K-FRAMES AND UNITARY REPRESENTATIONS

BAHRAM DASTOURIAN and MOHAMMAD JANFADA*

Communicated by Communicated by Dan Timotin

In this paper, we propose to define an atomic system induced by a unitary representation π of a locally compact Hausdorff topological group on a Hilbert space. As a consequence, we give a K-frame corresponding to a unitary representation π , namely π -K-frame. Besides, the dual of π -K-frames are studied.

AMS 2010 Subject Classification: 42C15, 43A75.

Key words: unitary representation, locally compact Hausdorff topological group, atomic system, π -K-frame, π -K-dual.

1. INTRODUCTION AND BASIC DEFINITIONS

A family of local atoms with frame-like properties for a closed subspaces \mathcal{H}_0 of a separable Hilbert space \mathcal{H} was introduced in [17]. In contrast to frames the building blocks for \mathcal{H}_0 do not necessarily belong to \mathcal{H}_0 . This definition arises from sampling theory [16, 25, 26]. Atomic systems for a bounded linear operator $K \in B(\mathcal{H})$ as a generalization of families of local atoms, were introduced by Găvruța [22]. Besides, Găvruța [22] shows that this concept is equivalent to K-frames. We refer to [27] for more results on these concepts. In addition, the authors generalized these concepts and gave some new results in Hilbert spaces [11], Hilbert modules [12] and Banach spaces [13]. If $K = I_{\mathcal{H}}$, the identity operator on \mathcal{H} , then K-frames arise naturally as a generalization of the ordinary frames. For more details and applications of ordinary frames see [6–10, 15].

The concept of a generalization of frames to a family indexed by some locally compact space endowed with a Radon measure was proposed by G. Kaiser [23] and independently by Ali, Antoine and Gazeau [3]. These frames are known as continuous frames. Gabardo and Han in [19] called them frames associated with measurable spaces and in mathematical physics they are referred to as coherent states [3]. For more details and the basic definitions and some results the reader can refer to [2, 3, 5, 19, 23].

^{*} Corresponding author.

On the other hand, Gabardo and Han [20] introduced the frame representations for group-like unitary systems. Also, Aldroubi, Larson, Tang and Weber proposed frames arising from the action of a unitary representation of a discrete countable abelian group [1].

In this paper, we are going to study atomic system and then K-frames arising from the action of a unitary representation of locally compact Hausdorff topological groups. In Section 2, atomic systems corresponding to a unitary representation π on a locally compact and Hausdorff group G are defined. As a result, π -K-frame, the K-frame corresponding to a unitary representation π , is introduced and its basic properties are studied. In Section 3, the dual of π -K-frames as a continuous K-frame is studied.

Let us recall some definitions and basic properties of atomic systems, K-frames and unitary representations that we need in the rest of the paper.

A sequence $\{u_j\}_{j\in\mathbb{N}}$ in the Hilbert space \mathcal{H} is called an atomic system for the bounded linear operator K on \mathcal{H} if

- (i) the series $\sum_{j \in \mathbb{N}} c_j u_j$ converges for all $c = (c_j)_{j \in \mathbb{N}} \in l^2 := \{(b_j)_{j \in \mathbb{N}} : \sum_{j \in \mathbb{N}} |b_j|^2 < \infty\};$
- (ii) there exists C > 0 such that for every $t \in \mathcal{H}$ there exists $a_t = (a_j)_{j \in \mathbb{N}} \in l^2$ such that $||a_t||_{l^2} \leq C ||t||$ and $Kt = \sum_{j \in \mathbb{N}} a_j u_j$.

Găvruţa [22] shows that these concepts are equivalent to K-frames. A sequence $\{u_j\}_{j\in\mathbb{N}}$ in \mathcal{H} is said to be a K-frame for \mathcal{H} if there exist constants A, B > 0 such that

(1)
$$A\|K^*v\|^2 \le \sum_{j\in\mathbb{N}} |\langle v, u_j\rangle|^2 \le B\|v\|^2, \quad (v\in\mathcal{H}).$$

The constants A and B in (1) are called the lower and the upper bounds of $\{u_j\}_{j\in\mathbb{N}}$, respectively.

