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In this paper, with the notion of weighted sharing of values we study the uni-
queness of meromorphic functions concerning general non-linear differential po-
lynomials sharing a non-zero polynomial with certain degree. The results of the
paper improve and generalise the recent results due to Cao and Zhang [7].
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1. INTRODUCTION AND PRELIMINARY RESULTS

A function f(z) is called meromorphic if it is analytic in the complex
plane C except at possible isolated poles. If no poles occur, then f(z) reduces
to an entire function.

In this paper, it is assumed that the reader is familiar with the stan-
dard symbols and fundamental results of Nevanlinna value distribution theory
of meromorphic functions. For a meromorphic function f(z) in the complex
plane C, we shall use the following standard notations of the value distribution
theory:

T (r, f), m(r, f), N(r, f), N(r, f), . . .

(see, e.g., [11, 24]). We adopt the standard notation S(r, f) for any quantity
satisfying the relation S(r, f) = o(T (r, f)) as r → ∞ except possibly a set of
finite linear measure.

We denote by T (r) the maximum of T (r, f) and T (r, g). The notation
S(r) denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside of a
possible exceptional set of finite linear measure.

Let p ∈ N and a ∈ C ∪ {∞}. We use the notation N(r, a; f |≥ p)
(N(r, a; f |≥ p)) to denote the counting function (reduced counting function)
of those a-points of f whose multiplicities are not less than p. Again we use
the notation N(r, a; f |≤ p) (N(r, a; f |≤ p)) to denote the counting function
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(reduced counting function) of those a-points of f whose multiplicities are not
greater than p.

For a ∈ C∪{∞} and p ∈ N we denote by Np(r, a; f) the sum N(r, a; f) +
N(r, a; f |≥ 2) + . . .+N(r, a; f |≥ p). Clearly N1(r, a; f) = N(r, a; f).

A meromorphic function a is said to be a small function of f if T (r, a) =
S(r, f), i.e., if T (r, a) = o(T (r, f)) as r → ∞ except possibly a set of finite
linear measure.

Let f(z) and g(z) be two non-constant meromorphic functions. Let a(z)
be a small function with respect to f(z) and g(z). If f(z)−a(z) and g(z)−a(z)
have the same zeros with the same multiplicities then we say that f(z) and
g(z) share a(z) with CM (counting multiplicities) and if we do not consider
the multiplicities then we say that f(z) and g(z) share a(z) with IM (ignoring
multiplicities).

A finite value z0 is called a fixed point of f if f(z0) = z0 or z0 is a zero of
f(z)− z.

In 1995, both W. Bergweiler and A. Eremenko (see [5], Theorem 2), H.
H. Chen and M. L. Fang (see [6], Theorem 1) respectively, proved the following
result.

Theorem A. Let f(z) be a transcendental meromorphic function and
n ∈ N. Then fnf ′ = 1 has infinitely many solution.

Corresponding to Theorem A, both Fang and Hua [9], Yang and Hua [23]
obtained the following results.

Theorem B. Let f and g be two non-constant entire (meromorphic)
functions and let n ∈ N such that n ≥ 6 (n ≥ 11). If fnf ′ and gng′ share
1 CM, then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three

constants satisfying 4(c1c2)
n+1c2 = −1, or f ≡ tg for a constant t such that

tn+1 = 1.

To investigate the uniqueness result of entire or meromorphic functions
having fixed points, Fang and Qiu [10] obtained the following result.

Theorem C. Let f and g be two non-constant meromorphic (entire)
functions and let n ∈ N such that n ≥ 11 (n ≥ 6). If fnf ′ − z and gng′ − z
share 0 CM, then either f(z) = c1e

cz2, g(z) = c2e
−cz2, where c1, c2 and c are

three constants satisfying 4(c1c2)
n+1c2 = −1, or f ≡ tg for a constant t such

that tn+1 = 1.

During the last couple of years, a significant number of authors worked
on the uniqueness problem of meromorphic functions when the non-linear dif-
ferential polynomials generated by them share certain values or small functions
(see [3, 4, 7–10,16–21,23,26,28,29]).
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It is instinctive to ask what happens if the first derivative f ′ in Theorem
A is replaced by the general derivative f (k). By considering this problem, Xu
et al. [21] or Zhang and Li [27] respectively, proved the following result.

Theorem D. Let f be a transcendental meromorphic function and let
k, n ∈ N such that n ≥ 2. Then fnf (k) takes every finite non-zero value
infinitely many times or has infinitely many fixed points.

Regarding Theorem D, Y.H. Cao and X.B. Zhang [7] obtained the follo-
wing results in 2012.

Theorem E. Let f and g be two transcendental meromorphic functions,
whose zeros be of multiplicities at least k, where k ∈ N. Let n ∈ N such that
n > max{2k − 1, k + 4

k + 4}. If fnf (k) − z and gng(k) − z share 0 CM, f and
g share ∞ IM, one of the following two conclusions holds:

(i) fnf (k) ≡ gng(k);
(ii) f(z) = c1e

cz2, g(z) = c2e
−cz2, where c1, c2 and c are constants such that

4(c1c2)
n+1c2 = −1.

Theorem F. Let f and g be two non-constant meromorphic functions,
whose zeros be of multiplicities at least k, where k ∈ N. Let n ∈ N such that
n > max{2k − 1, k + 4

k + 4}. If fnf (k) and gng(k) share 1 CM, f and g share
∞ IM, one of the following two conclusions holds:

(i) fnf (k) ≡ gng(k);
(ii) f(z) = c3e

dz, g(z) = c4e
−dz, where c3, c4 and d are constants such that

(−1)k(c3c4)
n+1d2k = 1.

Theorem G. Let f and g be two non-constant meromorphic functions,
whose zeros be of multiplicities at least k+1, where k ∈ N such that 1 ≤ k ≤ 5.
Let n ∈ N such that n ≥ 10. If fnf (k) and gng(k) share 1 CM, f (k) and g(k)

share 0 CM, f and g share ∞ IM, one of the following two conclusions holds:

(i) f ≡ tg, where t is a constant such that tn+1 = 1;

(ii) f(z) = c3e
dz, g(z) = c4e

−dz, where c3, c4 and d are constants such that
(−1)k(c3c4)

n+1d2k = 1.

Theorems E, F and G suggest the following questions as open problems.

Question 1. Can the lower bound of n be further reduced in Theorems
E, F and G?

Question 2. Can the condition “Let f and g be two non-constant mero-
morphic functions, whose zeros be of multiplicities at least k+ 1, where k ∈ N
such that 1 ≤ k ≤ 5” in Theorem G be further weakened?
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Question 3. Can one deduce generalized results in which Theorems E, F
and G will be included?

2. MAIN RESULTS AND SOME DEFINITIONS

Throughout this paper, we always use P (z) to denote an arbitrary non-
constant polynomial of degree n ∈ N as follows,

P (z) = anz
n + an−1z

n−1 + . . .+ a0 = an(z − c1)d1(z − c2)d2 . . . (z − cs1)ds1 ,

where ai(i = 0, 1, . . . , n− 1), an 6= 0 and cj(j = 1, 2, . . . , s1) are distinct finite
complex numbers; d1, d2, . . . , ds1 ∈ N ∪ {0}, n ∈ N such that

s1∑
i=1

di = n.

Let d = max{d1, d2, . . . , ds1} and c be the corresponding zero of P (z) of
multiplicity d. We set an arbitrary non-zero polynomial P1(z) by

P1(z) = an

s1∏
i=1
di 6=d

(z − ci)di = bm1z
m1 + bm1−1z

m1−1 + . . .+ b0,

where an = bm1 and m1 = n− d. Obviously P (z) = (z− c)dP1(z). We also use
P2(z1) as an arbitrary non-zero polynomial defined by

P2(z1) = an

s1∏
i=1
di 6=d

(z1 + c− ci)di = em1z
m1
1 + em1−1z

m1−1
1 + . . .+ e0,

where z1 = z − c and deg(P2(z1)) = m1 ≥ 0. Obviously

(2.1) P (z) = zd1P2(z1).

