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The hyper Zagreb index is a kind of extensions of Zagreb indices, used for pre-
dicting physicochemical properties of organic compounds. Given a graph G =
(V (G), E(G)), the first hyper-Zagreb index is the sum of the square of edge
degree over edge set E(G) and defined as HM1(G) =

∑
e=uv∈E(G) d(e)2, where

d(e) = d(u) + d(v) is the edge degree. In this work, we define the second hyper-
Zagreb index on the adjacent edges as HM2(G) =

∑
e∼f d(e)d(f), where e ∼ f

represents the adjacent edges of G. By inequalities, we explore some upper and
lower bounds of these hyper-Zagreb indices, and provide the relation between
Zagreb indices and hyper Zagreb indices.
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1. INTRODUCTION

The graphs G = (V (G), E(G)) considered in this paper are finite, loopless
and contain no multiple edges. Given a graph G = (V,E), V and E represent
the set of vertices and the set of edges with n = |V | vertices and m = |E|
edges, respectively. For a vertex u ∈ V , the number of vertices adjacent with
u is called its degree d(u). In a graph G, 4 and δ represent the maximum and
the minimum degree, respectively.

In 1947, Harold Wiener introduced famous the Wiener index, a most wi-
dely known topological descriptor [31]. The Winner index is the oldest and
one of the most popular molecular structure descriptors, well correlated with
many physical and chemical properties of a variety of classes of chemical com-
pounds. Based on the success on the Wiener index, many topological indices
have been introduced. Almost forty years ago, Gutman et al. defined the
important degree-based topological indices: the first and second Zagreb indi-
ces [10]. These are defined as

M1(G) =
∑

v∈V (G)

d(v)2,M2(G) =
∑

uv∈E(G)

d(u)d(v).
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In 2004, Milic̆ević [19] reformulated these Zagreb indices in terms of edge
degrees, d(e) = d(u) + d(v) − 2, for e = uv and defined reformulated Zagreb
indices,

EM1(G) =
∑

e∈E(G)

d(e)2, EM2(G) =
∑
e∼f

d(e)d(f).

In 2013, Shirdel et al. [24] defined the first hyper Zagreb index as follows,

HM1(G) =
∑

e∈E(G)

d(e)2,

where d(e) = d(u) + d(v). In 2016, Jamil et al. [8] improved and extended
Shirdel’s results. Based on this definition of edge degree, we define the second
hyper Zagreb index as follows,

HM2(G) =
∑
e∼f

d(e)d(f),

where e ∼ f represents the adjacent edges of G. Furthermore, G is called
regular if every vertex has the same degree and edge degree regular if every
edge has the same degree, respectively.

These graph invariants, based on vertex-degrees and edge-degrees of a
graph, are widely used in theoretical chemistry. For applications of Zagreb
indices in QSPR/QSAR and latest results, refer to [1–3,6,7,9,12–17,21,22,25–
30,32].

As a fundamental dynamical processing system, the basis of graph struc-
ture has received considerable interest from the scientific community. Recent
work shows that the key quantity-degree-based topological indices to a given
graph class on uncorrelated random scale-free networks is qualitatively reliant
on the heterogeneity of network structure. However, in addition to the trans-
formations of these graph basis, most real system models (topological indices)
are also characterized by degree correlations. In this paper, we explore some
properties of hyper Zagreb indices in terms of the number of vertices n, the
number of edges m, maximum and minimum degree 4, δ, respectively. Also
we provide the relation between hyper Zagreb indices and first Zagreb index
M1(G).

2. PRELIMINARIES AND MAIN RESULTS

After introducing the construction and structural properties of degree-
based topological indices, we will provide our main results by presenting their
inequalities.
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Theorem 1. Let G be a graph with n number of vertices and m number
of edges, then

δ2 ≤ HM1(G)

4m
≤ 42,

the left and right equalities hold if and only if G is δ-regular and 4-regular,
respectively.

Proof. Note that δ ≤ d(vi) ≤ 4, i = 1, 2, · · · , n. Then

2δ ≤ d(ej) ≤ 24, j = 1, 2, · · · ,m.

By the definition of the first hyper Zagreb index, we have

δ2 ≤ HM1(G)

4m
≤ 42.

Clearly, the equalities hold if and only if G is δ-regular and 4-regular. In
particular, if G is general regular connected graph, then δ(G) = 2 and 4(G) =
n− 1. �

Theorem 2. Let G be a graph with m edges, then

HM1(G) ≥ M1(G)2

m
,

the equality holds if and only if G is edge degree regular.

Proof. Let d(ei) be the edge degree of G. By Cauchy-Schwartz inequality,
we obtain

[d(e1)
2 + d(e2)

2 + · · ·+ d(em)2][12 + 12 + · · ·+ 12]

≥ [d(e1) · 1 + d(e2) · 1 + · · ·+ d(em) · 1]2.

Note that
∑

e∈E(G) d(e) =
∑

v∈V (G) d(v)2. By the concept of M1(G), we obtain
the relation between HM1(G) and M1(G) below.