Recall that a unitary representation of a locally compact Hausdorff topological group G on a Hilbert space \mathcal{H}_{π} is a homomorphism mapping π from a locally compact Hausdorff topological group G into the space of all unitary operators on \mathcal{H}_{π} , $\mathcal{U}(\mathcal{H}_{\pi})$, for which $x \mapsto \pi(x)u$ is (strongly) continuous from Gto \mathcal{H}_{π} for all $u \in \mathcal{H}_{\pi}$. The left regular representation of G on $L^2(G)$ is defined as follows

$$(\pi_L(x)f)(y) = f(x^{-1}y), \quad (x, y \in G, f \in L^2(G)).$$

Let π be a unitary representation of G on \mathcal{H}_{π} and $L \in B(\mathcal{H}_{\pi})$. The operator L is called intertwining operator, if $L\pi(x) = \pi(x)L$ holds, for all $x \in G$. The set of all such operators is denoted by $\mathcal{C}(\pi)$. An invariant subspace for π is a closed subspace M of \mathcal{H}_{π} with the property that $\pi(x)M \subset M$ for all $x \in G$. The representation is said to be irreducible if there are exactly two trivial invariant subspaces (\mathcal{H}_{π} and 0), otherwise this is reducible. For more details in unitary representations one can see [18].

Throughout this paper, G is a locally compact Hausdorff topological group with the left Haar measure μ , and π is a unitary representation of G on a Hilbert space \mathcal{H}_{π} .

2. π -K-FRAMES

In this section, K-frames induced by a unitary representation are studied. First we introduce an atomic system corresponding to a unitary representation π of a locally compact and Hausdorff group G.

Definition 2.1. Let $K \in B(\mathcal{H}_{\pi})$ and $u \in \mathcal{H}_{\pi}$. $\pi(.)u$ is called a π -atomic system for K if the following conditions hold:

- (i) $\int_G f(x) \langle \pi(x)u, v \rangle d\mu(x), v \in \mathcal{H}_{\pi}$ converges for all $f \in L^2(G)$;
- (ii) for any $t \in \mathcal{H}_{\pi}$, there exists $g_t \in L^2(G)$ such that

$$\langle Kt, v \rangle = \int_G g_t(x) \langle \pi(x)u, v \rangle \mathrm{d}\mu(x),$$

where $||g_t|| \leq C||t||$, and C is a positive constant.

Note that the condition (i) in this definition says that $\pi(.)u$ is the π -Bessel.

Now we give a characterization of π -atomic systems. The proof of the following theorem is similar to the discrete case of [21, Theorem 3] and we omit it.

THEOREM 2.2. Let $K \in B(H)$ and $\pi(.)u$ be π -Bessel for G with respect to \mathcal{H}_{π} . Then the following statements are equivalent.

(i) $\pi(.)u$ is a π -atomic system for K;

<

(ii) there exist constants $0 < A \leq B < \infty$ such that

$$A\|K^*v\|^2 \le \int_G |\langle v, \pi(x)u\rangle|^2 \mathrm{d}\mu(x) \le B\|v\|^2, \quad (v \in \mathcal{H}_\pi);$$

(iii) $\pi(.)u$ is π -Bessel and there exists π -Bessel $\pi(.)v$ such that

(2)
$$\langle Kt, w \rangle = \int_G \langle t, \pi(x)v \rangle \langle \pi(x)u, w \rangle d\mu(x), \quad (w \in \mathcal{H}_\pi);$$

(iv) $\int_{G} |\langle v, \pi(x)u \rangle|^2 d\mu(x) < \infty, v \in \mathcal{H}_{\pi}$ and there exists π -Bessel $\pi(.)v$ such that

$$K^*t, w\rangle = \int_G \langle t, \pi(x)u \rangle \langle \pi(x)v, w \rangle \mathrm{d}\mu(x), \quad (w \in \mathcal{H}_\pi).$$

Now we are ready to introduce a K-frame corresponding to a unitary representation π .

