# DUAL PAIR AND APPROXIMATE DUAL FOR CONTINUOUS FRAMES IN HILBERT SPACES 

ASGHAR RAHIMI, ZAHRA DARVISHI and BAYAZ DARABY

Communicated by Vasile Brînzănescu

In this manuscript, the concept of dual and approximate dual for continuous frames in Hilbert spaces will be introduced. Some of its properties will be studied. Also, the relations between two continuous Riesz bases in Hilbert spaces will be clarified through examples.

AMS 2010 Subject Classification: Primary 42C15; Secondary 41C40, 46C99, 41A65.

Key words: continuous frame, continuous Riesz basis, dual continuous frame, approximate dual continuous frame.

## 1. INTRODUCTION

Frames for Hilbert spaces have been first introduced by Duffin and Scheaffer in the study of some problems in nonharmonic Fourier series in 1952, [12]. A discrete frame is a countable family of elements in a separable Hilbert space which allows for a stable, not necessarily unique, decomposition of an arbitrary element into an expansion of the frame elements.

Recall that for a Hilbert space $\mathcal{H}$ and a countable index set $I$, a family of vectors $\left\{f_{i}\right\}_{i \in I} \subseteq \mathcal{H}$ is called a discrete frame for $\mathcal{H}$, if there exist constants $0<A \leq B<+\infty$ such that

$$
A\|f\|^{2} \leq \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq B\|f\|^{2}, \quad f \in \mathcal{H},
$$

the constants $A$ and $B$ are called frame bounds. The frame $\left\{f_{i}\right\}_{i \in I}$ is called tight if $A=B$ and Parseval if $A=B=1$. The frame decomposition is the most important frame results. It shows for the frame $\left\{f_{i}\right\}_{i \in I}$, every element in $\mathcal{H}$ has a representation as an infinite linear combination of the frame elements; i.e., there exist coefficients $\left\{c_{i}(f)\right\}_{i \in I}$ such that $f=\sum_{i \in I} c_{i}(f) f_{i}$, where $f \in \mathcal{H}$ is arbitrary. Thus, it is natural to say that a frame is some kind of a generalized basis. Usually, we want to work with coefficients which depend continuously and linearly on $f$, by "Riesz representation theorem", this implies that the
$i$-th coefficient in the expansion of $f$ should have on the form $c_{i}(f)=\left\langle f, g_{i}\right\rangle$ for some $g_{i} \in \mathcal{H}$. The sequence $\left\{g_{i}\right\}_{i \in I}$ is called a dual frame of $\left\{f_{i}\right\}_{i \in I} . \operatorname{Li}[19]$ provided a characterization and construction of general frame decomposition. He showed that for generating all duals for a given frame, it is enough to find the left-inverses of a one-to-one mapping and found a general parametric and algebraic formula for all duals. It is usually complicated to calculate a dual frame explicitly. Hence Christensen and Laugesen seek methods for constructing approximate duals, see [9]. Note that the idea of approximate dual frames has appeared previously, especially for wavelets [17], Gabor systems [5,14], in the general context of coorbit theory [13] and the sensor modeling [20].

New applications of frames, especially in the last decade, motivated the researcher to find some generalizations of frames like continuous frames [1,24], fusion frames [7], $g$-frames [25], controlled and weighted frames [3,23], $p$-frames [22], $K$-frames [15] and etc.

The notion of continuous frames was introduced by Kaiser in [18] and independently by Ali, Antoine and Gazeau [1]. The windowed Fourier transform and the continuous wavelet transform are just two instances of continuous frames but at the same time the main motivation for its definition. Gabardo and Han in [16] defined the concept of dual frames for continuous frames.

## 2. PRELIMINARIES

In this section, we review some notations and definitions. Throughout this paper, $\mathcal{H}$ is a Hilbert space and $(\Omega, \mu)$ a measure space with positive measure $\mu$. The set of all bounded operators on $\mathcal{H}$ denoted by $L(\mathcal{H})$.

Definition 2.1. A weakly-measurable mapping $F: \Omega \rightarrow \mathcal{H}$ is called a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$ if there exist constants $0<A \leq$ $B<\infty$ such that

$$
A\|f\|^{2} \leq \int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) \leq B\|f\|^{2}, \quad f \in \mathcal{H} .
$$

The constants $A$ and $B$ are called continuous frame bounds. The mapping $F$ is called tight continuous frame if $A=B$ and if $A=B=1$, it called a Parseval continuous frame. This mapping is called Bessel if the second inequality holds. In this case, $B$ is called Bessel constant.

