r2}

with dimension 2 and index 1 [12]. As it is well-known, de Sitter 2−space S2
1

is a timelike surface. Note also that a spacelike and a timelike elastic curves
with geodesic curvature λ on S2

1 satisfy the following equalities

(32)
(λ′)2 − 1

4λ
4 +

(
1 + σ

2

)
λ2 = A, A = const

(λ′)2 − 1
4λ

4 +
(
−1 + σ

2

)
λ2 = A, A = const

respectively, where σ is a Lagrange multiplier [13].

The pseudohyperbolic 2-space of radius r > 0 in R3
1 is the hyperquadric

H2 = H2
0 = {p ∈ R3

1

∣∣ < p, p >= −r2}

with dimension 2 and index 1 [12]. In this case, the pseudohyperbolic 2-space
H2 is a spacelike surface. A spacelike elastic curve with geodesic curvature λ
on H2 satisfies

(33)
(
λ′
)2

+
1

4
λ4 −

(
1 +

σ

2

)
λ2 = A, A = const.,

where σ is a Lagrange multiplier [13].

Now, we are ready to introduce two new types of elastic strips with time-
like directrix.

Definition 3. An elastic strip with timelike directrix in Minkowski 3-space
is called force-free strip with timelike directrix if W0 = 0.

Definition 4. An elastic strip with timelike directrix in Minkowski 3-space
is called a momentum strip with timelike directrix if

(34) 〈W1 + γ ×W0, T 〉

is a constant non-zero function.

Our next result provides a relation between momentum strips with time-
like directrix in R3

1 and spacelike elastic curves on S2
1 .

Theorem 4. Let a timelike curve γ : [0, `] → R3
1 define a momentum

strip with timelike directrix with Lagrange multiplier µ. Then, the binormal
vector B of γ corresponds to a spacelike elastic curve with Lagrange multiplier
−µ

4 in de Sitter 2-space S2
1 . Conversely for each such arc length parametrized
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curve B : [0, ˜̀] → S2
1 with non-vanishing, non-constant geodesic curvature λ

and −T = B ×B′ the timelike curve

γ (t) =
1

2

t∫
0

(
1 +

1

λ2 (s)

)
T (s) ds

defines an elastic momentum strip with timelike directrix with

Sµ (γ (t)) = 2

`∫
0

(
1 + λ2

)
dt− µ` (γ) .

Proof. Let γ (s) define a momentum strip with timelike directrix. Once
we choose

< W1 + γ ×W0, T >= −s1 = 4,

we obtain that

(35) κ =
2

λ(1+λ2)

and

(36)
< W0,W0 >= − 4

λ4(s)
− 2

λ2(s)
µ− 1

4µ
2 + 4

(λ(s)′)
2

λ4(s)

(
1 + λ2 (s)

)2
+ 16

λ2(s)

(
−1 + 4

1+λ2(s)

)2
.

If we multiply each term of the equation (36) with 1
16 , we can rearrange (36)

in the following

(37)
−1

4
1

λ4(s)
− 1

8
1

λ2(s)
µ+ 1

4
(λ′(s))2

λ4(s)

(
1 + λ2 (s)

)2
+

1
λ2(s)

(
−1 + 2 2

1+λ2(s)

)2
= 1

16

(
< W0,W0 > +1

4µ
2
)
.

Now, we change the parameter as λ̃ (t) = λ (s (t)) such that λ̃′ (t) t′ (s) =
λ′ (s (t)) , where t′ (s) = 2

1+λ2(s)
. Thus we can reformulate the equation (37) as

follows

−1
4

1

λ̃4(t)
+ 1

λ̃2(t)

(
−1 + 2t′ (s)− 1

8µ
)

+ 1
4

(
λ̃′(t)t′(s)

λ̃2(s)

)2
4
(

1
t′(s)

)2
= 1

16

(
< W0,W0 > +1

4µ
2
)
.