Definition 2.3. Let $K \in B(\mathcal{H}_{\pi})$ and $u \in \mathcal{H}_{\pi}$. $\{\pi(x)u\}_{x \in G}$ (or simply $\pi(.)u$) is said to be a π -K-frame with respect to G for \mathcal{H}_{π} if there exist A, B > 0 such that

$$A||K^*v||^2 \le \int_G |\langle v, \pi(x)u\rangle|^2 \mathrm{d}\mu(x) \le B||v||^2, \quad (v \in \mathcal{H}_\pi).$$

The elements A and B are called the lower and upper frame bounds, respectively.

If $A = B = \lambda$, then the π -K-frame $\pi(.)u$ is said to be a λ -tight π -K-frame. In the special case A = B = 1, it is called a Parseval π -K-frame. If $\pi(.)u$ possesses an upper frame bound, but not necessarily a lower frame bound, we called it a π -K-Bessel (or π -Bessel).

Let $\pi(.)u$ be π -Bessel. Then it is well known that the analysis operator $T_u: \mathcal{H}_{\pi} \to L^2(G)$ of $\pi(.)u$ defined by

$$(T_u v)(x) = \langle v, \pi(x)u \rangle, \quad (u, v \in \mathcal{H}_\pi, x \in G),$$

is bounded. Also its adjoint, the synthesis operator, is as follows

(3)
$$\langle T_u^*g, w \rangle = \int_G g(x) \langle \pi(x)u, w \rangle \mathrm{d}\mu(x),$$

for every $w \in \mathcal{H}_{\pi}$ and $g \in L^2(G)$.

The operator $S_u := T_u^*T_u$ is called the frame operator of $\pi(.)u$, which is of the form

$$\langle S_u v, w \rangle = \int_G \langle v, \pi(x)u \rangle \langle \pi(x)u, w \rangle \mathrm{d}\mu(x), \qquad (v, w \in \mathcal{H}_\pi).$$

The frame operator S_u is bounded, positive and $AI \leq S_u \leq BI$. The following characterization of continuous frames has been given by Gabardo and Han [19].

LEMMA 2.4. Let (X, ν) be a measure space and \mathcal{H} a Hilbert space. Then a mapping $F: X \to \mathcal{H}$ is a continuous frame with lower and upper bounds A and B, respectively, if and only if $T_F: \mathcal{H} \to L^2(X)$ defined by $T_F u(x) = \langle u, F(x) \rangle$ is bounded by B and bounded below, with lower bound A.

As a result of this lemma, one can see that for a family $\{\pi(x)u\}_{x\in G}$, the operator T_u^* defined by (3) is bounded and onto if and only if $\pi(.)u$ is a π -frame with respect to G for \mathcal{H}_{π} .

Recall that for Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , we denote by $B(H_1, H_2)$ the space of all bounded linear operators from \mathcal{H}_1 into \mathcal{H}_2 and for $L \in B(H_1, H_2)$ we denote by R(L) the range of L. Now we give a lemma for our next results.

LEMMA 2.5 ([14]). Let $L_1 \in B(H_1, H)$ and $L_2 \in B(H_2, H)$. Then the following statements are equivalent:

- (i) $R(L_1) \subset R(L_2);$
- (ii) $L_1L_1^* \le CL_2L_2^*$ for some $C \ge 0$.

By analogy with the discrete frame, we give some characterizations of $\pi\text{-}K\text{-}\mathrm{frames}.$

THEOREM 2.6. Let $\pi(.)u$ be π -Bessel. Then the operator T_u^* defined by (3) is bounded and $R(K) \subset R(T_u^*)$ if and only if $\pi(.)u$ is a π -K-frame.