Suppose $F: \Omega \rightarrow \mathcal{H}$ is a Bessel mapping with bound $B$. The operator $T_{F}: L^{2}(\Omega, \mu) \rightarrow \mathcal{H}$ weakly defined by

$$
\left\langle T_{F} \varphi, f\right\rangle=\int_{\Omega} \varphi(\omega)\langle F(\omega), f\rangle \mathrm{d} \mu(\omega), \quad \varphi \in L^{2}(\Omega, \mu), \quad f \in \mathcal{H}
$$

is well-defined, linear, bounded with bound $\sqrt{B}$ and its adjoint is given by

$$
T_{F}^{*}: \mathcal{H} \rightarrow L^{2}(\Omega, \mu), \quad\left(T_{F}^{*} f\right)(\omega)=\langle f, F(\omega)\rangle, \quad \omega \in \Omega, \quad f \in \mathcal{H}
$$

The operator $T_{F}$ is called the synthesis operator and $T_{F}^{*}$ is called the analysis operator of $F$. For continuous frame $F$ with bounded $A$ and $B$, the operator $S_{F}=T_{F} T_{F}^{*}$ is called continuous frame operator and this is bounded, invertible, positive and $A I_{\mathcal{H}} \leq S_{F} \leq B I_{\mathcal{H}}$. In fact,

$$
\left\langle S_{F} f, g\right\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\langle F(\omega), g\rangle \mathrm{d} \mu(\omega), \quad f, g \in \mathcal{H}
$$

For all $f, g \in \mathcal{H}$, the reconstruction formulas are as follows

$$
\langle f, g\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\left\langle S_{F}^{-1} F(\omega), g\right\rangle \mathrm{d} \mu(\omega)=\int_{\Omega}\left\langle f, S_{F}^{-1} F(\omega)\right\rangle\langle F(\omega), g\rangle \mathrm{d} \mu(\omega)
$$

We end this short section by a well known example named wavelet frames.
Example 2.2. Let $\Omega=(0,+\infty) \times \mathbb{R}$ be the affine group, with group law $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b+a b^{\prime}\right)$. An element $\psi \in L^{2}(\mathbb{R})$ is said to be admissible if $\|\psi\|_{2}=1$ and $C_{\psi}=\int_{0}^{+\infty} \frac{|\hat{\psi}(\xi)|^{2}}{\xi} \mathrm{~d} \xi<+\infty$. For such admissible function $\psi$, we have

$$
\int_{-\infty}^{+\infty} \int_{0}^{+\infty}\left|\left\langle f, T_{a} D_{b} \psi\right\rangle\right|^{2} \frac{\mathrm{~d} a \mathrm{~d} b}{a^{2}}=C_{\psi}\|f\|^{2}, \quad f \in L^{2}(\mathbb{R})
$$

where $T_{a} f(t)=f(t-a)$ and $D_{b} f(t)=\frac{1}{\sqrt{b}} f\left(\frac{t}{b}\right)$, see [8]. That is, $\left\{T_{a} D_{b}\right.$ $\psi\}_{a \neq 0,0<b \in \mathbb{R}}$ is a tight continuous frame with respect to $\left(\Omega, \frac{\mathrm{d} a \mathrm{~d} b}{a^{2}}\right)$ with the frame operator $S=C_{\psi} I$.

## 3. THE DUALITY OF CONTINUOUS FRAMES

Reconstruction of the original vector from frames, $g$-frames, fusion frames, continuous frames as well as their extensions, is typically achieved by using a so-called (alternate or standard) dual system.

Definition 3.1. Let $F$ and $G$ be two Bessel mappings with synthesis operators $T_{F}$ and $T_{G}$, respectively. We call $G$ a dual of $F$ if the following equality holds

$$
\langle f, g\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega), \quad f, g \in \mathcal{H}
$$

In this case, $(F, G)$ is called a dual pair for $\mathcal{H}$.
This definition is equivalent to $T_{G} T_{F}^{*}=I_{\mathcal{H}}$. The condition

$$
\langle f, g\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega), \quad f, g \in \mathcal{H}
$$

is equivalent

$$
\langle f, g\rangle=\int_{\Omega}\langle f, G(\omega)\rangle\langle F(\omega), g\rangle \mathrm{d} \mu(\omega), \quad f, g \in \mathcal{H}
$$

because $T_{G} T_{F}^{*}=I$ if and only if $T_{F} T_{G}^{*}=I$.
For the continuous frame $F$, the mapping $S_{F}^{-1} F$ is called standard dual of $F$. It is certainly possible for a continuous frame $F$ to have only one dual. In this case, the continuous frame $F$ is called a Riesz-type frame. Riesz-type frames are actually frames, for which the analysis operator is onto. Also, the continuous frame $F$ is Riesz-type frame if and only if $T_{F}^{*}$ is onto [2].