Suppose Γ1 = m2 +m3 and Γ2 = m2 + 2m3, where m2 is the number of
simple zeros of P1(z) and m3 is the number of multiple zeros of P1(z).

We define k∗ ∈ N as follows

k∗ =

{
k, if P2(z1) = eiz

i
1 6≡ 0

k + 1, if P2(z1) 6= eiz
i
1 6≡ 0,

(2.2)

for i ∈ {0, 1, 2, . . . ,m1}. Again we use p(z) to denote a non-zero polynomial
such that either deg(p) ≤ n + m − 1 or zeros of p(z) are of multiplicities at
most n− 1, where m ∈ N, i.e.,

(2.3) p(z) = dn(z − z1)l1(z − z2)l2 . . . (z − zt)lt ,
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where dn 6= 0, zi(i = 1, 2, . . . , t) are distinct complex numbers and l1, l2, . . . , lt ∈

N ∪ {0}. Here we see that either
t∑
i=1

li ≤ n + m − 1 or li ≤ n − 1 for all

i = 1, 2, . . . , t.

Before going to our main results, we need the following definition of weig-
hted sharing.

Definition 2.1 ([13, 14]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f , g share the value a with weight k. We write f , g share (a, k) to
mean that f , g share the value a with weight k.

Also we note that f , g share a value a IM or CM if and only if f , g share
(a, 0) or (a,∞) respectively. If a is a small function we define that f and g
share (a, l) if f − a and g − a share (0, l).

In this paper, taking the possible answers of the above questions into
background we obtain the following results which significantly improve and
generalize Theorems E, F and G.

Theorem 2.1. Let f be a transcendental meromorphic function, such that
zeros of f − c be of multiplicities at least k∗, where k∗ be defined as in (2.2)
and m, n ∈ N. Let a(z)(6≡ 0,∞) be a small function with respect to f . If
n > m+ Γ1 + 1

k∗ , then P (f)(f (k))m − a has infinitely many zeros, where P (z)
is defined as in (2.1).

Theorem 2.2. Let f , g be two transcendental meromorphic functions,
such that zeros of f − c and g − c be of multiplicities at least k, where k ∈ N.
Let P (z) and p(z) be defined as in (2.1) and (2.3) respectively and m, n ∈ N
such that

n ≥ k + 2(m+ 2Γ2) +
3k + 7

2k
.

If P (f)(f (k))m−p, P (g)(g(k))m−p share (0, k1), where k1 =
[

m(k−1)+3
n+m+(m−2)k−1

]
+

3 and f , g share (∞, 0), then one of the following cases holds:

(1) f − c ≡ t(g − c) for a constant t such that ts = 1, where s = GCD(n +
m, . . . , n+m− i, . . . ,m), em1−i 6= 0 for some i ∈ {0, 1, . . . ,m1},

(2) P (f)(f (k))m ≡ P (g)(g(k))m.

Theorem 2.3. Let f , g be two transcendental meromorphic functions,
such that zeros of f − c and g − c be of multiplicities at least k∗, where k∗

be defined as in (2.2). Let P (z) and p(z) be defined as in (2.1) and (2.3)
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respectively and m, n ∈ N such that

n ≥ k + 2(m+ 2Γ2) +
3k∗ + 7

2k∗
.

If P (f)(f (k))m−p, P (g)(g(k))m−p share (0, k1), where k1 =
[

m(k−1)+3
n+m+(m−2)k−1

]
+

3, f (k), g(k) share (0,∞) and f , g share (∞, 0), then one of the following cases
holds:

(1) If P2(z1) ≡ eizi1 6≡ 0, for some i ∈ {0, 1, 2, . . . ,m1}, then f − c ≡ t(g− c),
where t is a constant such that td+m+i = 1, for some i ∈ {0, 1, 2, . . . ,m1}.

(2) If P2(z1) 6≡ eiz
i
1 6≡ 0, for i ∈ {0, 1, 2, . . . ,m1} and f , g share (c, 0), then

f − c ≡ t(g − c) for a constant t such that ts = 1, where s = GCD(n +
m, . . . , n+m− i, . . . , 1), em1−i 6= 0 for some i = 0, 1, 2, . . . ,m1 − 1.

Remark 2.1. The results of the paper significantly rectify Theorems E, F
and G in the following direction: “Conclusion (ii) does not occur in Theorems
E, F and G”. Actually in the statements of Theorems E, F and G, it is assumed
that both f and g have zeros of multiplicities at least k(≥ 1), but in the
conclusion (ii) of Theorems E, F and G, we see that multiplicities of zeros of
both f and g are equal to k = 0 as they have no zeros.

Remark 2.2. The results of the paper, generalise Theorems E, F and G in
different directions. For examples, we consider P (f) instead of fn and (f (k))m

instead of f (k) in Theorems E, F and G.

Remark 2.3. Theorem 2.3 improves Theorem G in the following direction:
Theorem 2.3 holds for k ≥ 1, but Theorem G holds for 1 ≤ k ≤ 5.

Remark 2.4. Let us take d = n, c = 0, P2(z1) = 1 and m = 1. Then
from Theorem 2.2 we can easily get a theorem which is the improvement of
Theorems E and F.

Remark 2.5. Let us take d = n, c = 0, P2(z1) = 1 and m = 1. Clearly
k∗ = k. Then from Theorem 2.3 we can easily get a theorem which is the
improvement of Theorem G. Consequently, Theorem G holds when zeros of f
and g are of multiplicities at least k, where k ∈ N.

Remark 2.6. It is easy to see that the conditions “f (k), g(k) share (0,∞)”
and “f , g share (c, 0)” in Theorem 2.3 are sharp by the following example.

Example 2.1. Let P (z) = zn−1
(
(n+1)z−n

)
, f = 1−hn

1−hn+1 and g = h 1−hn
1−hn+1 ,

where h(z) = ez−1 and n ∈ N with n ≥ 10. Observe that f and g share (∞,∞)
but f and g do not share 0. Note that

f ′ =
h′hn−1

(
(n+ 1)h− hn+1 − n

)
(1− hn+1)2

and g′ =
h′
(
1 + nhn+1 − (n+ 1)hn

)
(1− hn+1)2

.



7 Uniqueness of meromorphic functions satisfying a non-linear equation 151

Clearly f ′ and g′ do not share 0. Clearly fn(f − 1) ≡ gn(g − 1), i.e.,
P (f)f ′ ≡ P (g)g′. Therefore P (f)f ′ and P (g)g′ share (1,∞), but f 6≡ tg,
t ∈ C \ {0}.

Remark 2.7. The above example also shows that the conclusion (2) in
Theorem 2.2 cannot be removed.

We now introduce the following definitions and notations which are ne-
cessary in the paper.

Definition 2.2. We denote byN(r, a; f |= k) the reduced counting function
of those a-points of f whose multiplicities exactly k ∈ N, where k ≥ 2.

Definition 2.3 ([1]). Let f and g be two non-constant meromorphic functi-
ons such that f and g share 1 IM. Let z0 be a 1-point of f with multiplicity p
and a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting

function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting

function of those 1-points of f and g where p = q = 1 and by N
(2
E (r, 1; f) the

counting function of those 1-points of f and g where p = q ≥ 2, each point in
these counting functions is counted only once. In the same way, we can define

NL(r, 1; g), N
1)
E (r, 1; g), N

(2
E (r, 1; g).

Definition 2.4. ( [14]). Let f , g share a IM. We denote byN∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g. Clearly N∗(r, a; f, g) ≡
N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

3. LEMMAS

Let F , G be two non-constant meromorphic functions. Henceforth, we
shall denote by H and V the following two functions

(3.1) H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(

G′′

G′
− 2G′

G− 1

)
and

(3.2) V =

(
F ′

F − 1
− F ′

F

)
−
(

G′

G− 1
− G′

G

)
=

F ′

F (F − 1)
− G′

G(G− 1)
.