Proof. By using Lemmas 2.4 and 2.5 and the fact that

$$||T_u v||^2 = \int_G |\langle v, \pi(x)u\rangle|^2 \mathrm{d}\mu(x), \quad (v \in \mathcal{H}_\pi),$$

we can prove this theorem easily. \Box

THEOREM 2.7. Let $\pi(.)u$ be π -Bessel. Then $\pi(.)u$ is a π -K-frame if and only if there exists A, B > 0 such that $AKK^* \leq S_u \leq BI$, where S_u is the π -frame operator of $\pi(.)u$. Moreover in this case $||K|| \leq \sqrt{\frac{B}{A}}$.

Proof. Since $\pi(.)u$ is a π -K-frame with respect to G for \mathcal{H}_{π} , so

$$A||K^*v||^2 \le \int_G |\langle v, \pi(x)u\rangle|^2 \mathrm{d}\mu(x) \le B||v||^2, \qquad (v \in \mathcal{H}_\pi)$$

if and only if

$$A\langle KK^*v, v \rangle \le \langle S_u v, v \rangle \le B\langle v, v \rangle \quad (v \in \mathcal{H}_{\pi})$$

For the last part, one can see that $AKK^* \leq BI$, hence $||K|| \leq \sqrt{\frac{B}{A}}$. \Box

COROLLARY 2.8. Let $\pi(.)u$ be π -Bessel. Then $\pi(.)u$ is a π -K-frame if and only if $R(K) \subset R(S_u^{\frac{1}{2}})$, where S_u is the π -frame operator of $\pi(.)u$.

Now we state the stability of π -K-frame.

PROPOSITION 2.9. Let $\pi(.)u$ be a π -K-frame with lower and upper frame bounds A and B, respectively, and $L \in B(\mathcal{H}_{\pi})$ such that $L \in C(\pi)$ then $\pi(.)Lu$ is a π -LK-frame with lower and upper frame bounds A and $B||L||^2$, respectively, and its π -frame operator is $S'_u = LS_uL^*$, where S is the π -frame operator for $\pi(.)u$.

Proof. Let $v \in \mathcal{H}_{\pi}$ then

$$\int_{G} |\langle v, \pi(x)Lu \rangle|^2 \mathrm{d}\mu(x) = \int_{G} |\langle v, L\pi(x)u \rangle|^2 \mathrm{d}\mu(x) = \int_{G} |\langle L^*v, \pi(x)u \rangle|^2 \mathrm{d}\mu(x),$$

so we have

$$\begin{aligned} A||(LK)^*v||^2 &= A||K^*L^*v||^2 &\leq \int_G |\langle v, \pi(x)Lu\rangle|^2 \mathrm{d}\mu(x) \\ &\leq B||L^*v||^2 \leq B||L||^2||v||^2. \end{aligned}$$

For π -frame operator of $\pi(.)Lu$ we have

$$LS_u L^* v = \int_G \langle L^* v, \pi(x) u \rangle L\pi(x) u d\mu(x) = \int_G \langle v, \pi(x) L u \rangle \pi(x) L u d\mu(x).$$

Hence $S' = LS_u L^*$. \Box

COROLLARY 2.10. Assume that $K \in B(\mathcal{H}_{\pi}) \cap C(\pi)$. Let $\pi(.)u$ be a π -frame with lower and upper frame bounds A and B, respectively, then $\pi(.)Ku$ is a π -K-frame with lower and upper frame bounds A and $B||K||^2$, respectively.

We obtain the following necessary and sufficient condition under which every π -K-frame is a π -frame in Hilbert spaces.

THEOREM 2.11. Suppose that π is irreducible, $\pi(.)u$ is a π -K-frame, and $KK^* \in \mathcal{C}(\pi)$ then $\pi(.)u$ is a π -frame.

