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Let G be a finite group. A subgroup H of a group G is quasinormal in Gif
it permutes with every subgroup of G. In this paper, we introduce the following
definition: A subgroup H is Fhq-supplemented in G if G has a quasinormal
subgroup N such that HN is a Hall subgroup of G and (H ∩ N)HG/HG ≤
ZF (G/HG), where HG is the core of H in G and ZF (G/HG) is the hypercenter
of G/HG. Also, we study the structure of G under assumption that all minimal
subgroups are Fhq-supplemented in G.
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1. INTRODUCTION

All groups considered in this paper will be finite and G always means
a finite group. We use conventional notions and notations, as in Doerk and
Hawkes [5].

Recall that a minimal subgroup of a group G is a subgroup of prime
order. For a p−group P , we denote Ω(P ) = Ω1(P ) if p > 2, and Ω(P ) =
〈Ω1(P ),Ω2(P )〉 if p = 2, where Ωi(P ) =

〈
x ∈ P : |x| = pi

〉
.

Let F be a class of groups. We call F a formation provided that (i) if
G ∈ F , then G/N ∈ F , and (ii) if G/N1 and G/N2 ∈ F , then G/(N1∩N2) ∈ F
for arbitrary normal subgroups N1, N2 of G.

A formation F is said to be saturated if G/Φ(G) ∈ F implies G ∈ F .
Throughout this paper, U will denote the class of supersolvable groups. Clearly,
U is a saturated formation. A formation F is said to be S−closed (Sn− closed)
if it contains every subgroup (every normal subgroup, respectively) of all its
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groups. Let [A]B stand for the semiproduct of two groups A and B. For a
class F of groups, a chief factor H/K of a group G is called F−central ( see [6;
Definition 2.4.3]) if [H/K](G/CG(H/K)) ∈ F . The symbol ZF (G) denotes the
F−heypercenter of a group G, that is, the product of all such H of G whose
G−chief factors are F−central.

A subgroup H of a group G is quasinormal (or permutable) in G if
HK = KH for all subgroups K of G, or equivalently for all cyclic subgroups
K of G. Thus normal subgroups are always quasinormal, but not conversely.
If p is a prime, then any cyclic group Cpn extended by any cyclic group Cpm

has all subgroups quasinormal (provided, when p = 2 and n > 2, the cyclic
subgroup of order 4 in C2n is central in the extension). The same is true if Cpn

is replaced by any abelian p−group H of finite exponent, with Cpm acting on
H as a group of power automorphisms (and elements of order 4 in H are again
central in the extension if p = 2). These results can be found in sections 2.3
and 2.4 of [12].

We say, following Kegel [9], that a subgroup of a group G is S-quasinormal
in G if it permutes with every Sylow subgroup of G.

Agrawal [1] defined the generalized center genz(G) of a group G to be
the subgroup < g ∈ G : < g > is S-quasinormal in G >. The generalized
hypercenter genz∞(G), is the largest term of the chain

1 = genz0(G) ≤ genz1(G) = genz(G) ≤ genz2(G) ≤ .../,

where genzi+1(G)/genzi(G) = genz(G/genzi(G)) for all i > 0.

Guo, Freng and Huang [8] introduced the following new concept. They
defined that the subgroup H of a group G is said to be Fh−normal if there
exists a normal subgroup K of G such that HK is a normal Hall subgroup of G
and (H∩K)HG/HG 6 ZF (G/HG); the authors have obtained some interesting
results (see [7]). The latter concept has since been improved by Li and Tang
[10] by the following concept; let F be a class of groups. A subgroup H of a
group G is said to be Fh−supplemented in G if there exists a normal subgroup
T of G such that HT is a Hall subgroup of G and (H∩T )HG/HG 6 ZF (G/HG).
As a consequence, we now introduce an extension of the preceding concept, it
means that we replace the quasinormality of subgroups instead of the normality
of subgroups as in the following defintion:

Definition. A subgroup H of G is Fhq-supplemented in G if G has
a quasinormal subgroup N such that HN is a Hall subgroup of G and
(H ∩ N)HG/HG ≤ ZF (G/HG), where HG = CoreG(H) = ∩

g∈G
Hg is the

maximal normal subgroup of G which is contained in H.