HM1(G) ·m ≥M1(G)2,

that is,

HM1(G) ≥ M1(G)2

m
.

Clearly, the equality holds if and only if every edge has the same degree, that
is, G is edge degree regular. �

Theorem 3. Let G be a graph with n vertices and m edges, then

HM1(G) ≤M1(G)(m+ 2δ − 1)− 2m(m− 1)δ,

the equality holds if and only if G is regular.
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Proof. We keep the same notations as [5]. Let d(ei)µi be the sum of
degrees of the edges adjacent to the edge ei. We have

d(ei)µi =
∑
ei∼ej

d(ej) ≤
m∑
i=1

d(ei)− d(ei)− (m− 1− d(ei))2δ.

Thus,

HM1(G) =
∑

ei∈E(G)

d(ei)
2 =

m∑
i=1

d(ei)µi

≤
m∑
i=1

[
m∑
i=1

d(ei)− d(ei)− (m− d(ei))2δ]

= M1(G)(m+ 2δ − 1)− 2m(m− 1)δ.

Clearly, the equality holds if and only if G is regular. �

By the results of [11] that M1(G) ≤ 2m(4+δ)−n4δ, where the equality
holds if and only if G is regular, we have the following corollary.

Corollary 1. Let G be a graph with n vertices and m edges, then

HM1(G) ≤ (2m(4+ δ)− n4δ)(m+ 2δ − 1)− 2m(m− 1)(δ − 1),

where the equality holds if and only if G is regular.

Theorem 4. Let G be a graph with n vertices, m edges and minimum
degree δ ≥ 2, then

HM1(G) ≤ (4+ δ)2

4m4δ
M1(G)2,

the equality holds if and only if G is a regular graph, or there are exactly mδ
4+δ

edges of degree 24 and m4
4+δ edges of degree 2δ such that (4+ δ) divides mδ.

Proof. If a, a1, a2, · · · , am and b, b1, b2, · · · , bm are positive real numbers
such that a ≤ ai ≤ A, b ≤ bi ≤ B for 1 ≤ i ≤ m with a < A and b < B, by
Pólya-Szegó Inequality [20], we have

m∑
i=1

ai
2 ·

m∑
i=1

bi
2 ≤ 1

4

(√AB

ab
+

√
ab

AB

)2
·
( m∑
i=1

aibi

)2
,

and the equality holds if and only if the numbers

k =
A
a

A
a + B

b

, l =
B
b

A
a + B

b

are integers, a = a1 = a2 = · · · = ak; A = ak+1 = ak+2 = · · · = am and
B = b1 = b2 = · · · = bl; b = bl+1 = bl+2 = · · · = bm. If we allow a = A or
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b = B, the equality holds if AB = ab, i.e., A = a = a1 = a2 = · · · = am and
B = b = b1 = b2 = · · · , bm. By setting the values ai = 1 and bi = d(ei) for
i = 1, 2, · · · ,m, we obtain

m∑
i=1

12 ·
m∑
i=1

d(ei)
2 ≤ (AB + ab)2

4ABab
·
( m∑
i=1

d(ei)
)2
.

So,

mHM1(G) ≤ (AB + ab)2

4ABab
·M1(G)2.

Now since a ≤ ai ≤ A, we have a = A = 1 and since b ≤ bi ≤ B, we have
b = 2δ and B = 24. Hence,

HM1(G) ≤ (24+ 2δ)2

164δ
M1(G)2,

which is the expected result. In the last expression, the equality holds if and
only if G is a regular graph, or there are exactly mδ

4+δ edges of degree 24 and
m4
4+δ edges of degree 2δ such that (4+ δ) divides mδ. �

Corollary 2. Let G be a graph with n vertices, m edges and minimum
degree δ ≥ 2, then

HM1(G) ≤ (n+ 1)2

8m(n− 1)
M1(G)2,

the equality holds if G has exactly m
n−1 edges of degree 2(n-2) and m(n−2)

n−1 edges
of degree 2 such that n-1 divides m.

Proof. Note that
(4+ δ)2

4δ
=
4
δ

+
δ

4
+ 2.

By Theorem 4, we have

HM1(G) ≤
[4
δ

+
δ

4
+ 2
]
M1(G)2.

As the function f(x) = x + 1
x is increasing for x ≥ 1, so

[
4
δ + δ

4 + 2
]

is

increasing for 4δ ≥ 1. Now for δ ≥ 2, 1 ≤ 4δ ≤
n−1
2 . So,

[
4
δ + δ

4 + 2
]
≤ (n+1)2

2(n−1) .

So,

HM1(G) ≤ (n+ 1)2

8m(n− 1)
M1(G)2,

the equality holds if G has exactly m
n−1 edges of degree 2(n-2) and m(n−2)

n−1 edges
of degree 2 such that n− 1 divides m. �
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Corollary 3. Let G be a graph with n vertices and m edges, then

HM1(G) ≤ m3(n+ 1)6

16n2(n− 1)2
,

the equality holds if and only if G ∼= K3.