Similar to discrete case, by a simple calculation, it is easy to show that $G$ is a dual of $F$ if and only if $G=S_{F}^{-1} F+H$, where $H$ satisfies in the condition $\int_{\Omega}\langle f, F(\omega)\rangle\langle H(\omega), g\rangle \mathrm{d} \mu(\omega)=0$, for all $f, g \in \mathcal{H}$.

It is easy verifiable that $F$ is a tight continuous frame for $\mathcal{H}$ with bound $C$ if and only if ( $F, \frac{1}{C} F$ ) is dual pair for it.

By using Example 2.2, the pair $\left(T_{a} D_{b} \psi, \frac{1}{C_{\psi}} T_{a} D_{b} \psi\right)$ is a dual pair in $L^{2}(\mathbb{R})$ and we have

$$
f=\frac{1}{C_{\psi}} \int_{-\infty}^{+\infty} \int_{0}^{+\infty}\left\langle f, T_{a} D_{b} \psi\right\rangle T_{a} D_{b} \psi \frac{\mathrm{~d} a \mathrm{~d} b}{a^{2}}, \quad f \in L^{2}(\mathbb{R})
$$

It is not clear for which wavelet frames the standard dual frame consists of wavelet as well. More generally, there are some wavelet frames with no dual wavelet frames at all [10].

The following is another example of continuous frame with one of its duals.

Example 3.2. Consider $\mathcal{H}=\mathbb{R}^{2}$ with the standard basis $\left\{e_{1}, e_{2}\right\}$, where $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Put $B_{\mathbb{R}^{2}}=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$. Let $\Omega=B_{\mathbb{R}^{2}}$ and $\lambda$ be the Lebesgue measure. Define $F: B_{\mathbb{R}^{2}} \rightarrow \mathbb{R}^{2}$ and $G: B_{\mathbb{R}^{2}} \rightarrow \mathbb{R}^{2}$ such that

$$
F(\omega)= \begin{cases}\frac{1}{\sqrt{\lambda\left(B_{1}\right)}} e_{1}, & \omega \in B_{1} \\ \frac{1}{\sqrt{\lambda\left(B_{2}\right)}} e_{2}, & \omega \in B_{2} \\ 0, & \omega \in B_{3}\end{cases}
$$

and

$$
G(\omega)= \begin{cases}\frac{1}{\sqrt{\lambda\left(B_{1}\right)}} e_{1}, & \omega \in B_{1}, \\ \frac{1}{\sqrt{\lambda\left(B_{2}\right)}} e_{2}, & \omega \in B_{2}, \\ \frac{2}{\sqrt{\lambda\left(B_{3}\right)}} e_{2}, & \omega \in B_{3},\end{cases}
$$

where $\left\{B_{1}, B_{2}, B_{3}\right\}$ is a partition of $B_{\mathbb{R}^{2}}$. It is easy to check that $F$ and $G$ are continuous frames for $\mathbb{R}^{2}$ with respect to $\left(B_{\mathbb{R}^{2}}, \lambda\right)$. For each $x \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\left(T_{G} T_{F}^{*}\right)(x)= & \left(\int_{B_{1}}+\int_{B_{2}}+\int_{B_{3}}\right)\left(T_{F}^{*} x\right)(\omega) G(\omega) \mathrm{d} \lambda(\omega) \\
= & \int_{B_{1}}\left\langle x, \frac{1}{\sqrt{\lambda\left(B_{1}\right)}} e_{1}\right\rangle \frac{1}{\sqrt{\lambda\left(B_{1}\right)}} e_{1} \mathrm{~d} \lambda(\omega) \\
& +\int_{B_{2}}\left\langle x, \frac{1}{\sqrt{\lambda\left(B_{2}\right)}} e_{2}\right\rangle \frac{1}{\sqrt{\lambda\left(B_{2}\right)}} e_{2} \mathrm{~d} \lambda(\omega) \\
& +0 \\
= & \left\langle x, e_{1}\right\rangle e_{1}+\left\langle x, e_{2}\right\rangle e_{2} \\
= & x
\end{aligned}
$$

i.e., $(F, G)$ is a dual pair for $\mathbb{R}^{2}$.