Lemma 3.1 ([30]). Let f be a non-constant meromorphic function and
k, p ∈ N. Then

Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).
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Lemma 3.2 ([15]). If N(r, 0; f (k) | f 6= 0) denotes the counting function of
those zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted
according to its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +Nk(r, 0; f) + S(r, f).

Lemma 3.3 ([22]). Let f be a non-constant meromorphic function and
P (f) = a0 + a1f + a2f

2 + . . .+ anf
n, where a0, a1, a2 . . . , an are constants and

an 6= 0. Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 3.4 ([24], Theorem 1.24). Let f be a non-constant meromorphic
function and let k ∈ N. Suppose that f (k) 6≡ 0, then

N(r, 0; f (k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.5 ([24]). Let fj (j = 1, 2, 3) be meromorphic functions where f1
be non-constant. Suppose that

3∑
j=1

fj ≡ 1 and

3∑
j=1

N(r, 0; fj) + 2

3∑
j=1

N(r,∞; fj) < (λ+ o(1))T (r),

as r → +∞, r ∈ I, λ < 1 and T (r) = max1≤j≤3 T (r, fj). Then f2 ≡ 1 or
f3 ≡ 1.

Lemma 3.6 ([11,25]). Let f be a non-constant meromorphic function and
let a1(z), a2(z) be two meromorphic functions such that T (r, ai) = S(r, f),
i = 1, 2. Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 3.7 ([11]). Suppose that f is a non-constant meromorphic function,
k(≥ 2) is an integer. If

N(r,∞, f) +N(r, 0; f) +N(r, 0; f (k)) = S
(
r,
f ′

f

)
,

then f(z) = eaz+b, where a 6= 0, b are constants.

Lemma 3.8. Let f be a transcendental meromorphic function and k, m, n
∈ N. Then P (f)(f (k))m is non-constant, where P (z) is defined as in (2.1).

Proof. Let Ψ = P (f)(f (k))m. If possible, suppose Ψ is constant. Then
N(r, 0;P (f)) = 0 and N(r,∞; f) = 0. If P1(z) is a non-constant polynomial,
by the Second fundamental theorem we arrive at a contradiction. Next we

suppose P (z) = an(z − c)n. Let f1 = f − c. Therefore Ψ = anf
n
1 (f

(k)
1 )m. Also
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we see that ( 1

f1

)n+m
≡ an

(f
(k)
1 )m

fm1

1

Ψ
.

Then by Lemma 3.3 we have

(n+m) T (r, f1) ≤ T
(
r,

(
f
(k)
1

)m
fm1

)
+ T (r,

1

Ψ
) +O(1)

≤ N
(
r,∞;

(f
(k)
1 )m

fm1

)
+ S(r, f1)

≤ m [Nk(r, 0; f1) + k N(r,∞; f1)] + S(r, f1)

≤ mk [N(r, 0; f1) +N(r,∞; f1)] + S(r, f1) = S(r, f1),

which is impossible. Hence Ψ is non-constant. This completes the lemma. �

Lemma 3.9. Let f , g be two transcendental meromorphic functions, whose
zeros be of multiplicities at least k, where k ∈ N and let m, n ∈ N. Sup-
pose P (f)(f (k))m − p, P (g)(g(k))m − p share (0,∞) and f , g share (∞, 0),
where p(z) and P (z) are defined as in (2.3) and (2.1) respectively. Then
P (f)(f (k))mP (g)(g(k))m 6≡ p2.

Proof. Suppose

(3.3) P (f)(f (k))mP (g)(g(k))m ≡ p2.

Since f and g share (∞, 0), from (3.3) it follows that f and g are transcen-
dental entire functions.

Suppose P1(z) is a non-constant polynomial. For the sake of simplicity,
we may assume that P1(z) = an(z − cm1)m1 , where d + m1 = n. Obviously
c 6= cm1 .

From (3.3) we see that

N(r, c; f) = O(log r) and N(r, cm1 ; f) = O(log r).

Now by the second fundamental theorem we have

T (r, f) ≤ N(r, c; f) +N(r, cm1 ; f) +N(r,∞; f) + S(r, f)

= O(log r) + S(r, f) = S(r, f),

which is impossible, since f is a transcendental entire function. Therefore P (z)
must be of the form an(z − c)n and so from (3.3) we have

a2n(f − c)n(f (k))m(g − c)n(g(k))m ≡ p2.
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Let f1 = f − c, g1 = g − c and p21 = p2

a2n
. Then from above we have

(3.4) fn1 (f
(k)
1 )mgn1 (g

(k)
1 )m ≡ p21.

We consider the following cases.

Case 1. Let deg(p1) = l(≥ 1).

From (3.4), it follows thatN(r, 0; f1) = O(log r) andN(r, 0; g1) = O(log r).
Let

(3.5) F1 =
fn1 (f

(k)
1 )m

p1
and G1 =

gn1 (g
(k)
1 )m

p1
.

Clearly from (3.4) we get

(3.6) F1G1 ≡ 1.

If F1 ≡ d1G1, where d1 is a non-zero constant, then F1 is a constant,
which is impossible by Lemma 3.8. Hence F1 6≡ d1G1. Let

(3.7) Φ =
fn1 (f

(k)
1 )m − p1

gn1 (g
(k)
1 )m − p1

.

Since f1 and g1 are transcendental entire functions, it follows that

fn1 (f
(k)
1 )m − p1 6= ∞ and gn1 (g

(k)
1 )m − p1 6= ∞. Also since fn1 (f

(k)
1 )m − p1

and gn1 (g
(k)
1 )m − p1 share (0,∞), we deduce from (3.7) that

(3.8) Φ ≡ eβ,

where β is an entire function. Let f11 = F1, f12 = −eβG1 and f13 = eβ. Here
f11 is transcendental. Now from (3.7) and (3.8), we have

f11 + f12 + f13 ≡ 1.

Hence by Lemma 3.4 we get

3∑
j=1

N(r, 0; f1j) + 2

3∑
j=1

N(r,∞; f1j) ≤ N(r, 0;F1) +N(r, 0; eβG1) +O(log r)

≤ (λ+ o(1))T (r),

as r → +∞, r ∈ I, λ < 1 and T (r) = max1≤j≤3 T (r, f1j).

So by Lemma 3.5, we get either eβG1 ≡ −1 or eβ ≡ 1. But here the only

possibility is that eβG1 ≡ −1, i.e., gn1 (g
(k)
1 )m ≡ −e−βp1 and so from (3.4) we

obtain F1 ≡ eγ1G1, i.e.,

fn1 (f
(k)
1 )m ≡ eγ1gn1 (g

(k)
1 )m,
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where γ1 is a non-constant entire function. Then from (3.4) we get

(3.9) fn1 (f
(k)
1 )m ≡ d2e

1
2
γ1p1 and gn1 (g

(k)
1 )m ≡ d2e−

1
2
γ1p1, where d2 = ±1.

This shows that fn1 (f
(k)
1 )m and gn1 (g

(k)
1 )m share (0,∞). Since N(r, 0; f1) =

O(log r) and N(r, 0; g1) = O(log r), so we can take

(3.10) f1(z) = h1(z)e
α(z) and g1(z) = h2(z)e

β(z),

where h1 and h2 are non-constant polynomials and α, β are two non-constant
entire functions.

We deduce from (3.4) and (3.10) that either both α and β are transcen-
dental entire functions or both α and β are polynomials. Now we consider the
following sub-cases.

Sub-case 1.1. Let k ≥ 2.

First we suppose both α and β are transcendental entire functions.

Let α1 = α′+
h′1
h1

and β1 = β′+
h′2
h2

. Clearly both α1 and β1 are transcen-
dental. Note that

S(r, α1) = S
(
r,
f ′1
f1

)
and S(r, β1) = S

(
r,
g′1
g1

)
.