The goal of this paper is to investigate the structure of Gunder assump-
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tion that all minimal subgroups are Fhq-supplemented in G. In fact, we have
obtained significant new results on these groups; these results improve the past
results in [10].

2. PRELIMINARY RESULTS

For the convenience of the reader, we start with several known lemmas
found in that paper.

Lemma 2.1. Let G be a group and H ≤ G. Suppose that F is a non-empty
saturated formation and Z = ZF (G).

(a) If H is a normal subgroup of G, then HZ/H ≤ ZF (G/H).

(b) If F is S-closed, then Z ∩H ≤ ZF (H).

(c) If G ∈ F , then Z = G.

Proof. See ([7; Lemma 2.1]). �

Lemma 2.2. Let G be a group and H ≤ K ≤ G. Then

(a) H is Fhq-supplemented in G if and only if G has a quasinormal
subgroup N such that HN is a Hall subgroup of G, HG ≤ N and (H/HG)∩
(N/HG) ≤ ZF (G/HG).

(b) If H is a normal subgroup of G and K is Fhq -supplemented in G,
then K/H is Fhq -supplemented in G/H.

(c) If H is a normal subgroup of G, then the subgroup HE/H is Fhq-
supplemented in G/H for every Fhq-supplemented in G subgroup E satisfying
(|H| , |E|) = 1.

(d) If H is Fhq-supplemented in G and F is S-closed, then H is Fhq

-supplemented in K.

Proof. (a) Suppose that H is Fhq -supplemented in G. Then G has
a quasinormal subgroup N such that HN is a Hall subgroup of G and
(H∩N)HG/HG ≤ ZF (G/HG). Put M = NHG. Clearly M is quasinormal sub-
group of G and HM = HN is a Hall subgroup of G. Also (H/HG)∩(M/HG) =
(H ∩M)/HG = (H ∩NHG)/HG = (H ∩N)HG/HG ≤ ZF (G/HG). The con-
verse is clear.

(b) Assume that K is Fhq-supplemented in G. By (a), G has a qua-
sinormal subgroup N such that KN is a Hall subgroup of G, KG ≤ N
and (K/KG) ∩ (N/KG) ≤ ZF (G/KG). Then K/H is quasinormal in G/K
and clearly H ≤ KG. So (K/H)(N/H) = KN/H is a Hall subgroup of
G/H and ((K/H)/(KG/H)) ∩ ((N/H)/(KG/H)) = ((K/H)/(K/H)G/H) ∩
((N/H)/(K/H)G/H) = ((K ∩ N)/H)/(K/H)G/H ≤ ZF ((G/H)/(K/H)G/H).
Hence K/H is Fhq -supplemented in G/H.
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(c) Suppose that E is Fhq-supplemented in G and let N be a quasinormal
subgroup of G such that EN is a Hall subgroup of G and (E/EG)∩ (N/EG) ≤
ZF (G/EG) by (a). Put ZF (G/EG) = L/EG. We treat the following two cases:

Case 1. H ≤ N .

Then HEN = EHN = EN is a Hall subgroup of G and so HE ∩ N =
H(E ∩N) ≤ HL. Also

HL/HEG = HEGL/HEG
∼= L/(L ∩HEG) = L/EG(L ∩H)

so HL/HEG ≤ ZF (G/HEG). Hence

(HE/HEG) ∩ (N/HEG) = (HE ∩N)/HEG = H(E ∩N)/HEG ≤
HL/HEG ≤ ZF (G/HEG).

By Lemma 2.1(a),

ZF (G/HEG)((HE)G/HEG)/((HE)G/HEG) ≤
ZF ((G/HEG)/((HE)G/HEG)).

Then (HE ∩ N)(HE)G/(HE)G ≤ ZF (G/(HE)G) and so HE is Fhq-supple-
mented in G. Hence HE/H is Fhq-supplemented in G/H, by (b).

Case 2. H � N .

Since EN is a Hall subgroup of G and (|H| , |E|) = 1, we have that
(HE/H)(NH/H) = HEN/H is a Hall subgroup of G/H and since
(E ∩N)/EG ≤ L/EG, we have that E ∩N ≤ L and (E ∩N)(HE)G/(HE)G ≤
L(HE)G/(HE)G. By Lemma 2.1(a),

((E ∩N)(HE)G/EG)/((HE)G/EG) ≤ (L(HE)G)/EG)/((HE)G/EG)

= ZF (G/EG)(HE)G)/EG)/((HE)G/EG) ≤ ZF ((G/EG)/((HE)G/EG)).