Similar to discrete frames, for continuous frame we have the following assertion.

Proposition 3.3. The Bessel mapping $F: \Omega \rightarrow \mathcal{H}$ is a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$ if and only if there exists a Bessel mapping $G$ : $\Omega \rightarrow \mathcal{H}$ such that for each $f, g \in \mathcal{H}$,

$$
\begin{equation*}
\langle f, g\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega) . \tag{3.1}
\end{equation*}
$$

Proof. At first, assume that there exists a Bessel mapping $G$ with Bessel constant $B_{G}$, satisfying (3.1). Then for any $f \in \mathcal{H}$,

$$
\begin{aligned}
\|f\|^{4} & =\left|\int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), f\rangle \mathrm{d} \mu(\omega)\right|^{2} \\
& \leq\left(\int_{\Omega}|\langle f, F(\omega)\rangle\langle G(\omega), f\rangle| \mathrm{d} \mu(\omega)\right)^{2} \\
& \leq\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)\left(\int_{\Omega}|\langle f, G(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right) \\
& \leq\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right) \cdot B_{G}\|f\|^{2} .
\end{aligned}
$$

Thus, $F$ is a continuous frame for $\mathcal{H}$ with lower bound $B_{G}^{-1}$.
Conversely, let $F$ be a continuous frame for $\mathcal{H}$ with the frame operator $S_{F}$. Thus, for all $f, g \in \mathcal{H}$

$$
\langle f, g\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\left\langle S_{F}^{-1} F(\omega), g\right\rangle \mathrm{d} \mu(\omega) .
$$

Put $G=S_{F}^{-1} F$.
Like discrete frames [8], for Bessel mappings, we have the following corollary.

Corollary 3.4. If $(F, G)$ is a dual pair for $\mathcal{H}$, then both $F$ and $G$ are continuous frames for $\mathcal{H}$.

Improving and extending Theorem 3.6 of [24] for standard dual, we have the following theorem for any dual pairs. It shows that we can remove some elements from a continuous frame so that the remaining set is still a continuous frame.

THEOREM 3.5. Let $(F, G)$ be a dual pair for $\mathcal{H}$ and there exists $\omega_{0} \in \Omega$ such that $\mu\left(\left\{\omega_{0}\right\}\right)\left\langle F\left(\omega_{0}\right), G\left(\omega_{0}\right)\right\rangle \neq 1$. Then $F: \Omega \backslash\left\{\omega_{0}\right\} \rightarrow \mathcal{H}$ is a continuous frame for $\mathcal{H}$.

Proof. We assume that the Bessel constants $F$ and $G$ are $B_{F}$ and $B_{G}$, (respectively). If $f \in \mathcal{H}$, then

$$
\begin{aligned}
\left\langle F\left(\omega_{0}\right), f\right\rangle= & \int_{\Omega \backslash\left\{\omega_{0}\right\}}\left\langle F\left(\omega_{0}\right), G(\omega)\right\rangle\langle F(\omega), f\rangle \mathrm{d} \mu(\omega) \\
& +\left\langle F\left(\omega_{0}\right), G\left(\omega_{0}\right)\right\rangle\left\langle F\left(\omega_{0}\right), f\right\rangle \mu\left(\left\{\omega_{0}\right\}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|\left\langle f, F\left(\omega_{0}\right)\right\rangle\right|^{2} \leq & \frac{1}{\left|1-\mu\left(\left\{\omega_{0}\right\}\right)\left\langle F\left(\omega_{0}\right), G\left(\omega_{0}\right)\right\rangle\right|^{2}}\left(\int_{\Omega \backslash\left\{\omega_{0}\right\}}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right) \\
& \left(\int_{\Omega \backslash\left\{\omega_{0}\right\}}\left|\left\langle F\left(\omega_{0}\right), G(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega)\right) \\
\leq & B_{G}\left\|F\left(\omega_{0}\right)\right\|^{2} \\
\left|1-\mu\left(\left\{\omega_{0}\right\}\right)\left\langle F\left(\omega_{0}\right), G\left(\omega_{0}\right)\right\rangle\right|^{2} & \left.\int_{\Omega \backslash\left\{\omega_{0}\right\}}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)
\end{aligned}
$$