Moreover, we see that

N(r, 0; fn1 (f
(k)
1 )m) ≤ N(r, 0; p21) = O(log r) and N(r, 0; gn1 (g

(k)
1 )m)

≤ N(r, 0; p21) = O(log r).

From these and using (3.10) we have

(3.11) N(r,∞; f1) +N(r, 0; f1) +N(r, 0; f
(k)
1 ) = S(r, α1) = S

(
r,
f ′1
f1

)
,

(3.12) N(r,∞; g1) +N(r, 0; g1) +N(r, 0; g
(k)
1 ) = S(r, β1) = S

(
r,
g′1
g1

)
.

Then from (3.11), (3.12) and Lemma 3.7 we must have f1(z) = ea3z+b3

and g1(z) = ec3z+d3 where a3 6= 0, b3, c3 6= 0 and d3 are constants. But this is
impossible because zeros of f1 and g1 are of multiplicities at least k.

Next we suppose α and β are both polynomials.

Now from (3.4) we get α+β ≡ C ∈ C i.e., α′ ≡ −β′. Therefore deg(α) =
deg(β).

We deduce from (3.10) that

(3.13) fn1 (f
(k)
1 )m ≡ A1h

n
1 [h1(α

′)k + Pk−1(α
′, h′1)]

me(n+m)α ≡ p1e(n+m)α,
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(3.14) gn1 (g
(k)
1 )m ≡ B1h

n
2 [h2(β

′)k +Qk−1(β
′, h′2)]

me(n+m)β ≡ p1e(n+m)β,

where A1, B1 are non-zero constants, Pk−1(α
′, h′1) and Qk−1(β

′, h′2) are diffe-
rential polynomials in α′, h′1 and β′, h′2 respectively.

By virtue of polynomial p1, from (3.13) and (3.14) we arrive at a contra-
diction.

Sub-case 1.2. Let k = 1.

Suppose that α and β are transcendental. Then from (3.4) and (3.10) we
get

(3.15) (h1h2)
n
(
h1α

′ + h′1
)m(

h2β
′ + h′2

)m
e(n+m)(α+β) ≡ p21.

Let α + β = γ and l = n + m. From (3.15), it is clear that γ is not a
constant. Now from (3.15) we get

(3.16) (h1h2)
n
(
h1α

′ + h′1
)m(

h2(γ
′ − α′) + h′2

)m
elγ ≡ p21.

We have T (r, γ′) = m(r, lγ′) +O(1) = m(r, (e
lγ)′

elγ
) = S(r, elγ). Thus from

(3.16) we get

T (r, elγ) ≤ T

(
r,

p21
(h1h2)n

(
h1α′ + h′1

)m(
h2(γ′ − α′) + h′2

)m
)

+O(1)

≤ m T (r, α′) +m T (r, γ′ − α′) +O(log r) +O(1)

≤ 2m T (r, α′) + S(r, α′) + S(r, elγ),

which implies that T (r, elγ) = O(T (r, α′)) and so S(r, elγ) can be replaced by
S(r, α′). Thus we get T (r, γ′) = S(r, α′) and so γ′ is a small function with
respect to α′. In view of (3.16) and by Lemma 3.6 we get

T (r, α′)

≤ N(r,∞;α′) +N(r, 0;h1α
′ + h′1) +N(r, 0;h2(γ

′ − α′) + h′2) + S(r, α′)

≤ O(log r) + S(r, α′),

which shows that α′ is a polynomial and so α is a polynomial. Similarly, we
can prove that β is also a polynomial. This contradicts the fact that α and β
are transcendental.

Thus α and β are both polynomials. Consequently from (3.4), we can
conclude that α + β is a constant and so α′ + β′ ≡ 0. We deduce from (3.4)
that

(3.17) fn1 (f ′1)
m ≡ hn1 (h1α

′ + h′1)
me(n+m)α ≡ p1e(n+m)α,

(3.18) gn1 (g′1)
m ≡ hn2 (h2β

′ + h′2)
me(n+m)β ≡ p1e(n+m)β.
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By virtue of the polynomial p1, from (3.17) and (3.18) we arrive at a
contradiction.

Case 2. Let p1 be a non-zero constant, say b.

Then from (3.4) we get fn1 (f
(k)
1 )mgn1 (g

(k)
1 )m ≡ (b/an)2, where f1 and g1

are transcendental entire functions. Clearly f1 and g1 have no zeros. But this
is impossible because zeros of f1 and g1 are of multiplicities at least k. This
completes the lemma. �

Lemma 3.10 ([12]). Let f and g be two non-constant meromorphic functi-
ons. Suppose that f and g share (0,∞) and (∞,∞), f (k) and g(k) share (0,∞)
for k = 1, 2, . . . , 6. Then f and g satisfy one of the following cases

(i) f ≡ tg, where t( 6= 0) is a constant,

(ii) f(z) = eaz+b, g(z) = ecz+d, where a, b, c and d are constants such that
ac 6= 0,

(iii) f(z) = a
1−beα(z) , g(z) = a

e−α(z)−b , where a, b are non-zero constants and

α(z) is a non-constant entire function,

(iv) f(z) = a(1− becz), g(z) = d(e−cz − b), where a, b, c and d are non-zero
constants.

Lemma 3.11. Let f and g be two transcendental meromorphic functions
such that zeros of f − c and g − c be of multiplicities at least k∗, where k∗

be defined as in (2.2) and m, n ∈ N. Suppose f (k), g(k) share (0,∞) and f ,

g share (∞, 0). If fd1P2(f1)(f
(k)
1 )m ≡ gd1P2(g1)(g

(k)
1 )m, where f1 = f − c and

g1 = g − c, then one of the following cases holds:

(1) If P2(z1) ≡ eizi1 6≡ 0, for some i ∈ {0, 1, 2, . . . ,m1}, then f − c ≡ t(g− c),
where t is a constant such that td+m+i = 1, for some i ∈ {0, 1, 2, . . . ,m1}.

(2) If P2(z1) 6≡ eiz
i
1 6≡ 0, for i ∈ {0, 1, 2, . . . ,m1} and f , g share (c, 0), then

f − c ≡ t(g − c) for a constant t such that ts = 1, where s = GCD(n +
m, . . . , n+m− i, . . . , 1), em1−i 6= 0 for some i = 0, 1, 2, . . . ,m1 − 1.

Proof. Suppose

fd1P2(f1)(f
(k)
1 )m ≡ gd1P2(g1)(g

(k)
1 )m,(3.19)

i.e.,
P2(f1)

P2(g1)
≡ gd1(g

(k)
1 )m

fd1 (f
(k)
1 )m

.(3.20)

From (3.19) we see that f
(k)
1 and g

(k)
1 share (∞,∞). Again since f

(k)
1 and

g
(k)
1 share (0,∞), it follows that f1 and g1 share (0,∞) also. Since f1 and g1

share (0,∞), (∞,∞), it follows that f1 = eγg1, where γ is an entire function.
We now consider following two cases.

Case 1. Suppose P2(z1) is a non-zero monomial.
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Let P2(z1) ≡ eiz
i
1 6≡ 0, for some i ∈ {0, 1, 2, . . . ,m1}. Then from (3.19)

we have

fn1
1 (f

(k)
1 )m ≡ gn1

1 (g
(k)
1 )m,(3.21)

i.e.,
fn1
1

gn1
1

≡ (g
(k)
1 )m

(f
(k)
1 )m

,(3.22)

where n1 = d + i, for some i ∈ {0, 1, 2, . . . ,m1}. Let h1 = f1
g1

and h2 =
f
(k)
1

g
(k)
1

.

Then h1 6= 0,∞ and h2 6= 0,∞. From (3.22) we see that

hn1
1 h

m
2 ≡ 1.(3.23)

First we suppose h1 is a non-constant entire function. Consequently h2
is also a non-constant entire function. Let F1 = hn1

1 and G1 = hm2 . Also from
(3.23) we get

(3.24) F1G1 ≡ 1.

