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In this paper, we propose to define an atomic system induced by a unitary repre-
sentation 7 of a locally compact Hausdorff topological group on a Hilbert space.
As a consequence, we give a K-frame corresponding to a unitary representation
m, namely 7-K-frame. Besides, the dual of 7-K-frames are studied.
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1. INTRODUCTION AND BASIC DEFINITIONS

A family of local atoms with frame-like properties for a closed subspa-
ces Ho of a separable Hilbert space H was introduced in [17]. In contrast to
frames the building blocks for Hy do not necessarily belong to Hg. This defi-
nition arises from sampling theory [16,25,26]. Atomic systems for a bounded
linear operator K € B(H) as a generalization of families of local atoms, were
introduced by Gavruta [22]. Besides, Gavruta [22] shows that this concept is
equivalent to K-frames. We refer to [27] for more results on these concepts. In
addition, the authors generalized these concepts and gave some new results in
Hilbert spaces [11], Hilbert modules [12] and Banach spaces [13]. If K = Iy,
the identity operator on H, then K-frames arise naturally as a generalization
of the ordinary frames. For more details and applications of ordinary frames
see [6-10,15].

The concept of a generalization of frames to a family indexed by some
locally compact space endowed with a Radon measure was proposed by G.
Kaiser [23] and independently by Ali, Antoine and Gazeau [3]. These frames
are known as continuous frames. Gabardo and Han in [19] called them frames
associated with measurable spaces and in mathematical physics they are re-
ferred to as coherent states [3]. For more details and the basic definitions and
some results the reader can refer to [2,3,5,19,23].
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On the other hand, Gabardo and Han [20] introduced the frame repre-
sentations for group-like unitary systems. Also, Aldroubi, Larson, Tang and
Weber proposed frames arising from the action of a unitary representation of
a discrete countable abelian group [1].

In this paper, we are going to study atomic system and then K-frames
arising from the action of a unitary representation of locally compact Hausdorff
topological groups. In Section 2, atomic systems corresponding to a unitary
representation 7 on a locally compact and Hausdorff group G are defined. As
a result, m- K-frame, the K-frame corresponding to a unitary representation 7,
is introduced and its basic properties are studied. In Section 3, the dual of
m-K-frames as a continuous K-frame is studied.

Let us recall some definitions and basic properties of atomic systems,
K-frames and unitary representations that we need in the rest of the paper.

A sequence {u;};cy in the Hilbert space H is called an atomic system for
the bounded linear operator K on H if

(i) the series > . ycju; converges for all ¢ = (¢j)jen € ? = {(bj)jen :
> jeN || < oo}
(ii) there exists C' > 0 such that for every ¢ € H there exists a; = (a;)jen € I?
such that [al[;z < Cllt|| and Kt = 3,y aju;.
Gavruta [22] shows that these concepts are equivalent to K-frames. A sequence
{uj}jen in H is said to be a K-frame for H if there exist constants A,B > 0
such that

(1) AIIE* 0> <3 [, u)P < Bllo|?, (v e H).

jEN
The constants A and B in (1) are called the lower and the upper bounds of
{u;}jen, respectively.

Recall that a unitary representation of a locally compact Hausdorff to-
pological group G on a Hilbert space H, is a homomorphism mapping 7 from
a locally compact Hausdorff topological group G into the space of all unitary
operators on H,, U(H ), for which x — 7(x)u is (strongly) continuous from G
to H, for all u € H,. The left regular representation of G on L?(G) is defined
as follows

(ro(@)f)y) = fz71y), (z,y€G, feL*Q)).

Let m be a unitary representation of G on H, and L € B(H.). The
operator L is called intertwining operator, if Lw(z) = 7w(x)L holds, for all
x € G. The set of all such operators is denoted by C(7). An invariant subspace
for 7 is a closed subspace M of H, with the property that 7(z)M C M for
all x € G. The representation is said to be irreducible if there are exactly two
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trivial invariant subspaces (H, and 0), otherwise this is reducible. For more
details in unitary representations one can see [18].

Throughout this paper, GG is a locally compact Hausdorff topological
group with the left Haar measure u, and 7 is a unitary representation of G on
a Hilbert space H.

2. m-K-FRAMES

In this section, K-frames induced by a unitary representation are studied.
First we introduce an atomic system corresponding to a unitary representation
7 of a locally compact and Hausdorff group G.

Definition 2.1. Let K € B(H,) and u € Hr. 7(.)u is called a m-atomic
systern for K if the following conditions hold:
i) Jo f( Ju, v)du(x), v € Hy converges for all f € L*(G);
(11) for any t 6 HW, there exists g; € L?(G) such that

(#t.0) = [ ale) @y, opdn(e).
where ||g¢]| < C||t||, and C is a positive constant.

Note that the condition (7) in this definition says that 7(.)u is the 7-
Bessel.

Now we give a characterization of m-atomic systems. The proof of the
following theorem is similar to the discrete case of [21, Theorem 3| and we
omit it.

