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In this paper, we propose to define an atomic system induced by a unitary repre-
sentation π of a locally compact Hausdorff topological group on a Hilbert space.
As a consequence, we give a K-frame corresponding to a unitary representation
π, namely π-K-frame. Besides, the dual of π-K-frames are studied.
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1. INTRODUCTION AND BASIC DEFINITIONS

A family of local atoms with frame-like properties for a closed subspa-
ces H0 of a separable Hilbert space H was introduced in [17]. In contrast to
frames the building blocks for H0 do not necessarily belong to H0. This defi-
nition arises from sampling theory [16, 25, 26]. Atomic systems for a bounded
linear operator K ∈ B(H) as a generalization of families of local atoms, were
introduced by Găvruţa [22]. Besides, Găvruţa [22] shows that this concept is
equivalent to K-frames. We refer to [27] for more results on these concepts. In
addition, the authors generalized these concepts and gave some new results in
Hilbert spaces [11], Hilbert modules [12] and Banach spaces [13]. If K = IH,
the identity operator on H, then K-frames arise naturally as a generalization
of the ordinary frames. For more details and applications of ordinary frames
see [6–10,15].

The concept of a generalization of frames to a family indexed by some
locally compact space endowed with a Radon measure was proposed by G.
Kaiser [23] and independently by Ali, Antoine and Gazeau [3]. These frames
are known as continuous frames. Gabardo and Han in [19] called them frames
associated with measurable spaces and in mathematical physics they are re-
ferred to as coherent states [3]. For more details and the basic definitions and
some results the reader can refer to [2, 3, 5, 19,23].
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On the other hand, Gabardo and Han [20] introduced the frame repre-
sentations for group-like unitary systems. Also, Aldroubi, Larson, Tang and
Weber proposed frames arising from the action of a unitary representation of
a discrete countable abelian group [1].

In this paper, we are going to study atomic system and then K-frames
arising from the action of a unitary representation of locally compact Hausdorff
topological groups. In Section 2, atomic systems corresponding to a unitary
representation π on a locally compact and Hausdorff group G are defined. As
a result, π-K-frame, the K-frame corresponding to a unitary representation π,
is introduced and its basic properties are studied. In Section 3, the dual of
π-K-frames as a continuous K-frame is studied.

Let us recall some definitions and basic properties of atomic systems,
K-frames and unitary representations that we need in the rest of the paper.

A sequence {uj}j∈N in the Hilbert space H is called an atomic system for
the bounded linear operator K on H if

(i) the series
∑

j∈N cjuj converges for all c = (cj)j∈N ∈ l2 := {(bj)j∈N :∑
j∈N |bj |2 <∞};

(ii) there exists C > 0 such that for every t ∈ H there exists at = (aj)j∈N ∈ l2
such that ‖at‖l2 ≤ C‖t‖ and Kt =

∑
j∈N ajuj .

Găvruţa [22] shows that these concepts are equivalent to K-frames. A sequence
{uj}j∈N in H is said to be a K-frame for H if there exist constants A,B > 0
such that

A‖K∗v‖2 ≤
∑
j∈N
|〈v, uj〉|2 ≤ B‖v‖2, (v ∈ H).(1)

The constants A and B in (1) are called the lower and the upper bounds of
{uj}j∈N, respectively.

Recall that a unitary representation of a locally compact Hausdorff to-
pological group G on a Hilbert space Hπ is a homomorphism mapping π from
a locally compact Hausdorff topological group G into the space of all unitary
operators on Hπ, U(Hπ), for which x 7→ π(x)u is (strongly) continuous from G
to Hπ for all u ∈ Hπ. The left regular representation of G on L2(G) is defined
as follows

(πL(x)f)(y) = f(x−1y),
(
x, y ∈ G, f ∈ L2(G)

)
.

Let π be a unitary representation of G on Hπ and L ∈ B(Hπ). The
operator L is called intertwining operator, if Lπ(x) = π(x)L holds, for all
x ∈ G. The set of all such operators is denoted by C(π). An invariant subspace
for π is a closed subspace M of Hπ with the property that π(x)M ⊂ M for
all x ∈ G. The representation is said to be irreducible if there are exactly two
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trivial invariant subspaces (Hπ and 0), otherwise this is reducible. For more
details in unitary representations one can see [18].

Throughout this paper, G is a locally compact Hausdorff topological
group with the left Haar measure µ, and π is a unitary representation of G on
a Hilbert space Hπ.