Clearly F1 6≡ dG1, where d is a non-zero constant, otherwise F1 will be a
constant and so h1 will be a constant.

Since F1 6= 0,∞ and G1 6= 0,∞ then there exist two non-constant entire
functions α and β such that F1 = eα and G1 = eβ. Now from (3.24) we see
that α+β = C ∈ C. Therefore α′ = −β′. Note that F ′1 = α′eα and G′1 = β′eβ.
This shows that F ′1 and G′1 share (0,∞). Note that F1 6= 0,∞, G1 6= 0,∞ and
F1 6≡ dG1, where d is a non-zero constant. Now in view of Lemma 3.10 we
have F1(z) = c1e

az and G1(z) = c2e
−az, where a, c1, c2 are non-zero constants

such that c1c2 = 1. Since
(
f1(z)
g1(z)

)n1

= c1e
az and

(
f
(k)
1 (z)

g
(k)
1 (z)

)m
= c2e

−az, it follows

that

f1(z)

g1(z)
= t1e

a
n1
z

= t1e
d1z(3.25)

and

f
(k)
1 (z)

g
(k)
1 (z)

= t2e
− a
m
z = t2e

d2z,(3.26)

where d1, d2, t1, t2 are non-zero constant such that tn1
1 = c1, t

m
2 = c2, d1 = a

n1

and d2 = − a
m . Let

Φ1 =
f
(k+1)
1

f
(k)
1

− g
(k+1)
1

g
(k)
1

.(3.27)
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From (3.26), we see that

Φ1(z) = d2.(3.28)

Again from (3.25) we see that

f
(j)
1 (z) = t1

j∑
i=0

jCi(e
d1z)(j−i)g

(i)
1 (z),

where we define g
(0)
1 (z) = g1(z). Consequently we have

(3.29) f
(k+1)
1 (z) = t1[d

k+1
1 ed1zg1(z) + (k + 1)dk1e

d1zg′1(z) + . . .

+
k(k + 1)

2
d21e

d1zg
(k−1)
1 (z) + (k + 1)d1e

d1zg
(k)
1 (z) + ed1zg

(k+1)
1 (z)]

and

(3.30) f
(k)
1 (z) = t1[d

k
1e
d1zg1(z) + kdk−11 ed1zg′1(z) + . . .

+
(k − 1)k

2
d21e

d1zg
(k−2)
1 (z) + kd1e

d1zg
(k−1)
1 (z) + ed1zg

(k)
1 (z)].

Now from (3.27), (3.29) and (3.30) we have

Φ1 =
F2 −G2 + (k + 1)d1g

(k)
1 g

(k)
1 − kd1g

(k−1)
1 g

(k+1)
1

F3 + g
(k)
1 g

(k)
1

,(3.31)

where

F2 = dk+1
1 g1g

(k)
1 + (k + 1)dk1g

′
1g

(k)
1 + . . .+

k(k + 1)

2
d21g

(k−1)
1 g

(k)
1 ,

G2 = dk1g1g
(k+1)
1 + kdk−11 g′1g

(k+1)
1 + . . .+

(k − 1)k

2
d21g

(k−2)
1 g

(k+1)
1

and

F3 = dk1g1g
(k)
1 + . . .+ kd1g

(k−1)
1 g

(k)
1 .

Let zp be a zero of g1(z) of multiplicity p(≥ k). Then the Taylor expansion
of g1 about zp is

(3.32) g1(z) = bp(z− zp)p + bp+1(z− zp)p+1 + bp+2(z− zp)p+2 + . . . , bp 6= 0.

We now consider the following two sub-cases.

Sub-case 1.1. Suppose p = k. Then

g
(k)
1 (z) = k!bk + (k + 1)!bk+1(z − zk) + . . .(3.33)
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and

g
(k+1)
1 (z) = (k + 1)!bk+1 + (k + 2)!bk+2(z − zk) + . . . .(3.34)

Now from (3.31), (3.33) and (3.34) we have

Φ1(zk) = d1
(k + 1)(k!)2b2k

(k!)2b2k
= d1(k + 1).(3.35)

Therefore we arrive at a contradiction from (3.28) and (3.35).

Sub-case 1.2. Suppose p ≥ k + 1. Then

g
(k−2)
1 (z) = p(p− 1) . . . (p− k + 3)bp(z − zp)p−k+2 + . . .

g
(k−1)
1 (z) = p(p− 1) . . . (p− k + 2)bp(z − zp)p−k+1 + . . .

g
(k)
1 (z) = p(p− 1) . . . (p− k + 1)bp(z − zp)p−k + . . .

and

g
(k+1)
1 (z) = p(p− 1) . . . (p− k)bp(z − zp)p−k−1 + . . . .

Therefore

g
(k)
1 (z)g

(k)
1 (z) = Kb2p(z − zp)2p−2k + . . .(3.36)

g
(k−1)
1 (z)g

(k+1)
1 (z) =

p− k
p− k + 1

Kb2p(z − zp)2p−2k + . . . ,(3.37)

where K = [p(p− 1) . . . (p− k + 1)]2. Also

F2(z) = O((z − zp)2p−2k+1), G2(z) = O((z − zp)2p−2k+1)

and F3(z) = O((z − zp)2p−2k+1).

Now from (3.31), (3.36) and (3.37) we have

Φ1(zp) =
(k + 1)d1Kb

2
p − kd1

p−k
p−k+1Kb

2
p

Kb2p
= d1

p+ 1

p− k + 1
.(3.38)

Therefore we arrive at a contradiction from (3.28) and (3.38).

Thus in either cases one can easily say that g1 has no zeros. Since f1
and g1 share (0,∞), it follows that both f1 and g1 have no zeros. But this
is impossible because zeros of f1 and g1 are of multiplicities at least k(≥ 1).
Hence h1 is constant. Then from (3.21) we get hn1+m

1 = 1. Therefore we
have f − c ≡ t(g − c), where t is a constant such that td+m+i = 1, for some
i ∈ {0, 1, 2, . . . ,m1}.

Case 2. Suppose P2(z1) is not a monomial.
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For the sake of simplicity, we assume that

P2(z1) = em1z
m1
1 + em1−1z

m1−1
1 + . . .+ e1z1 + e0; e0 6= 0.

Let h∗1 = P2(f1)
P2(g1)

and h∗2 =
fd1 (f

(k)
1 )m

gd1(g
(k)
1 )m

. Then h∗1 6= 0,∞ and h∗2 6= 0,∞. From

(3.20) we see that

h∗1h
∗
2 ≡ 1.(3.39)

We now consider the following two sub-cases.

Sub-case 2.1. Suppose h∗1 is a non-zero constant, say b. Then we have

em1f
m1
1 + em1−1f

m1−1
1 + . . .+ e1f1 + e0(3.40)

≡ b(em1g
m1
1 + em1−1g

m1−1
1 + . . .+ e1g1 + e0).

Let b = 1. Then from (3.19) we have

fd1 (f
(k)
1 )m ≡ gd1(g

(k)
1 )m.

Then by Case 1 we have f1 ≡ tg1, where t is a constant such that td+m = 1,
i.e., tn+m−m1 = 1.

Again from (3.40) we have

em1g
m1
1 (tm1 − 1) + em1−1g

m1−1
1 (tm1−1 − 1) + . . .+ e1g1(t− 1) ≡ 0,

i.e.,

em1g
m1
1 (tn+m − 1) + em1−1g

m1−1
1 (tn+m−1 − 1) + . . .+ e1g1(t− 1) ≡ 0.

This shows that f − c ≡ t(g − c) for a constant t such that ts = 1, where
s = GCD(n+m, . . . , n+m−i, . . . , 1), em1−i 6= 0 for some i = 0, 1, 2, . . . ,m1−1.

Let b 6= 1. Since f1 = eγg1, from (3.40) we have

em1g
m1
1 (em1γ − b) + em1−1g

m1−1
1 (e(m1−1)γ − b) + . . .(3.41)

+e1g1(e
γ − b) ≡ e0(b− 1).