THEOREM 2.2. Let K € B(H) and w(.)u be m-Bessel for G with respect
to Hr. Then the following statements are equivalent.
(i) w(.)u is a w-atomic system for K;
(ii) there exist constants 0 < A < B < oo such that

AP < [ [(orle)Pduta) < BlolP, (e e
(iii) 7(.)u is w-Bessel and there exists w-Bessel w(.)v such that

(2) (Kt,w) = /G(tvW(Sﬂ)v><ﬁ($)uvw>du($)v (w € Hr);

(iv) Jo (v, m(z)u)Pdp(z) < co,v € Hy and there exists w-Bessel w(.)v such
that

(K*t,w) = /G<t,W(m)u)(ﬂ(m)@,m)du(m), (w e Hn).
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Now we are ready to introduce a K-frame corresponding to a unitary
representation 7.

Definition 2.3. Let K € B(Hr) and u € Hy. {n(x)u}zec (or simply
m(.)u) is said to be a m-K-frame with respect to G for H if there exist A, B > 0
such that

AllKo]? < /G (v, m(@)w)]*du(z) < Blloll?, (v € Ha).

The elements A and B are called the lower and upper frame bounds,
respectively.

If A= B = )\, then the m-K-frame 7(.)u is said to be a A-tight 7-K-
frame. In the special case A = B = 1, it is called a Parseval m-K-frame.
If 7(.)u possesses an upper frame bound, but not necessarily a lower frame
bound, we called it a m-K-Bessel (or m-Bessel).

Let 7(.)u be m-Bessel. Then it is well known that the analysis operator
Ty : Hr — L*(G) of (.)u defined by

(Ty)(x) = (v, m(x)u), (u,v € Hy, z€G),

is bounded. Also its adjoint, the synthesis operator, is as follows
3) (Tig.u) = [ a(@)r(a)u w)du(o)

for every w € H, and g € L*(G).
The operator S, := T, T, is called the frame operator of 7 (.)u, which is
of the form

(Syv,w) = /G<v,7r(m)u)<7r(x)u, w)dp(z),  (v,w € Hy).

The frame operator S, is bounded, positive and Al < S, < BI. The following
characterization of continuous frames has been given by Gabardo and Han [19].

LEMMA 2.4. Let (X,v) be a measure space and H a Hilbert space. Then a
mapping F : X — H is a continuous frame with lower and upper bounds A and
B, respectively, if and only if Tr : H — L*(X) defined by Tru(z) = (u, F(x))
18 bounded by B and bounded below, with lower bound A.

As a result of this lemma, one can see that for a family {7 (x)u},eq, the
operator T.r defined by (3) is bounded and onto if and only if 7(.)u is a 7-frame
with respect to G for H.

Recall that for Hilbert spaces H; and Hz, we denote by B(Hi, Hs) the
space of all bounded linear operators from H; into Hy and for L € B(H;, H2)
we denote by R(L) the range of L. Now we give a lemma for our next results.
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LEMMA 2.5 ([14]). Let Ly € B(Hy,H) and Ly € B(Hz,H). Then the
following statements are equivalent:
(i) R(L1) C R(Lo);
(ii) LiL; < CLoL% for some C > 0.

By analogy with the discrete frame, we give some characterizations of
m-K-frames.

THEOREM 2.6. Let 7(.)u be m-Bessel. Then the operator T, defined by
(3) is bounded and R(K) C R(T;) if and only if m(.)u is a w-K -frame.

Proof. By using Lemmas 2.4 and 2.5 and the fact that

1702 = /rw VPdu(x), (v e Hy),

we can prove this theorem easily. [

THEOREM 2.7. Let w(.)u be m-Bessel. Then 7(.)u is a w-K-frame if and
only if there exists A, B > 0 such that AKK* < S, < BI, where S, is the

m-frame operator of w(.)u. Moreover in this case || K|| < \/7%.

Proof. Since 7(.)u is a m-K-frame with respect to G for H., so
A0l < [ o m(e)Pdua) < BlolP. (0 € 1)

if and only if
A(KK*v,v) < (Syv,v) < B{v,v) (v € Hy)

For the last part, one can see that AK K* < BI, hence ||K|| < ,/% O

COROLLARY 2.8. Let w(.)u be m-Bessel. Then w()u is a w-K-frame if
1
and only if R(K) C R(S:), where S, is the w-frame operator of w(.)u.
Now we state the stability of m-K-frame.

PROPOSITION 2.9. Let 7(.)u be a w-K-frame with lower and upper frame
bounds A and B, respectively, and L € B(Hr) such that L € C(m) then w(.)Lu
is a T-LK-frame with lower and upper frame bounds A and B||L||?, respecti-
vely, and its w-frame operator is S,, = LS, L*, where S is the w-frame operator

for w()u.
Proof. Let v € H, then

/|v71' YLu)|?dpu(z) /|vL7T Y2 dp(z) /| *o, m(z)u)|du(z),
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so we have

Al|(LE) || = Al K*L|f?

IA

/G (v, () L) Pdpu()
B|L*o|[? < BI|L||lo]l>.