2. π-K-FRAMES

In this section, K-frames induced by a unitary representation are studied.
First we introduce an atomic system corresponding to a unitary representation
π of a locally compact and Hausdorff group G.

Definition 2.1. Let K ∈ B(Hπ) and u ∈ Hπ. π(.)u is called a π-atomic
system for K if the following conditions hold:

(i)
∫
G f(x)〈π(x)u, v〉dµ(x), v ∈ Hπ converges for all f ∈ L2(G);

(ii) for any t ∈ Hπ, there exists gt ∈ L2(G) such that

〈Kt, v〉 =

∫
G
gt(x)〈π(x)u, v〉dµ(x),

where ‖gt‖ ≤ C‖t‖, and C is a positive constant.

Note that the condition (i) in this definition says that π(.)u is the π-
Bessel.

Now we give a characterization of π-atomic systems. The proof of the
following theorem is similar to the discrete case of [21, Theorem 3] and we
omit it.

Theorem 2.2. Let K ∈ B(H) and π(.)u be π-Bessel for G with respect
to Hπ. Then the following statements are equivalent.

(i) π(.)u is a π-atomic system for K;

(ii) there exist constants 0 < A ≤ B <∞ such that

A‖K∗v‖2 ≤
∫
G
|〈v, π(x)u〉|2dµ(x) ≤ B‖v‖2, (v ∈ Hπ);

(iii) π(.)u is π-Bessel and there exists π-Bessel π(.)v such that

〈Kt,w〉 =

∫
G
〈t, π(x)v〉〈π(x)u,w〉dµ(x), (w ∈ Hπ);(2)

(iv)
∫
G |〈v, π(x)u〉|2dµ(x) < ∞, v ∈ Hπ and there exists π-Bessel π(.)v such

that

〈K∗t, w〉 =

∫
G
〈t, π(x)u〉〈π(x)v, w〉dµ(x), (w ∈ Hπ).
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Now we are ready to introduce a K-frame corresponding to a unitary
representation π.

Definition 2.3. Let K ∈ B(Hπ) and u ∈ Hπ. {π(x)u}x∈G (or simply
π(.)u) is said to be a π-K-frame with respect to G forHπ if there exist A,B > 0
such that

A||K∗v||2 ≤
∫
G
|〈v, π(x)u〉|2dµ(x) ≤ B||v||2, (v ∈ Hπ).

The elements A and B are called the lower and upper frame bounds,
respectively.

If A = B = λ, then the π-K-frame π(.)u is said to be a λ-tight π-K-
frame. In the special case A = B = 1, it is called a Parseval π-K-frame.
If π(.)u possesses an upper frame bound, but not necessarily a lower frame
bound, we called it a π-K-Bessel (or π-Bessel).

Let π(.)u be π-Bessel. Then it is well known that the analysis operator
Tu : Hπ → L2(G) of π(.)u defined by

(Tuv)(x) = 〈v, π(x)u〉, (u, v ∈ Hπ, x ∈ G),

is bounded. Also its adjoint, the synthesis operator, is as follows

〈T ∗ug, w〉 =

∫
G
g(x)〈π(x)u,w〉dµ(x),(3)

for every w ∈ Hπ and g ∈ L2(G).

The operator Su := T ∗uTu is called the frame operator of π(.)u, which is
of the form

〈Suv, w〉 =

∫
G
〈v, π(x)u〉〈π(x)u,w〉dµ(x), (v, w ∈ Hπ).

The frame operator Su is bounded, positive and AI ≤ Su ≤ BI. The following
characterization of continuous frames has been given by Gabardo and Han [19].

Lemma 2.4. Let (X, ν) be a measure space and H a Hilbert space. Then a
mapping F : X → H is a continuous frame with lower and upper bounds A and
B, respectively, if and only if TF : H → L2(X) defined by TFu(x) = 〈u, F (x)〉
is bounded by B and bounded below, with lower bound A.

As a result of this lemma, one can see that for a family {π(x)u}x∈G, the
operator T ∗u defined by (3) is bounded and onto if and only if π(.)u is a π-frame
with respect to G for Hπ.

Recall that for Hilbert spaces H1 and H2, we denote by B(H1, H2) the
space of all bounded linear operators from H1 into H2 and for L ∈ B(H1, H2)
we denote by R(L) the range of L. Now we give a lemma for our next results.
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Lemma 2.5 ([14]). Let L1 ∈ B(H1, H) and L2 ∈ B(H2, H). Then the
following statements are equivalent:

(i) R(L1) ⊂ R(L2);

(ii) L1L
∗
1 ≤ CL2L

∗
2 for some C ≥ 0.