So we have (E ∩ N)(HE)G/(HE)G ≤ ZF (G/(HE)G). Since (|H| , |E|) = 1,
we have that (|HN : N | , |HN ∩ E|) = 1 and so HN ∩ E = N ∩ E. Hence

(HE/H ∩HN/H)(HE/H)G/H/(HE/H)G/H

=(H(E∩N)/H)((HE)G/H)/((HE)G/H)≤ ((E∩N)(HE)G/H)/((HE)G/H)

≤ (L(HE)G/H)((HE)G/H) ≤ ZF ((G/H)/((HE)G/H)).

Hence HE/H is Fhq-supplemented in G/H.

(d) Suppose that H is Fhq-supplemented in G and let N be a quasinor-
mal subgroup of G such that HN is a Hall subgroup of G and (H/HG) ∩
(N/HG) ≤ ZF (G/HG) by (a). Put M = K ∩ N . For every subgroup L
of K, LM = L(K ∩ N) = K ∩ LN = K ∩ NL = (K ∩ N)L = ML as
N is quasinormal in G. Then M is quasinormal in K. Since HN is a
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Hall subgroup of G and H ≤ K, we have that HM is a Hall subgroup of
K. Also M/HG ∩ H/HG = (K ∩ N ∩ H)/HG = K/HG ∩ ZF (G/HG). Put
K/HG ∩ZF (G/HG) = R/HG. Since F is S-closed, we have by Lemma 2.1(b),
R/HG ≤ ZF (K/HG). By Lemma 2.1(a), (R/HG)(HK/HG)/(HK/HG) ≤
ZF (K/HG)(HK/HG)/(HK/HG) ≤ ZF (K/HG)/(HK/HG) and so (M∩H)HK/
HK ≤ ZF (K/HK). Hence H is Fhq -supplemented in K. �

Lemma 2.3. (a) An S-quasinormal subgroup of G is subnormal in G.

(b) If H is S-quasinormal Hall subgroup of G, then H C G.

(c) Let H be a p-subgroup of G. Then H is S-quasinormal in G if and
only if Op(G) ≤ NG(H).

(d) If K is a normal subgroup of a group G and H is S-quasinormal in
G, then H ∩K is S-quasinormal in G.

Proof. (a) See ([9; Satz 1, p. 209]).

(b) By (a), H is subnormal in G. Hence H is subnormal Hall subgroup
of G. This implies that H C G.

(c) See ([11; Lemma A, p. 287]).

(d) Since H is S-quasinormal in G, it follows by (a), that H is subnormal
in G and so HK and H ∩K are subnormal in G. Let P be an arbitrary Sylow
subgroup of G. Clearly H∩P ∈ Syl(H), K∩P ∈ Syl(K), HK∩P ∈ Syl(HK)

and H ∩ K ∩ P ∈ Syl(H ∩ K). Then |(H ∩ P )(K ∩ P )| = |H∩P ||K∩P |
|H∩K∩P | =

|HK ∩ P | and since (H∩P )(K∩P ) ≤ HK∩P , it follows that (H∩P )(K∩P ) =
HK ∩P . Hence by [5; Lemma 1.2, p. 2], (H ∩K)P = HP ∩KP and so H ∩K
is S-quasinormal in G. �

Lemma 2.4. (a) Let p be the smallest prime dividing the order of G, and
let Gp be a Sylow p-subgroup of G. If Ω(Gp) ≤ genz∞(G), then G is p-nilpotent.

(b) Let P be a normal p-subgroup of G such that G/P is supersolvable.
If Ω(P ) ≤ genz∞(G), then G is supersolvable.

Proof. See ([3; Lemma 3.8 and Theorem 3.11, p. 2245-2246]). �

Lemma 2.5. Let F be a saturated formation containing U and let K be
a normal subgroup K of G such that G/K ∈ F and the cyclic subgroups of K
of prime order or order 4 are S-quasinormal in G, then G ∈ F .