Proof. Note that [11] M1(G) ≤ m2(n+1)2

2n(n−1) , for δ ≥ 2 with the equality
holding if and only if G ∼= K3. Thus, Corollary 2 yields the result. �

Theorem 5. Let G be a graph with n vertices and m edges, then

HM1(G) ≤ 2(4+ δ)M1(G)− 4m4δ,

the equality holds if and only if G is a regular graph.

Proof. Suppose ai, bi, p and P are real numbers such that pai ≤ bi ≤ Pai
for i = 1, 2, · · · ,m, then we have Diaz-Metcalf inequality [23],

m∑
i=1

b2i + pP
m∑
i=1

a2i ≤ (p+ P )
m∑
i=1

aibi,

and the equality holds if and only if bi = pai or bi = Pai for every i =
1, 2, · · · ,m. By setting ai = 1 and bi = d(ei), for i = 1, 2, · · · ,m, from the
above inequality we obtain

m∑
i=1

d(ei)
2 + 24 · 2δ

m∑
i=1

12 ≤ 2(4+ δ)

m∑
i=1

d(ei).

and

HM1(G) ≤ 2(4+ δ)M1(G)− 4m4δ.

Thus, the equality holds if and only if G is a regular graph. �

By the results of [11] we have, M1(G) ≤ 2m(4 + δ) − n4δ, with the
equality holding if and only if G is regular. So, we have the following result:

Corollary 4. Let G be a graph with n vertices and m edges, then

HM1(G) ≤ 4m(4+ δ)2 −4δ(n+ 4m).

Theorem 6. Let G be a graph with n vertices and m edges, then

δ2 ≤ HM2(G)

2(M1(G)− 2m)
≤ 42,

the equality holds if and only G is a regular graph.
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Proof. The number of pairs of edges which have a common end point is∑n
i=1

(
di
2

)
= 1

2M1(G) − 2m. Also, 2δ ≤ d(ej) ≤ 24, for j = 1, 2, · · · ,m.

So, from the definition of second hyper Zagreb index, we have

4
(1

2
M1(G)−m

)
δ2 ≤ HM2(G) ≤ 4

(1

2
M1(G)−m

)
42,

and

δ2 ≤ HM2(G)

2(M1(G)− 2m)
≤ 42,

the equality holds if and only if G is a regular graph. �

Theorem 7. Let G be a graph with n vertices and m edges, then

HM2(G) ≥ M1(G)3

2m2
,

the equality holds if and only if G is regular.

Proof. For arithmetic and geometric mean inequality,

1

N

∑
ei∼ej

d(ei)d(ej) ≥
[ ∏
ei∼ej

d(ei)d(ej)
] 1

N
=
[ m∏
i=1

d(ei)
d(ei)

] 1
N
,

where N = 1
2M1(G). Suppose that L =

∏m
i=1 d(ei)

d(ei). Taking natural loga-
rithm on both sides, we obtain

ln L =

m∑
i−1

d(ei)ln d(ei) ≥
m∑
i=1

d(ei)ln
1

m

m∑
i=1

d(ei),

and

L ≥
(M1(G)

m

)M1(G)
.

Hence,

HM2(G) ≥ N
[M1(G)

m

]M1(G)
N

=
M1(G)3

2m2
.

Clearly, the equality holds if and only if G is a regular graph. �

Theorem 8. Let G be a graph with n vertices and m edges, then

HM2(G) ≤ 1

2
M1(G)2 − δ(m− 1)M1(G) + (δ − 1

2
)HM1(G),

the equality holds if and only if G is regular.
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Proof. By the result of Theorem 3, we have

d(ei)µi =
∑
ei∼ej

d(ej) ≤
m∑
i=1

d(ei)− d(ei)− (m− 1− d(ei))2δ.

Thus

HM2(G) =
∑
ei∼ej

d(ei)d(ej) =
1

2

m∑
i=1

d(ei)
2µi =

1

2

m∑
i=1

d(ei)
( ∑
ei∼ej

d(ej)
)

≤ 1

2

m∑
i=1

d(ei)
( m∑
i=1

d(ei)− d(ei)− 2(m− 1− d(ei)δ)
)

=
1

2
M1(G)2 − 1

2
HM1(G)− δ(m− 1)M1(G) + δHM1(G).

The expected result is obtained from the above proof process.

Clearly, the equality holds when the graph G is regular. �

Corollary 5. Let G be a graph with n vertices, m edges and δ minimum
degree, then

HM2(G) ≤ 1

2
K2 −

(
δ(m− 1) + (δ − 1

2
)(m+ 2δ − 1)

)
K −m(m− 1)(2δ − 1)δ,

where K = M1(G) or K = 2m(4+ δ − 1)− n4δ with the equality if and only
if G is regular.

Proof. Using Theorem 3 and Theorem 8, we obtain the expected result
with K = M1(G). Moreover, we have M1(G) ≤ 2m(4+δ−1)+2m−n4δ [11]
with the equality holding if and only if G is regular, so the expected result
clearly follows for K = 2m(4+ δ − 1)− n4δ. �
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