Proof. Since π is irreducible and $KK^* \in \mathcal{C}(\pi)$, by Schur's Lemma, there exists a constant C such that $KK^* = CI$. Thus, $||K^*v||^2 = C||v||^2$. Hence every π -K-frame is a π -frame by these hypotheses. \Box

2.1. π -K-DUALS

In this section, the dual of a π -K-frame as a continuous K-frame is studied. Some results about the dual of K-frames can be found in [24].

Definition 2.12. Let $\pi(.)u$ and $\pi(.)v$ be two π -Bessel families which satisfy (2). Then we say that $\pi(.)v$ is the π -K-dual of $\pi(.)u$ for G with respect to \mathcal{H}_{π} .

We write π -dual instead of π -*I*-dual, when *I* is the identity operator on \mathcal{H}_{π} . Note that $S_u^{-1}\pi(.)u$ is the (standard) π -dual of $\pi(.)u$ and $\pi(.)v$ is a π -*K*-dual of $\pi(.)u$ if and only if $T_u^*T_v = K$.

PROPOSITION 2.13. Let $\pi(.)u$ be a π -K-dual of $\pi(.)v$. Then $\pi(.)u$ and $\pi(.)v$ are K-frame and K^{*}-frame, respectively.

Proof. Let $t \in \mathcal{H}_{\pi}$, then

$$\begin{aligned} \|Kt\| &= \sup_{\|w\|=1} |\langle Kt, w\rangle| \\ &= \sup_{\|w\|=1} \left| \int_G \langle w, \pi(x)u \rangle \langle \pi(x)v, t \rangle d\mu(x) \right| \end{aligned}$$

$$\leq \sup_{\|w\|=1} \left(\int_{G} |\langle w, \pi(x)u \rangle|^{2} \mathrm{d}\mu(x) \right)^{\frac{1}{2}} \left(\int_{G} |\langle w, \pi(x)v \rangle|^{2} \mathrm{d}\mu(x) \right)^{\frac{1}{2}}$$

$$\leq \sqrt{B} \sup_{\|w\|=1} \|w\| \left(\int_{G} |\langle w, \pi(x)v \rangle|^{2} \mathrm{d}\mu(x) \right)^{\frac{1}{2}}$$

$$\leq \sqrt{B} \left(\int_{G} |\langle w, \pi(x)v \rangle|^{2} \mathrm{d}\mu(x) \right)^{\frac{1}{2}},$$

where B is an upper bound of $\pi(.)u$. It means that $\pi(.)v$ is a K*-frame. By the similar argument we can show that $\pi(.)u$ is a K-frame. \Box

In the following theorem, π -K-duals in any irreducible representation are studied.

THEOREM 2.14. Let π be an irreducible representation and $\pi(.)v$ be a π -K-dual of $\pi(.)u$. Then K must be a scalar multiple of the identity.

Proof. For $x, y \in G$ and $g \in L^2(G)$, we have

$$\begin{aligned} \pi(x)T_u^*g &= \int_G g(y)\pi(x)\pi(y)u\mathrm{d}\mu(y) \\ &= \int_G g(y)\pi(xy)u\mathrm{d}\mu(y) \\ &= \int_G g(x^{-1}y)\pi(y)u\mathrm{d}\mu(y) \\ &= \int_G (\pi_L(x)g)(y)\pi(y)u\mathrm{d}\mu(y) \\ &= T_u^*(\pi_L(x)g). \end{aligned}$$

On the other hand, for $v \in \mathcal{H}_{\pi}$ we have

$$\begin{aligned} \left(T_u \pi(x) v \right)(y) &= \langle \pi(x) v, \pi(y) u \rangle \\ &= \langle v, \pi(x^{-1}y) u \rangle \\ &= (T_u v)(x^{-1}y) \\ &= (\pi_L(x) T_u v)(y) \end{aligned}$$