Note that g1 6≡ d, where d ∈ C. Then from (3.41) we see that g1 has no
zero. But this is impossible because zeros of g1 are of multiplicities at least
k + 1.

Sub-case 2.2. Suppose h∗1 is non-constant.

Therefore h∗2 is also a non-constant entire function. Note that h∗1 6≡ d∗0h∗2,
where d∗0 is a non-zero constant. Since h∗1 6= 0,∞ and h∗2 6= 0,∞, then there
exist two non-constant entire functions α∗ and β∗ such that h∗1 = eα

∗
and

h∗2 = eβ
∗
. Now from (3.39) we see that (α∗)′ = −(β∗)′. Therefore (h∗1)

′

and (h∗2)
′ share (0,∞). Now in view of Lemma 3.10 we get h∗1(z) = c∗1e

az

and h∗2(z) = c∗2e
−az, where a, c1, c2 are non-zero complex constants such that
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c1c2 = 1. Therefore we have

em1g
m1
1 (em1γ − c∗1eaz) + em1−1g

m1−1
1 (e(m1−1)γ − c∗1eaz) + . . .(3.42)

+e1g1(e
γ − c∗1eaz) ≡ e0(c∗1eaz − 1).

Note that c∗1e
az − 1 has only simple zeros. Also from (3.42), we see that

zeros of g1 are also the zeros of c∗1e
az − 1. Since all the zeros of g1 are of

multiplicities at least k + 1, from (3.42) we arrive at a contradiction. This
completes the lemma. �

Lemma 3.12. Let f , g be two non-constant meromorphic functions such
that zeros of f − c and g− c be of multiplicities at least k∗, where k∗ be defined
as in (2.2) and F = P (f)(f (k))m, G = P (g)(g(k))m, where k, m, n ∈ N such
that n+m+mk > 2k + 1 and P (z) be defined as in (2.1). Suppose H 6≡ 0. If
F , G share (1, k1) and f , g share (∞, 0) then

N(r,∞; f) ≤ k∗Γ1 + k∗ + 1

k∗(n+m+ (m− 2)k − 1)
[T (r, f) + T (r, g)]

+
1

n+m+ (m− 2)k − 1
N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. Let f1 = f − c and g1 = g − c. If ∞ is a Picard exceptional value
of f and g, then the lemma follows immediately. Next suppose ∞ is not a
Picard exceptional value of f and g. Since H 6≡ 0, it follows that F 6≡ G. We
claim that V 6≡ 0. If possible suppose V ≡ 0. Then by integration we obtain
1− 1

F ≡ A(1− 1
G). Note that if z∗ is a pole of f then it is a pole of g. Hence

from the definition of F and G we have 1
F (z∗)

= 0 and 1
G(z∗)

= 0. So A = 1 and
hence F ≡ G, which is impossible. Let z0 be a pole of f with multiplicity q
and a pole of g with multiplicity r. Clearly z0 is a pole of F with multiplicity
(n + m)q + mk and a pole of G with multiplicity (n + m)r + mk. Since f
and g share (∞, 0), from the definition of V it is clear that z0 is a zero of V
with multiplicity at least n+m+mk− 1. Now in view of Lemma 3.2 and the
definition of V we have

[n+m+mk − 1] N(r,∞; f)

≤ N(r, 0;V )

≤ N(r,∞;V ) + S(r, f) + S(r, g)

≤ N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ N(r, 0;P1(f)) +N(r, 0; f1) +N(r, 0; f
(k)
1 |f1 6= 0) +N(r, 0;P1(g))

+N(r, 0; g1) +N(r, 0; g
(k)
1 |g1 6= 0) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ N(r, 0;P1(f)) +N(r, 0; f1) + k N(r,∞; f1) +Nk(r, 0; f1)
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+N(r, 0;P1(g)) +N(r, 0; g1) + k N(r,∞; g1) +Nk(r, 0; g1)

+N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ N(r, 0;P1(f)) +N(r, 0;P1(g)) +
k∗ + 1

k∗
[
N(r, 0; f1) +N(r, 0; g1)

]
+2k N(r,∞; f) +N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ k∗ Γ1 + k∗ + 1

k∗
[T (r, f) + T (r, g)] + 2k N(r,∞; f) +N∗(r, 1;F,G)

+S(r, f) + S(r, g).

Hence the lemma follows. �

Lemma 3.13. Let f be a non-constant meromorphic function and F =
P (f)(f (k))m, where k, m, n ∈ N and P (z) be defined as in (2.1). Then

(n−m)T (r, f) ≤ T (r, F )−m N(r,∞; f)−N(r, 0; (f (k))m) + S(r, f).

Proof. Note that

N(r,∞;F ) = N(r,∞;P (f)) +N(r,∞; (f (k))m)

= N(r,∞;P (f)) +m N(r,∞; f) +mkN(r,∞; f),

i.e.,

N(r,∞;P (f)) = N(r,∞, F )−m N(r,∞; f)−mk N(r,∞, f) + S(r, f).

Also

m(r, P (f))

= m
(
r,

F

(f (k))m
)

≤ m(r, F ) +m
(
r,

1

(f (k))m
)

+ S(r, f)

= m(r, F ) + T (r, (f (k))m)−N(r, 0; (f (k))m) + S(r, f)

= m(r, F ) +N(r,∞; (f (k))m) +m(r, (f (k))m)−N(r, 0; (f (k))m) + S(r, f)

≤ m(r, F ) +m N(r,∞; f) +m kN(r,∞; f) +m
(
r,

(f (k))m

fm
)

+m(r, fm)

−N(r, 0; (f (k))m) + S(r, f)

= m(r, F ) +m T (r, f) +m kN(r,∞; f)−N(r, 0; (f (k))m) + S(r, f).

Now

n T (r, f) = N(r,∞;P (f)) +m(r, P (f))

≤ T (r, F ) +m T (r, f)−m N(r,∞; f)−N(r, 0; (f (k))m)+S(r, f),
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i.e., (n−m) T (r, f) ≤ T (r, F )−m N(r,∞; f)−N(r, 0; (f (k))m) + S(r, f).

This completes the proof. �

Lemma 3.14. Let f , g be two transcendental meromorphic functions, such
that zeros of f−c and g−c be of multiplicities at least k∗, where k∗ be defined as

in (2.2) and m,n ∈ N such that n > 2Γ1 + 2
k∗ +m+k+1. Let F = P (f)(f (k))m

p1
,

G = P (g)(g(k))m

p1
, where p1(z) be any non-zero polynomial and P (z) be defined

as in (2.1). If f , g share (∞, 0) and H ≡ 0 then one of the following three
cases holds

(1) P (f)(f (k))mP (g)(g(k))m ≡ p21, where P (f)(f (k))m−p1 and P (g)(g(k))m−
p1 share (0,∞),

(2) f − c ≡ t(g − c) for a constant t such that ts = 1, where s = GCD(n +
m, . . . , n+m− i, . . . ,m), em1−i 6= 0 for some i ∈ {0, 1, . . . ,m1},

(3) P (f)(f (k))m ≡ P (g)(g(k))m.

Proof. Since H ≡ 0, on integration, we get

F ′

(F − 1)2
= A

G′

(G− 1)2
,

where A is a non-zero constant, i.e.,(
F1−p1
p1

)′
(
F1−p1
p1

)2 = A

(
G1−p1
p1

)′
(
G1−p1
p1

)2 ,
where F1 = P (f)(f (k))m and G1 = P (g)(g(k))m. This shows that F1−p1

p1
and

G1−p1
p1

share (0,∞). Therefore P (f)(f (k))m − p1 and P (g)(g(k))m − p1 share
(0,∞). Finally, on integration we have

(3.43)
1

F − 1
≡ bG+ a− b

G− 1
,

where a, b are constants and a 6= 0. We now consider the following cases.