By using Frenet equation (6) it is apparent that t and 1

λ̃
are respectively the

arc length parameter and curvature of B. So we calculate
(38)

−1

4

(
1

λ̃

)4

+

(
1

λ̃

)2
(

1 +

(
−µ

4

)
2

)
+

((
1

λ̃

)′)2

=
1

16

(
< W0,W0 > +

1

4
µ2
)
.
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One can easily see that 1
16

(
< W0,W0 > +1

4µ
2
)

is a constant and Eq. (38)
has at least one non-zero solution. From Eq. (32), we show that binormal B
of the timelike curve γ corresponds to spacelike elastic curves with Lagrange
multiplier −µ

4 on S2
1 of radius 1.

Conversely, let B be such an arc length parametrized spacelike elastic
curve on de Sitter 2-space S2

1 with non-vanishing, non-constant geodesic cur-
vature λ. Also, assume that B is the binormal of a timelike curve γ with Frenet
frame {T,N,B} in R3

1. Then the Darboux trihedron of B is {−N,B,−T} and
derivative formulas of the Darboux frame are

(39)
B′ = −N,
−N ′ = λT −B,
−T ′ = λN.

If we consider the spacelike curve B having a reparametrization with an arc
length s with ds

dt = 1+λ2

2λ2
= 1

2

(
1 + 1

λ2

)
, there is a timelike curve

γ (t) =
1

2

t∫
0

(
1 +

1

λ2 (s)

)
T (s) ds.

Now from the stated equations in (39), the curvature and modified torsion of
γ can be written as

κγ =
‖γ′ × γ′′‖
‖γ′‖3

=
2

1
λ

(
1 + 1

λ

) and λγ =
τ

κ
= − 1

λ
.

Substituting κγ and τγ in the equation (34), we conclude that the timelike curve
γ defines a momentum strip with timelike directrix. Similarly, the substitution
of 1

λ̃
for λ in the equation (38) yields

(40)
(
λ′
)2 − 1

4
λ4 +

(
1− µ

8

)
λ2 =

1

16

(
< W0,W0 > +

1

4
µ2
)
.

We conclude that < W0,W0 > is conserved, since B is a spacelike elastic curve
with Lagrange multiplier −µ

4 . Note also that we get

< W0,W1 >= −2
(
4λ2 + µ

)
+ 2

(
1

λ
− λ

)
= −2µ− 8.

On the other hand, from (26) and (31), we find

0 =< W0,W1 >
′

=< f1N + f2B, b1 > + < W0,−γ ×W0 >
=< f1N + f2B, b1 + γ ×W0 >
= f2s3.
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Since λ is a non-constant solution of (40), we must have f2 = 0. Moreover,
f1 = 0 by a similar calculation as

0 =< W0,W0 >
′= 2 < f1N + f2B,W1 >= 2a2f1. �

Now we suppose that γ defines a force-free strip with timelike directrix.
By Theorem 2, we have

W0 = a1T + a2N + a3B = 0,

where T,N and B are component of the Frenet frame. This implies that

a1 = −1

2

(
κ2
(
1 + λ2

)2
+ µ

)
= 0⇒ µ < 0.

We can assume that µ = −1. If we take the first derivative of a1, we get

0 = κ′
(
1 + λ2

)2
+ 2κλλ′

(
1 + λ2

)
= a2

and

(41) κ =
1

(1 + λ2)
.

These assumptions together with consecutive calculations make the proof of
the following lemma obvious. Therefore it is omitted.

Lemma 2. If γ is a timelike curve with non-constant modified torsion
λ = τ

κ , then the following conditions are equivalent:

(i) γ defines a force-free strip with timelike directrix,

(ii) W1 = −2λT + 2λ′
(
1 + λ2

)
N +

(
1− λ2

)
B is a constant,

(iii) a1 = 0 and < J, J > is conserved, where J = s1T + s2N + s3B.