By analogy with the discrete frame, we give some characterizations of
π-K-frames.

Theorem 2.6. Let π(.)u be π-Bessel. Then the operator T ∗u defined by
(3) is bounded and R(K) ⊂ R(T ∗u ) if and only if π(.)u is a π-K-frame.

Proof. By using Lemmas 2.4 and 2.5 and the fact that

‖Tuv‖2 =

∫
G
|〈v, π(x)u〉|2dµ(x), (v ∈ Hπ),

we can prove this theorem easily. �

Theorem 2.7. Let π(.)u be π-Bessel. Then π(.)u is a π-K-frame if and
only if there exists A,B > 0 such that AKK∗ ≤ Su ≤ BI, where Su is the

π-frame operator of π(.)u. Moreover in this case ||K|| ≤
√

B
A .

Proof. Since π(.)u is a π-K-frame with respect to G for Hπ, so

A||K∗v||2 ≤
∫
G
|〈v, π(x)u〉|2dµ(x) ≤ B||v||2, (v ∈ Hπ)

if and only if

A〈KK∗v, v〉 ≤ 〈Suv, v〉 ≤ B〈v, v〉 (v ∈ Hπ)

For the last part, one can see that AKK∗ ≤ BI, hence ||K|| ≤
√

B
A . �

Corollary 2.8. Let π(.)u be π-Bessel. Then π(.)u is a π-K-frame if

and only if R(K) ⊂ R(S
1
2
u ), where Su is the π-frame operator of π(.)u.

Now we state the stability of π-K-frame.

Proposition 2.9. Let π(.)u be a π-K-frame with lower and upper frame
bounds A and B, respectively, and L ∈ B(Hπ) such that L ∈ C(π) then π(.)Lu
is a π-LK-frame with lower and upper frame bounds A and B||L||2, respecti-
vely, and its π-frame operator is S′u = LSuL

∗, where S is the π-frame operator
for π(.)u.

Proof. Let v ∈ Hπ then∫
G
|〈v, π(x)Lu〉|2dµ(x) =

∫
G
|〈v, Lπ(x)u〉|2dµ(x) =

∫
G
|〈L∗v, π(x)u〉|2dµ(x),
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so we have

A||(LK)∗v||2 = A||K∗L∗v||2 ≤
∫
G
|〈v, π(x)Lu〉|2dµ(x)

≤ B||L∗v||2 ≤ B||L||2||v||2.

For π-frame operator of π(.)Lu we have

LSuL
∗v =

∫
G
〈L∗v, π(x)u〉Lπ(x)udµ(x) =

∫
G
〈v, π(x)Lu〉π(x)Ludµ(x).

Hence S′ = LSuL
∗. �

Corollary 2.10. Assume that K ∈ B(Hπ) ∩ C(π). Let π(.)u be a π-
frame with lower and upper frame bounds A and B, respectively, then π(.)Ku
is a π-K-frame with lower and upper frame bounds A and B||K||2, respectively.

We obtain the following necessary and sufficient condition under which
every π-K-frame is a π-frame in Hilbert spaces.

Theorem 2.11. Suppose that π is irreducible, π(.)u is a π-K-frame, and
KK∗ ∈ C(π) then π(.)u is a π-frame.

Proof. Since π is irreducible and KK∗ ∈ C(π), by Schur’s Lemma, there
exists a constant C such that KK∗ = CI. Thus, ||K∗v||2 = C||v||2. Hence
every π-K-frame is a π-frame by these hypotheses. �

2.1. π-K-DUALS

In this section, the dual of a π-K-frame as a continuous K-frame is stu-
died. Some results about the dual of K-frames can be found in [24].

Definition 2.12. Let π(.)u and π(.)v be two π-Bessel families which satisfy
(2). Then we say that π(.)v is the π-K-dual of π(.)u for G with respect to Hπ.

We write π-dual instead of π-I-dual, when I is the identity operator on
Hπ. Note that S−1u π(.)u is the (standard) π-dual of π(.)u and π(.)v is a π-K-
dual of π(.)u if and only if T ∗uTv = K.

Proposition 2.13. Let π(.)u be a π-K-dual of π(.)v. Then π(.)u and
π(.)v are K-frame and K∗-frame, respectively.