Proof. See ([2; Theorem 1, p.2773]). �

Lemma 2.6. Let K be a normal subgroup K of a group G with G/K
contained in a saturated formation F . If Ω(P ) ≤ ZF (G), where P is a Sylow
p-subgroup of K, then G/Op′(K) ∈ F .

Proof. See ([4]). �
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3. RESULTS

We proceed now to the first main results.

Lemma 3.1. Let p be the smallest prime dividing the order of G and let
the cyclic subgroup of G of order p or 4 be Uhq-supplemented in G. Then G is
p-nilpotent.

Proof. Suppose the result is false and let G be a counter-example of mi-
nimal order. Suppose that Gp is a Sylow p-subgroup of G. Then we have:

(1) Op′ (G) = 1.
If not, then by Lemma 2.2(c), it is easy to see that the cyclic subgroup

of GpOp′ (G)/Op′ (G) of order p or order 4 is Uhq-supplemented in G/Op′ (G).
The minimality of G implies that G/Op′ (G) is p-nilpotent and hence G is
p-nilpotent; a contradiction.

(2) p = 2.
Suppose p > 2. If the cyclic subgroup of G of order p is normal of G,

then Ω1(Gp) ≤ ZU(G) ≤ genz∞(G). Hence by Lemma 2.4(a), G is p-nilpotent;
a contradiction. Thus we may assume that there exists a subgroup H of G of
order p such that H is not normal in G. By hypothesis, H is Uhq-supplemented
in G. By Lemma 2.2(a), G has a quasinormal subgroup N of G such that HN is
a Hall subgroup of G and H/HG∩N/HG ≤ ZU(G/HG). Since H is not normal
in G, we have that HG = 1 and so H ∩N ≤ ZU(G). If H ∩N = H ≤ ZU(G),
then Ω1(Gp) ≤ ZU(G) ≤ genz∞(G). Hence by Lemma 2.4(a), G is p-nilpotent;
a contradiction. Thus H ∩N = 1. Clearly N < G. Since N is a quasinormal
subgroup of G, we have by Lemma 2.3(a), that N is a subnormal in G and
since N < G, we have a normal subgroup M of G containing N . If N is
not p-subgroup of G, then also M is not p-subgroup of G. Since the class
of supersolvable group is S-closed, we have by Lemma 2.2(d), that the cyclic
subgroup of M of order p is Uhq-supplemented in M . Then M is p-nilpotent, by
the minimality of G. Hence Op′ (M) 6= 1. Since M is a normal subgroup of G,
we have that, 1 < Op′ (M) ≤ Op′ (G); a contradiction. Thus N is p-subgroup
of G. Since HN is a Hall subgroup of G, we have that HN = Gp and since
H ∩ N = 1, we have N is a maximal subgroup of Gp. So N C Gp. Let Gq

be an arbitrary Sylow q-subgroup of G, with q > p. Since N is a quasinormal
subgroup in G, we have that NGq ≤ G and so N is a quasinormal Hall in NGq.
Then by Lemma 2.3(b), N C NGq i.e., Gq ≤ NG(N). Thus Op(G) ≤ NG(N)
and since N C Gp, we have that N C G. Now consider the group G/N . Clearly
Gp/N is a Sylow p-subgroup of G/N of order p. By Burnside’s theorem, G/N
is p-nilpotent. Then G/N has a normal Hall p

′
-subgroup K/N and so K is

a proper normal subgroup of G. Since the class of supersolvable groups is
S-closed, we have by Lemma 2.2(d), that the cyclic subgroups of K of order
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p is Uhq-supplemented in K. Then K is p-nilpotent, by the minimality of G.
Hence Op′ (K) 6= 1. So 1 < Op′ (K) ≤ Op′ (G); a contradiction.