 So

$$T_v^* \pi_L(x) T_u = \pi(x) T_v^* T_u.$$

and

$$T_v^* T_u \pi(x) = T_v^* \pi_L(x) T_u.$$

These imply that

$$T_v^*T_u\pi(x) = \pi(x)T_v^*T_u.$$

By Schur's Lemma, there exists a constant λ such that $T_v^*T_u = \lambda I_{\mathcal{H}_{\pi}}$ and so $K = T_u^*T_v = \lambda I_{\mathcal{H}_{\pi}}$, with the following λ

$$\begin{split} \lambda \langle w, w \rangle &= \langle T_v^* T_u w, w \rangle, \quad (w \in \mathcal{H}_{\pi}), \end{split}$$
 that is,
$$\lambda &= \frac{1}{\|w\|^2} \int_G \langle w, \pi(x) u \rangle \langle \pi(x) v, w \rangle \mathrm{d}\mu(x). \quad \Box$$

In a unimodular group, two π -frame vectors and their π -dual vectors have an interesting relation.

PROPOSITION 2.15. Let G be unimodular, $\pi(.)v$ be a π -dual of $\pi(.)u$ and $\pi(.)w$ be a π -dual of $\pi(.)t$ for G with respect to \mathcal{H}_{π} . Then $\langle t, w \rangle = \langle u, v \rangle$.

Proof. Since G is unimodular, the left and right Haar measure coincide and then we have

$$\begin{aligned} \langle t, w \rangle &= \int_{G} \langle t, \pi(x)v \rangle \langle \pi(x)u, w \rangle \mathrm{d}\mu(x) \\ &= \int_{G} \langle \pi(x^{-1})t, v \rangle \langle u, \pi(x^{-1})w \rangle \mathrm{d}\mu(x) \\ &= \int_{G} \langle u, \pi(x)w \rangle \langle \pi(x)t, v \rangle \mathrm{d}\mu(x) \\ &= \langle u, v \rangle \end{aligned}$$

Note that the third equality holds since G is unimodular. \Box

In the following theorem, by using π -dual, we show that the range of the analysis operator of a π -frame is a reproducing kernel Hilbert space and in particular is closed. Recall that a Hilbert space \mathcal{H} of complex-valued functions on a set Ω is called a reproducing kernel Hilbert space if the evaluation functionals $E_z(f) = f(z), z \in \Omega, f \in \mathcal{H}$, are bounded linear functionals (see [4] for more details).

THEOREM 2.16. For a π -frame $\pi(.)u$, the range $R(T_u)$ of T_u is a reproducing kernel Hilbert space.

Proof. First we show that $R(T_u)$ is a Hilbert space. In so doing, it is enough to show that $R(T_u)$ is a closed subspace of $L^2(G)$. Closedness of the range $R(T_u)$ of the analysis operator follows immediately from the fact that T_u is bounded from below.

Now let $f \in R(T_u)$. Then there exists $w \in \mathcal{H}_{\pi}$ such that $f = T_u w$. For $y \in G$ and $w \in \mathcal{H}_{\pi}$ we have

$$(T_u w)(y) = \langle w, \pi(y)u \rangle$$

$$= \int_{G} \langle w, \pi(x)u \rangle \langle S_{u}^{-1}\pi(x)u, \pi(y)u \rangle d\mu(x)$$

$$= \int_{G} (T_{u}w)(x) \langle \pi(y^{-1})S_{u}^{-1}\pi(x)u, u \rangle d\mu(x)$$

$$= \int_{G} f(x) \langle \pi(y^{-1})S_{u}^{-1}\pi(x)u, u \rangle d\mu(x),$$

that is, $f(y) = \int_G f(x) \langle \pi(y^{-1}) S_u^{-1} \pi(x) u, u \rangle d\mu(x)$ which implies that $R(T_u)$ is a reproducing kernel Hilbert space with kernel $\langle \pi(y^{-1}) S_u^{-1} \pi(x) u, u \rangle$. \Box