Case 1. Let b 6= 0 and a 6= b.

If b = −1, then from (3.43) we have F ≡ −a
G−a−1 . Therefore

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f).

So in view of Lemma 3.13 and the second fundamental theorem we get

(n−m) T (r, g)

≤ T (r, P (g)(g(k))m)−m N(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

≤ T (r,G)−m N(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)
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≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)−m N(r,∞; g)

−N(r, 0; (g(k))m) + S(r, g)

≤ N(r, 0;P1(g)) +N(r, 0; g − c) +N(r, 0; (g(k))m) +N(r,∞; f)

−N(r, 0; (g(k))m) + S(r, g)

≤ N(r,∞; g) + Γ1 T (r, g) +
1

k∗
T (r, g) + S(r, g)

≤ N(r,∞; g) + (Γ1 +
1

k∗
) T (r, g) + S(r, g) ≤ (Γ1+

1

k∗
+1) T (r, g)+S(r, g),

which is contradiction since n > Γ1 + 1
k∗ +m+ 1.

If b 6= −1, from (3.43) we obtain F − (1 + 1
b ) ≡

−a
b2[G+a−b

b
]

and so

N(r,
b− a
b

;G) = N(r,∞;F ) = N(r,∞; f) + S(r, f).

Using Lemma 3.13 and the same argument as used in the case when
b = −1 we can get a contradiction.

Case 2. Let b 6= 0 and a = b.

If b = −1, then from (3.43) we have FG ≡ 1, i.e., P (f)(f (k))mP (g)(g(k))m

≡ p21, where P (f)(f (k))m − p1 and P (g)(g(k))m − p1 share (0,∞).

If b 6= −1, from (3.43) we have 1
F ≡

bG
(1+b)G−1 . Therefore

N(r,
1

1 + b
;G) = N(r, 0;F ).

So in view of Lemmas 3.1, 3.13 and the second fundamental theorem we
get

(n−m) T (r, g)

≤ T (r,G)−m N(r,∞; g)−N(r, 0; (g(k))m) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1 + b
;G)−m N(r,∞; g)

−N(r, 0; (g(k))m) + S(r, g)

≤ N(r, 0;P (g)) +N(r, 0; (g(k))m) +N(r, 0;F )−N(r, 0; (g(k))m) + S(r, g)

≤ N(r, 0; g − c) +N(r, 0;P1(g)) +N(r, 0; f − c) +N(r, 0;P1(f))

+N(r, 0; f
(k)
1 |f1 6= 0) + S(r, g)

≤ (Γ1 +
1

k∗
) {T (r, f) + T (r, g)}+Nk(r, 0, f) + kN(r,∞; f) + S(r, g)

≤ N(r, 0; f) + kN(r,∞; f) + (Γ1 +
1

k∗
) {T (r, f) + T (r, g)}

+S(r, f) + S(r, g)
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≤ (Γ1 +
1

k∗
) {T (r, f) + T (r, g)}+ T (r, f) + k T (r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with
infinite measure such that T (r, f) ≤ T (r, g) for r ∈ I. So for r ∈ I we have

(n−m) T (r, g) ≤ (2Γ1 +
2

k∗
+ k + 1) T (r, g) + S(r, g),

which is a contradiction since n > 2Γ1 + 2
k∗ +m+ k + 1.

Case 3. Let b = 0. From (3.43) we obtain

(3.44) F ≡ G+ a− 1

a
.

If a 6= 1 then from (3.44) we obtain N(r, 1− a;G) = N(r, 0;F ). We can
similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (3.44)

we obtain F ≡ G, i.e., fd1P2(f1)(f
(k)
1 )m ≡ gd1P2(g1)(g

(k)
1 )m, where f1 = f − c

and g1 = g − c. This gives

fd1

[
em1f

m1
1 + em1−1f

m1−1
1 + . . .+ e1f1 + e0

]
(f

(k)
1 )m(3.45)

≡ gd1
[
em1g

m1
1 + em1−1g

m1−1
1 + . . .+ e1g1 + e0

]
(g

(k)
1 )m.

Let h = f1
g1

. If h is a constant, by putting f1 = hg1 in (3.45) we get

em1g
m1
1 (hn+m − 1) + em1−1g

m1−1
1 (hn+m−1 − 1) + . . .+ e1g1(h

m+1 − 1)

+ e0(h
m − 1) ≡ 0,

which implies that hs = 1, where s = GCD(n + m, . . . , n + m − i, . . . ,m),
em1−i 6= 0 for some i ∈ {0, 1, . . . ,m1}. Thus f − c ≡ t(g − c) for a constant t
such that ts = 1, where s = GCD(n+m, . . . , n+m− i, . . . ,m), em1−i 6= 0 for
some i ∈ {0, 1, . . . ,m1}.

If h is not constant, then we must have P (f)(f (k))m ≡ P (g)(g(k))m. This
completes the proof. �

Lemma 3.15 ([2]). Let f and g be two non-constant meromorphic functi-
ons sharing (1, k1), where 2 ≤ k1 ≤ ∞. Then

N(r, 1; f | = 2)+2 N(r, 1; f | = 3)+. . .+(k1−1) N(r, 1; f | = k1)+k1 NL(r, 1; f)

+ (k1 + 1) NL(r, 1; g) + k1 N
(k1+1
E (r, 1; g) ≤ N(r, 1; g)−N(r, 1; g).

4. PROOFS OF THE THEOREMS

Proof of the Theorem 2.1. Let us take F = P (f)(f (k))m. In view of
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Lemma 3.13 and by the second theorem for small functions ( [18]) we get

(n−m)T (r, f) ≤ T (r, F )−m N(r,∞; f)−N(r, 0; (f (k))m) + S(r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, a;F )−m N(r,∞; f)

−N(r, 0; (f (k))m) + (ε+ o(1))T (r, f)

≤ N(r, 0;P1(f)) +N(r, 0; f − c) +N(r, a;F )

+(ε+ o(1))T (r, f)

≤ (Γ1 +
1

k∗
)T (r, f) +N(r, a;F ) + (ε+ o(1))T (r, f),

for all ε > 0. Take ε < 1. Since n > m+ Γ1 + 1
k∗ , one can easily say that F −a

has infinitely many zeros. This completes the proof. �

Proof of the Theorem 2.3. Let F = P (f)(f (k))m

p and G = P (g)(g(k))m

p . Note
that F and G share (1, k1) except for the zeros of p and f , g share (∞, 0).

Case 1. Let H 6≡ 0. From (3.1) it can be easily calculated that the
possible poles of H occur at (i) multiple zeros of F and G, (ii) those 1 points
of F and G whose multiplicities are different, (iii) those poles of F and G
whose multiplicities are different, (iv) zeros of F ′(G′) which are not the zeros
of F (F − 1)(G(G− 1)).

Since H has only simple poles we get

N(r,∞;H)(4.1)

≤ N∗(r,∞; f, g) +N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2)

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f) + S(r, g),

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which
are not the zeros of F (F − 1) and N0(r, 0;G′) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero
of G− 1 and a zero of H. So

(4.2) N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g).

Using (4.1) and (4.2) we get

N(r, 1;F )(4.3)

≤ N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N∗(r,∞; f, g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N(r, 1;F | ≥ 2) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N(r, 1;F | ≥ 2) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f) + S(r, g).
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Now in view of Lemmas 3.2 and 3.15 we get

N0(r, 0;G′) +N(r, 1;F |≥ 2) +N∗(r, 1;F,G)(4.4)

≤ N0(r, 0;G′) +N(r, 1;F | = 2) +N(r, 1;F | = 3)

+ . . .+N(r, 1;F | = k1)

+N
(k1+1
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N∗(r, 1;F,G)

≤ N0(r, 0;G′)−N(r, 1;F | = 3)− . . .− (k1 − 2)N(r, 1;F | = k1)

−(k1 − 1)NL(r, 1;F )

−k1NL(r, 1;G)− (k1 − 1)N
(k1+1
E (r, 1;F )

+N(r, 1;G)−N(r, 1;G) +N∗(r, 1;F,G)

≤ N0(r, 0;G′) +N(r, 1;G)−N(r, 1;G)− (k1 − 2)NL(r, 1;F )

−(k1 − 1)NL(r, 1;G)

≤ N(r, 0;G′ | G 6= 0)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

≤ N(r, 0;G) +N(r,∞; g)− (k1 − 2)NL(r, 1;F )− (k1 − 1)NL(r, 1;G)

= N(r, 0;G) +N(r,∞; g)− (k1 − 2)N∗(r, 1;F,G)−NL(r, 1;G).