Proof. Let t ∈ Hπ, then

‖Kt‖ = sup
‖w‖=1

|〈Kt,w〉|

= sup
‖w‖=1

∣∣∣∣∫
G
〈w, π(x)u〉〈π(x)v, t〉dµ(x)

∣∣∣∣
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≤ sup
‖w‖=1

(∫
G
|〈w, π(x)u〉|2dµ(x)

) 1
2
(∫

G
|〈w, π(x)v〉|2dµ(x)

) 1
2

≤
√
B sup
‖w‖=1

‖w‖
(∫

G
|〈w, π(x)v〉|2dµ(x)

) 1
2

≤
√
B

(∫
G
|〈w, π(x)v〉|2dµ(x)

) 1
2

,

where B is an upper bound of π(.)u. It means that π(.)v is a K∗-frame. By
the similar argument we can show that π(.)u is a K-frame. �

In the following theorem, π-K-duals in any irreducible representation are
studied.

Theorem 2.14. Let π be an irreducible representation and π(.)v be a
π-K-dual of π(.)u. Then K must be a scalar multiple of the identity.

Proof. For x, y ∈ G and g ∈ L2(G), we have

π(x)T ∗ug =

∫
G
g(y)π(x)π(y)udµ(y)

=

∫
G
g(y)π(xy)udµ(y)

=

∫
G
g(x−1y)π(y)udµ(y)

=

∫
G

(πL(x)g)(y)π(y)udµ(y)

= T ∗u (πL(x)g).

On the other hand, for v ∈ Hπ we have(
Tuπ(x)v

)
(y) = 〈π(x)v, π(y)u〉

= 〈v, π(x−1y)u〉
=

(
Tuv

)
(x−1y)

=
(
πL(x)Tuv

)
(y).

So

T ∗v πL(x)Tu = π(x)T ∗v Tu.

and

T ∗v Tuπ(x) = T ∗v πL(x)Tu.
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These imply that

T ∗v Tuπ(x) = π(x)T ∗v Tu.

By Schur’s Lemma, there exists a constant λ such that T ∗v Tu = λIHπ and so
K = T ∗uTv = λIHπ , with the following λ

λ〈w,w〉 = 〈T ∗v Tuw,w〉, (w ∈ Hπ),

that is, λ = 1
‖w‖2

∫
G〈w, π(x)u〉〈π(x)v, w〉dµ(x). �

In a unimodular group, two π-frame vectors and their π-dual vectors have
an interesting relation.

Proposition 2.15. Let G be unimodular, π(.)v be a π-dual of π(.)u and
π(.)w be a π-dual of π(.)t for G with respect to Hπ. Then 〈t, w〉 = 〈u, v〉.

Proof. Since G is unimodular, the left and right Haar measure coincide
and then we have

〈t, w〉 =

∫
G
〈t, π(x)v〉〈π(x)u,w〉dµ(x)

=

∫
G
〈π(x−1)t, v〉〈u, π(x−1)w〉dµ(x)

=

∫
G
〈u, π(x)w〉〈π(x)t, v〉dµ(x)

= 〈u, v〉

Note that the third equality holds since G is unimodular. �

In the following theorem, by using π-dual, we show that the range of the
analysis operator of a π-frame is a reproducing kernel Hilbert space and in
particular is closed. Recall that a Hilbert space H of complex-valued functions
on a set Ω is called a reproducing kernel Hilbert space if the evaluation functi-
onals Ez(f) = f(z), z ∈ Ω, f ∈ H, are bounded linear functionals (see [4] for
more details).

Theorem 2.16. For a π-frame π(.)u, the range R(Tu) of Tu is a repro-
ducing kernel Hilbert space.

Proof. First we show that R(Tu) is a Hilbert space. In so doing, it is
enough to show that R(Tu) is a closed subspace of L2(G). Closedness of the
range R(Tu) of the analysis operator follows immediately from the fact that Tu
is bounded from below.
Now let f ∈ R(Tu). Then there exists w ∈ Hπ such that f = Tuw. For y ∈ G
and w ∈ Hπ we have

(Tuw)(y) = 〈w, π(y)u〉
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=

∫
G
〈w, π(x)u〉〈S−1u π(x)u, π(y)u〉dµ(x)

=

∫
G

(Tuw)(x)〈π(y−1)S−1u π(x)u, u〉dµ(x)

=

∫
G
f(x)〈π(y−1)S−1u π(x)u, u〉dµ(x),

that is, f(y) =
∫
G f(x)〈π(y−1)S−1u π(x)u, u〉dµ(x) which implies that R(Tu) is

a reproducing kernel Hilbert space with kernel 〈π(y−1)S−1u π(x)u, u〉. �
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