(3) Final contradiction.
If the cyclic subgroup of G of order 2 or 4 is normal in G, then Ω2(G) ≤

ZU(G) ≤ genz∞(G). Hence by Lemma 2.4(a), G is p-nilpotent; a contradiction.
Thus we may assume that there exists a subgroup H of G of order 2 or 4 such
that H is not normal in G. If |H| = 2, then HG = 1. By hypothesis, H is
Uhq-supplemented in G. By Lemma 2.2(a), G has a quasinormal subgroup N
of G such that HN is a Hall subgroup of G and H∩N ≤ ZU(G). If H∩N = 1,
then Op′ (G) 6= 1, by repeating the proof of (2). Thus H ∩ N = H ≤ ZU(G)
and so Ω1(Gp) ≤ ZU(G). If the cyclic subgroup of G of order 4 is normal
in G, then Ω2(G) ≤ ZU(G) ≤ genz∞(G). Hence by Lemma 2.4(a), G is p-
nilpotent; a contradiction. Thus there exists a subgroup L of G of order 4
such that L is not normal in G. By hypothesis, L is Uhq-supplemented in
G. By Lemma 2.2(a), G has a quasinormal subgroup T of G such that LT
is a Hall subgroup of G and L/LG ∩ T/LG ≤ ZU(G/LG). Since L is not
normal in G, we have that |LG| = 2 or 1. If |LG| = 2, then LG ≤ ZU(G).
Hence ZU(G/LG) = ZU(G)/LG. So L ∩ T ≤ ZU(G). Also if |LG| = 1, then
L ∩ T ≤ ZU(G). If L = L ∩ T ≤ ZU(G), then Ω2(G) ≤ ZU(G) ≤ genz∞(G).
Hence by Lemma 2.4(a), G is p-nilpotent; a contradiction. Thus L ∩ T is a
proper subgroup of L. So T is also a proper subgroup of G. If T is not p-
subgroup of G, then Op′ (G) 6= 1 by repeating the proof of (2); a contradiction.
Thus T is p-subgroup of G. Since LT is a Hall subgroup of G, we have that
LT = Gp. Since L ∩ T is a proper subgroup of L, we have that T is a proper
subgroup of Gp and since T is quasinormal subgroup in G, we have by Lemma
2.3(c), that Op(G) ≤ NG(T ). If NG(T ) = G, then T C G. Since Gp/T is
cyclic, we have by Burnside’s theorem, G/T is p-nilpotent. By repeating the
proof of (2), we have that 1 < Op′ (G); a contradiction. Thus we may assume
that Op(G) ≤ NG(T ) < G. Since the class of supersolvable groups is S-closed,
we have by Lemma 2.2(d), that the cyclic subgroups of Op(G) of order 2 or 4
is Uhq-supplemented in Op(G). By the minimality of G, Op(G) is p-nilpotent
and also G; a final contradiction. �

As a consequence, we also obtain improvement of Corollary 4.2 in [9].

Theorem 3.2. If the cyclic subgroups of G of prime order or order 4 are
Uhq-supplemented in G, then G is supersolvable.

Proof. Suppose the result is false and let G be a counter-example of mi-
nimal order. Lemma 3.1 implies that G is r-nilpotent, where r is the smallest
prime dividing the order of G. Then G = GrK, where Gr is a Sylow r-subgroup
of G and K is a normal Hall r′-subgroup of G. Since the class of supersolvable
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is S-closed, we have by Lemma 2.2(d), the hypothesis of the theorem satisfies
over K. Then K is supersolvable by the minimality of G. Hence K has a
chracteristic Sylow q-subgroup Gq and q is the largest prime dividing the order
of K. Since K C G, we have that Gq C G and since K is a Hall r′-subgroup
of G, we have Gq is a Sylow q-subgroup of G. Now consider the factor group
G/Gq. By Lemma 2.2(c), the hypothesis satisfies G/Gq. Then G/Gq is super-
solvable by the minimality of G. Thus GU ≤ Gq, where GU is supersolvable
residual of G. If the cyclic subgroups of GU of order q are normal in G, then
Ω1(G

U) ≤ ZU(G) ≤ genz∞(G). Hence by Lemma 2.4(b), G is supersolvable;
a contradiction. Thus there exists a subgroup H of GU of order q is not nor-
mal in G. By hypothesis, H is Uq-supplemented in G. By Lemma 2.2(a), G
has a quasinormal subgroup N of G such that HN is a Hall subgroup of G
and H/HG ∩N/HG ≤ ZU(G/HG). Since H is not normal in G, we have that
HG = 1 and so H ∩ N ≤ ZU(G). If H ≤ N , then H = H ∩ N ≤ ZU(G).
Hence Ω1(G