Hence using (4.3), (4.4), Lemma 3.1 we get from second fundamental
theorem that

T (r, F )(4.5)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )−N0(r, 0;F ′)

≤ 2 N(r,∞, f) +N2(r, 0;F ) +N(r, 0;G| ≥ 2) +N(r, 1;F | ≥ 2)

+N∗(r, 1;F,G) +N0(r, 0;G′) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) +N2(r, 0;F ) +N2(r, 0;G)− (k1 − 2) N∗(r, 1;F,G)

+S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r, 0; f − c) +N2(r, 0;P1(f)) +N2(r, 0; (f (k))m)

+2N(r, 0; g − c) +N2(r, 0;P (g)) +N2(r, 0; (g(k))m)

−(k1 − 2) N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ 3N(r,∞; f) + (Γ2 +
2

k∗
) T (r, f) +N(r, 0; (f (k))m)

+(Γ2 +
2

k∗
) T (r, g) +m N2(r, 0; g(k))

−(k1 − 2) N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ (3 +mk) N(r,∞; f) + (Γ2 +
2

k∗
)T (r, f)

+(Γ2 +
2

k∗
+m)T (r, g) +N(r, 0; (f (k))m)
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−(k1 − 2) N∗(r, 1;F,G) + S(r, f) + S(r, g).

Now using Lemmas 3.12 and 3.13, we get from (4.5) that

(n−m) T (r, f)(4.6)

≤ T (r, F )−m N(r,∞; f)−N(r, 0; (f (k))m) + S(r, f)

≤ [m(k − 1) + 3] N(r,∞; f) + (Γ2 +
2

k∗
)T (r, f)

+(Γ2 +
2

k∗
+m) T (r, g)

−(k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤ (k∗ + k∗Γ1 + 1)[m(k − 1) + 3]

k∗(m+ n+ (m− 2)k − 1)
[T (r, f) + T (r, g)]

+(Γ2 +
2

k∗
)T (r, f) + (Γ2 +

2

k∗
+m)T (r, g)

+
m(k − 1) + 3

n+m+ (m− 2)k − 1
N∗(r, 1;F,G)

−(k1 − 2)N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
[
2Γ2 +m+

4

k∗
+ 2

(k∗ + k∗Γ1 + 1)[m(k − 1) + 3]

k∗(m+ n+ (m− 2)k − 1)

]
T (r) + S(r).

In a similar way we can obtain

(n−m) T (r, g)(4.7)

≤
[
2Γ2 +

4

k∗
+m+ 2

(k∗ + k∗Γ1 + 1)[m(k − 1) + 3]

k∗(m+ n+ (m− 2)k − 1)

]
T (r) + S(r).

From (4.6) and (4.7) we see that

(n−m) T (r)

≤
[
2Γ2 +

4

k∗
+m+ 2

(k∗ + k∗Γ1 + 1)[m(k − 1) + 3]

k∗(m+ n+ (m− 2)k − 1)

]
T (r) + S(r),

i.e.,[
k∗n2 − (2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4−mkk∗)n+A

]
T (r) ≤ S(r),

where

A = 2mkk∗+4mk∗+8k−2m+2mΓ1k
∗+4Γ2kk

∗+2Γ2k
∗−2m2k∗−2m2kk∗−2

− 6k∗ − 6Γ1k
∗ − 2mΓ1kk

∗ − 6mk − 2mΓ2k
∗ − 2mΓ2kk

∗,

i.e.,

[k∗(n−K1)(n−K2)] T (r) ≤ S(r),(4.8)
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where

K1 =
2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4−mkk∗ +

√
L

2k∗

and

K2 =
2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4−mkk∗ −

√
L

2k∗

with

L = (2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4−mkk∗)2 − 4k∗A.

Note that

L = (2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4−mkk∗)2 − 4k∗A

= 4(k∗)2Γ2
2 + 9(k∗)2m2 + (k∗)2 + 16 + (k∗)2m2k2 + 6(k∗)2m2k

+8(k∗)2mk + 16k∗ + 16k∗mk + 16mk∗ + 4(k∗)2mkΓ2 + 16k∗Γ2

+12(k∗)2mΓ2 + 8(k∗)2mkΓ1 − 2(k∗)2mk − 2(k∗)2m− 16k∗k

−8(k∗)2kΓ2 − 4(k∗)2Γ2 + (4(k∗)2k2 − 4(k∗)2k2m)

+(4(k∗)2k − 12(k∗)2mk) + (24(k∗)2 − 12(k∗)2m)

+(24(k∗)2Γ1 − 8(k∗)2mΓ1)

≤ 4(k∗)2Γ2
2 + 9(k∗)2m2 + (k∗)2 + 16 + (k∗)2m2k2 + 6(k∗)2m2k

+8(k∗)2mk + 16k∗ + 16k∗mk + 16mk∗

+4(k∗)2mkΓ2 + 16k∗Γ2 + 8(k∗)2mΓ2 + 8(k∗)2mkΓ2

−2(k∗)2mk − 2(k∗)2m− 16k∗k − 8(k∗)2kΓ2 − 4(k∗)2Γ2 − 8(k∗)2mk

+12(k∗)2 + 16(k∗)2Γ2

≤ m2k2(k∗)2 + 9(k∗)2m2 + 13(k∗)2 + 16 + 6(k∗)2m2k + 16k∗

+16k∗mk + 16mk∗ + 12(k∗)2mkΓ2 + 16k∗Γ2 + 8(k∗)2mΓ2 + 16Γ2
2(k
∗)2

−2(k∗)2m− 16k∗k − 8(k∗)2kΓ2 − 2(k∗)2mk

≤ m2k2(k∗)2 + 9m2(k∗)2 + 4(k∗)2 + 36Γ2
2(k
∗)2 + 9 + 6m2k(k∗)2

+4mk(k∗)2 + 24mΓ2k(k∗)2 + 6mkk∗

+12m(k∗)2 + 36mΓ2(k
∗)2 + 18mk∗ + 24Γ2(k

∗)2 + 12k∗ + 36Γ2k
∗

+
(
7 + 9(k∗)2 + 10mkk∗ − 14m(k∗)2 − 6mk(k∗)2 − 16kk∗ − 2mk∗

)
<

[
mkk∗ + 3mk∗ + 2k∗ + 6Γ2k

∗ + 3
]2
.

Therefore

K1 =
2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4− k∗mk +

√
L

2k∗
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<
2k∗Γ2 + k∗m+ 2k∗k + k∗ + 4− k∗mk +mkk∗ + 3mk∗ + 2k∗ + 6Γ2k

∗ + 3

2k∗

= k + 2(m+ 2Γ2) +
3k∗ + 7

2k∗
.

Since n ≥ k + 2(m+ 2Γ2) + 3k∗+7
2k∗ , (4.8) leads to a contradiction.

Case 2. Let H ≡ 0. Note n ≥ k+2(m+2Γ2)+ 3k∗+7
2k∗ > 2Γ1+ 2

k∗+m+k+1.
Remaining part of the theorem follows from Lemmas 3.14, 3.9 and 3.11. This
completes the proof. �

Proof of the Theorem 2.2. When H 6≡ 0 we follow the proof of Theo-
rem 2.3 while for H ≡ 0 we follow Lemmas 3.14 and 3.9. So we omit the detail
proof. �
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