Theorem 5. Let a timelike curve γ define a force-free strip with timelike
directrix. Then, the tangent vector T of γ is a spacelike elastic curve with
Lagrange multiplier 1 in pseudohyperbolic 2-space H2. Conversely, for each
such arc length parametrized curve T : [0, `] → H2 with geodesic curvature λ,
the timelike curve

(42) γ (t) =

t∫
0

(
1 + λ2 (s)

)
T (s) ds

defines a force–free strip with timelike directrix with

S−1 (γ) = 2

`∫
0

(
1 + λ2

)
dt = 2` (γ) .
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Proof. Suppose that a timelike curve γ defines a force-free strip with
timelike directrix with arc length parameter s. From (iii) of Lemma 2, we have

(43) < W1,W1 >=
(
1 + λ2

)2
4λ′2 + 1− 6λ2 + λ4.

On the other hand, if we choose the arclength t as t′ (s) = 1
1+λ2

for the tangent

vector T of γ, and write λ̃ (t) = λ (s (t)) in (43), then by Lemma 2, we obtain(
λ̃′
)2

+
1

4
λ̃4 −

(
1 +

1

2

)
λ̃2 =

1

4
(< W1,W1 > −1)

where 1
4 (< W1,W1 > −1) = const. Note also that λ̃ is geodesic curvature of

T as a consequence of Frenet equations (6). From (33), the tangent vector T
of γ corresponds to a spacelike elastic curve with Lagrange multiplier 1 on H2

of radius 1.

Conversely let T be such an arc length parametrized elastic curve with
geodesic curvature λ on pseudohyperbolic 2-space H2 as well as it is the tangent
vector of a timelike curve γ with Frenet frame {T,N,B} in R3

1. Then the
Darboux trihedron of T is {N,−T,B} and derivative formulas of the Darboux
frame are

(44)
N ′ = −T + λB,
−T ′ = N,
B′ = −λN.

If we consider the spacelike curve T having a reparametrization with an arc
length s, it has ds

dt = 1 + λ2, the following provides a timelike curve:

γ (t) =

t∫
0

(
1 + λ2 (s)

)
T (s) ds.

By using equations (44), the curvature and modified torsion of γ can be stated
as

(45) κγ =
1

1 + λ2
and λγ = −λ.

Substituting (45) in the equation (23), we conclude that

a1 = −1

2

(
κ2
(
1 + λ2

)2 − 1
)

= 0.

On the other hand, for the curve γ̃ (s) = γ (t (s)) , we obtain

(46)
< J, J > −1

4
=
(
λ′
)2

+
1

4
λ4 −

(
1 +

1

2

)
λ2.
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Equation (46) shows that < J, J > is conserved, since T is a spacelike elastic
curve with Lagrange multiplier 1 in H2. It then follows from Lemma 2 that
the timelike curve γ defines a force-free strip with timelike directrix. �

Pinkall shows that each closed spherical elastic curve with Lagrange mul-
tiplier 1 corresponds to a Willmore torus in S3 by using standard Hopf fibre
π : S3 → S2. He finds that there is the unique Willmore-Hopf tori coming from
an elastica in S2 with constant curvature (actually a geodesic) [19]. Barros et
al. also obtain Pinkall’s result by a straightforward computation in anti-de
Sitter 3-space H3

1 . In the anti-de Sitter world, a Hopf torus Mβ is a Willmore
surface in H3

1 if and only if β is an elastic curve in H2 with λ = −4. However,
there is no (Lorentzian) Willmore Hopf torus in H3

1 , because there is no closed
(−4)−elastic curve in H2 [1]. On the other hand, Barros et al. showed that
a Hopf cylinder Mβ is a Willmore surface in H3

1 if and only if β is an elastic
curve in H2 [1, 2]. This latter fact implies that if the tangent vector T of a
timelike curve is a spacelike elastic curve in H2, we can reparametrize all lifted
to H3

1 along the curve (42) that in turn provides the following result.

Corollary 1. Let the timelike curve (42) define a force-free strip with
timelike directrix. Then, the semi-Riemannian Hopf cylinder associated to the
tangent image T of the timelike curve (42) is a Willmore surface in anti-de
Sitter 3-space H3

1 .
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