IN

For m-frame operator of 7 (.)Lu we have
LS, L*v = / (L*v, m(x)u) L (z)udp(z) = / (v, m(z)Lu)m(z) Ludp(x).
G G

Hence S’ = LS, L*. O

COROLLARY 2.10. Assume that K € B(Hr) NC(w). Let w(.)u be a 7-
frame with lower and upper frame bounds A and B, respectively, then m(.)Ku
is a m-K -frame with lower and upper frame bounds A and B||K||?, respectively.

We obtain the following necessary and sufficient condition under which
every m-K-frame is a m-frame in Hilbert spaces.

THEOREM 2.11. Suppose that w is irreducible, 7(.)u is a 7-K-frame, and
KK* € C(m) then w(.)u is a w-frame.

Proof. Since 7 is irreducible and K K* € C(m), by Schur’s Lemma, there
exists a constant C' such that KK* = CI. Thus, ||K*v||> = C||v||?>. Hence
every 7-K-frame is a m-frame by these hypotheses. [

2.1. =-K-DUALS
In this section, the dual of a m-K-frame as a continuous K-frame is stu-
died. Some results about the dual of K-frames can be found in [24].

Definition 2.12. Let 7(.)u and 7(.)v be two m-Bessel families which satisfy
(2). Then we say that 7(.)v is the m-K-dual of 7(.)u for G with respect to H.

We write m-dual instead of m-I-dual, when [ is the identity operator on
H... Note that S, 'm(.)u is the (standard) m-dual of 7(.)u and 7(.)v is a 7-K-
dual of 7(.)u if and only if 7T, = K.

PROPOSITION 2.13. Let 7w(.)u be a w-K-dual of w(.)v. Then w(.)u and
7(.)v are K-frame and K*-frame, respectively.

Proof. Let t € H, then

It = sup (Kt w)
leof=1

= sup
flwll=1

/ (w, 7)) (), t)dpa(z)
G
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< ||31|J|11:>1</\w7f w)|*dp(z ) </w7T o) [Pdu(x ))é

< VB s [l ( [ Iw.m@)0) Pauta >)2

[[w][=1

VB ([ 1w sty Pauta >)§,

where B is an upper bound of 7(.)u. It means that m(.)v is a K*-frame. By
the similar argument we can show that 7(.)u is a K-frame. O

IN

In the following theorem, 7-K-duals in any irreducible representation are
studied.

THEOREM 2.14. Let m be an irreducible representation and 7(.)v be a
m-K-dual of w(.)u. Then K must be a scalar multiple of the identity.

Proof. For z,y € G and g € L*(G), we have
") = [ gne)mmuda()

G

= / g(y)m(zy)udp(y)
G

_ / gz y)m(y)udu(y)
G

_ /G (mr(2)g)(y)m(y)udp(y)

= T,(rr(z)g).
On the other hand, for v € H, we have
(Tur(2)v)(y) = (m(x)v, 7(y)w)

(

(v, m(
= (Tw)
=
So

and
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These imply that
T, Tyr(x) = 7(x)T, T,
By Schur’s Lemma, there exists a constant A such that 77, = Ay, and so
K =T;T, = M, , with the following A
Mw,w) = (T T,w,w), (w e Hy),
that is, A = W Jo(w, m(@)u)(m(z)v, w)ydp(z). O

In a unimodular group, two m-frame vectors and their w-dual vectors have
an interesting relation.

PROPOSITION 2.15. Let G be unimodular, w(.)v be a w-dual of 7(.)u and
m()w be a w-dual of w(.)t for G with respect to Hr. Then (t,w) = (u,v).

Proof. Since G is unimodular, the left and right Haar measure coincide
and then we have

wh = [ {er) e w)dute)
— /(n(m1)t,v)(u,ﬂ($1)w>dﬂ(x)
G
_ / (u, m(z)w) (m(x)t, v)du(x)
G

= <ua U)
Note that the third equality holds since G is unimodular. [

In the following theorem, by using 7w-dual, we show that the range of the
analysis operator of a m-frame is a reproducing kernel Hilbert space and in
particular is closed. Recall that a Hilbert space H of complex-valued functions
on a set €2 is called a reproducing kernel Hilbert space if the evaluation functi-
onals E,(f) = f(2), z € Q, f € H, are bounded linear functionals (see [4] for
more details).

THEOREM 2.16. For a 7w-frame 7(.)u, the range R(Ty) of T, is a repro-
ducing kernel Hilbert space.

Proof. First we show that R(T,) is a Hilbert space. In so doing, it is
enough to show that R(T},) is a closed subspace of L?(G). Closedness of the
range R(T,) of the analysis operator follows immediately from the fact that 7,
is bounded from below.

Now let f € R(T,). Then there exists w € H, such that f = T,w. For y € G
and w € H, we have

(Tuw)(y) = (w,m(y)u)
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- /G (w, 7 (@)u) (Sy (@), 7 (y)u)dpa()
_ /G (Tow) () (x(y 1) Sy L (@), wydp(z)
- /Gf<x><w<y-1>S;1w<x>u,u>du<w>7

that is, f(y) = [ f(x)(w(y=1) S, ' (x)u, u)dp(x) which implies that R(T,) is
a reproducing kernel Hilbert space with kernel (r(y~1)S; 7 (z)u,u). O
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