U) ≤ ZU(G) ≤ genz∞(G). Hence by Lemma 2.4(b), G is super-
solvable; a contradiction. Thus H ∩ N = 1. Since HN is a Hall subgroup of
G, we have that Gq ≤ HN and N ∩ Gq is a maximal subgroup of Gq. Since
N is quasinormal in G, we have that N is S-quasinormal in G and since Gq

is a normal subgroup of G, we have by Lemma 2.3(d), that N ∩ Gq is S-
quasinormal in G. Then Oq(G) ≤ NG(N ∩ Gq) by Lemma 2.3(c) and since
N ∩Gq is a maximal subgroup of Gq, we have that Gq ≤ NG(N ∩Gq). Then
G = GqO

q(G) ≤ NG(N∩Gq). Hence N∩Gq C G. Since G/Gq is supersolvable,
we have that (G/(N ∩Gq))/(Gq/(N ∩Gq)) ∼= G/Gq is supersolvable and since
Gq/(N ∩ Gq) is cyclic of order q, we have that G/(N ∩ Gq) is supersolvable.
Then GU ≤ N ∩Gq. Hence H ≤ N ∩Gq ≤ N ; a final contradiction. �

Now we prove an extension of Corollary 4.3 in [10].

Theorem 3.3. Let F be an S-closed saturated formation containing U.
Then G ∈ F if and only if there exists a normal subgroup K of G such that
G/K ∈ F and the cyclic subgroups of K of prime order or order 4 are Uhq-
supplemented in G.

Proof. If G ∈ F , then the result holds with K = 1. �

The converse, suppose the result is false and let G be a counter-example
of minimal order. Since F is S-closed, we have by Lemma 2.2(d), the cyclic
subgroups of K of prime order or order 4 are Uhq-supplemented in K. Then
K is supersolvable by Theorem 3.2. Hence K has a characteristic Sylow p-
subgroup Kp, where p is the largest prime dividing the order of K. Since
K C G, we have that Kp C G. Then (G/Kp)/(K/Kp) ∼= G/K ∈ F . By
hypothesis and Lemma 2.2(c), the cyclic subgroups of K/Kp of prime order or
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order 4 are Uhq-supplemented in G/Kp. Then G/Kp ∈ F by the minimality of
G. If p = 2, then KpGq ≤ G, for every Sylow q-subgroup Gp of G with q > 2.
By Lemma 3.1, KpGq is 2-nilpotent. Then KpGq = Kp × Gq. Since Kp is a
normal 2-subgroup of G, we have that the cyclic subgroups of Kp of order 2
or 4 are S-quasinormal in G. Then G ∈ F by Lemma 2.5; a contradiction.
Thus we may assume that p > 2. Clearly 1 6= GF ≤ Kp as G/Kp ∈ F . If
the subgroups of GF of order p lay in ZF (G), then G ∈ F by Lemma 2.6;
a contradiction. Thus there exists a subgroup H of GF of order p such that
H 
 ZF (G). Then H 
 ZU(G) as U ⊆F . Hence HG = 1. By hypothesis H
is Uhq-supplemented in G. By Lemma 2.1(a), G has a quasinormal subgroup
N of G such that HN is a Hall subgroup of G and H ∩ N ≤ ZU(G). Since
HN is a Hall subgroup of G, we have that GF ≤ Gp ≤ HN , where Gp is a
Sylow p-subgroup of G. Also since H 
 ZU(G), we have that H∩N = 1. Then
GF ∩ N is a maximal p-subgroup of GF . Since N is a quasinormal subgroup
of G, we have that N is S-quasinormal subgroup of G and since GF C G, we
have by Lemma 2.3(d), that GF ∩ N is S-quasinormal subgroup of G. Then
Op(G) ≤ NG(GF ∩N). Clearly GF ∩N C N and since GF ∩N is a maximal
subgroup of GF , we have that GF ∩ N C GF . Then Gp ≤ HN = GFN ≤
NG(GF ∩N). Hence G = GpO

p(G) ≤ NG(GF ∩N) i.e., GF ∩N C G. Since
(G/(GF∩N))/(GF/(GF∩N) ∼= G/GF ∈ F and since GF/(GF∩N) is cyclic of
order p, we have that GF/(GF∩N) ≤ ZF (G/(GF∩N)). Hence G/GF∩N ∈ F
and so H ≤ GF ≤ GF ∩N ≤ N ; a final contradiction.
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