REFERENCES

- A. Aldroubi, D.R. Larson, W-S. Tang and E. Weber, Geometric aspects of frame representations of abelian groups. Trans. Amer. Math. Soc. 356 (2004), 4767–4186.
- [2] S.T. Ali, J.P. Antoine and J.P. Gazeau, Coherent States, Wavelets and Their Generalizations. Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 2000.
- [3] S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert spaces. Ann. Physics 222 (1993), 1–37.
- [4] N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337–404.
- [5] A. Askari-Hemmat, M.A. Dehghan and M. Radjabalipour, Generalized frames and their redundancy. Proc. Amer. Math. Soc. 129 (2001), 4, 1143–1147.
- [6] B.G. Bodmannand and V.I. Paulsen, Frames, graphs and erasures. Linear Algebra Appl. 404 (2005), 118–146.
- [7] H. Bolcskel, F. Hlawatsch and H.G. Feichtinger, Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46 (1998), 3256–3268.
- [8] E.J. Candes and D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C² singularities. Commun. Pure Appl. Anal. 56 (2004), 216–266.
- [9] P.G. Casazza, The art of frame theory. Taiwanese J. Math. 4 (2000), 2, 129–202.
- [10] O. Christensen, Frames and Bases: An Introductory Course. Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2008.
- B. Dastourian and M. Janfada, *G-frames for operators in Hilbert spaces*. Sahand Commun. Math. Anal. 8 (2017), 1, 1–21.
- [12] B. Dastourian and M. Janfada, *-frames for operators on Hilbert modules. Wavel. Linear Algebra 3 (2016), 27–43.
- [13] B. Dastourian and M. Janfada, Frames for operators in Banach spaces via semi-inner products. Int. J. Wavelets Multiresolut. Inf. Process. 14 (2016), 3, 1650011 (17 pages).
- [14] R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 2, 413–415.
- [15] Y.C. Eldar and T. Werther, General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multiresolut. Inf. Process. 3 (2005), 3, 347–359.
- [16] H.G. Feichtinger and K. Grochenig, Irregular sampling theorems and series expansion of band-limited functions. Math. Anal. Appl. 167 (1992), 530–556.
- [17] H.G. Feichtinger and T. Werther, Atomic systems for subspaces. In: L. Zayed (Ed.). Proceedings SampTA, Orlando, FL, 163–165, 2001.

- [18] G.B. Folland, A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. Boca Raton, CRC Press, 1995.
- [19] J.P. Gabardo and D. Han, Frames associated with measurable space. Adv. Comp. Math. 18 (2003), 127–147.
- [20] J.P. Gabardo and D. Han, Frame representations for group-like unitary operator systems.
 J. Operator Theory 49 (2003), 223-244.
- [21] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math. Rep. (Bucur.) 17(67) (2015), 3, 303–314.
- [22] L. Găvruţa, Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139–144.
- [23] G. Kaiser, A Friendly Guide to Wavelets. Birkhäuser, Boston, 1994.
- [24] F.A. Neyshaburi and A.A. Arefijamaal, Some constructions of K-frames and their duals. Rocky Mountain J. Math. 47 (2017), 6, 1749–1764.
- [25] M. Pawlak and U. Stadtmuller, *Recovering band-limited signals under noise*. IEEE Trans. Inform. Theory 42 (1994), 1425–1438.
- [26] T. Werther, Reconstruction from irregular samples with improved locality. Masters thesis, University of Vienna, 1999.
- [27] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces. Results Math. 63 (2013), 3-4, 1243-1255.

Received 15 November 2016

Ferdowsi University of Mashhad, Department of Pure Mathematics, Mashhad, P.O. Box 1159-91775, Iran bdastorian@gmail.com

Ferdowsi University of Mashhad, Department of Pure Mathematics, Mashhad, P.O. Box 1159-91775, Iran janfada@um.ac.ir