Put $C=\frac{B_{G}\left\|F\left(\omega_{0}\right)\right\|^{2}}{\left|1-\mu\left(\left\{\omega_{0}\right\}\right)\left\langle F\left(\omega_{0}\right), G\left(\omega_{0}\right)\right\rangle\right|^{2}}$. We have

$$
B_{G}^{-1}\|f\|^{2} \leq\left(1+C \mu\left(\left\{\omega_{0}\right\}\right)\right) \int_{\Omega \backslash\left\{\omega_{0}\right\}}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)
$$

Hence $F: \Omega \backslash\left\{\omega_{0}\right\} \rightarrow \mathcal{H}$ is a continuous frame with lower bound $\frac{B_{G}^{-1}}{1+C \mu\left(\left\{\omega_{0}\right\}\right)}$.

Concerning the above theorem, a question occurs. What happens in case $\mu\left(\left\{\omega_{0}\right\}\right)\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F\left(\omega_{0}\right)\right\rangle=1$ ? To achieve this purpose, we need the following lemma.

Lemma 3.6 ([24]). The continuous frame coefficients $\left\{\left\langle f, S_{F}^{-1} F(\omega)\right\rangle\right\}_{\omega \in \Omega}$ have minimal $L^{2}$-norm among all coefficients $\{\phi(\omega)\}_{\omega \in \Omega}$ for which

$$
f=\int_{\Omega} \phi(\omega) F(\omega) \mathrm{d} \mu(\omega)
$$

for some $\phi \in L^{2}(\Omega, \mu)$; i.e.,
$\int_{\Omega}|\phi(\omega)|^{2} \mathrm{~d} \mu(\omega)=\int_{\Omega}\left|\left\langle f, S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega)+\int_{\Omega}\left|\phi(\omega)-\left\langle f, S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega)$.
Theorem 3.7. Let $F$ be a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$ with frame operator $S_{F}$ and $\omega_{0} \in \Omega$. If $\mu\left(\left\{\omega_{0}\right\}\right)\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F\left(\omega_{0}\right)\right\rangle=1$, then there exists a non-empty measurable set $\Omega_{0} \subset \Omega$ such that $\omega_{0} \in \Omega_{0}, \mu\left(\Omega_{0}\right)=0$ and $\{F(\omega)\}_{\omega \in \Omega \backslash \Omega_{0}}$ is incomplete.

Proof. We have

$$
F\left(\omega_{0}\right)=\int_{\Omega}\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle F(\omega) \mathrm{d} \mu(\omega)=\int_{\Omega} \frac{\chi_{\left\{\omega_{0}\right\}}^{\mu\left(\left\{\omega_{0}\right\}\right)}}{} F(\omega) \mathrm{d} \mu(\omega)
$$

such that $\chi_{\left\{\omega_{0}\right\}}$ is the characteristic function of a set $\left\{\omega_{0}\right\} \subset \Omega$. So Lemma 3.6 yields the following relation between $\left\{\frac{\chi\left\{\omega_{0}\right\}(\omega)}{\mu\left(\left\{\omega_{0}\right\}\right)}\right\}$ and $\left\{\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle\right\}$

$$
\begin{aligned}
\int_{\Omega}\left|\frac{\chi_{\left\{\omega_{0}\right\}}(\omega)}{\mu\left(\left\{\omega_{0}\right\}\right)}\right|^{2} \mathrm{~d} \mu(\omega)= & \int_{\Omega}\left|\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& +\int_{\Omega}\left|\frac{\chi_{\left\{\omega_{0}\right\}}(\omega)}{\mu\left(\left\{\omega_{0}\right\}\right)}-\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
= & \int_{\Omega \backslash\left\{\omega_{0}\right\}}\left|\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& +\left|\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F\left(\omega_{0}\right)\right\rangle\right|^{2} \mu\left(\left\{\omega_{0}\right\}\right) \\
& +\int_{\Omega \backslash\left\{\omega_{0}\right\}}\left|\frac{\chi_{\left\{\omega_{0}\right\}}(\omega)}{\mu\left(\left\{\omega_{0}\right\}\right)}-\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& +\left|\frac{1}{\mu\left(\left\{\omega_{0}\right\}\right)}-\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F\left(\omega_{0}\right)\right\rangle\right|^{2} \mu\left(\omega_{0}\right)
\end{aligned}
$$

From the above formula,

$$
\int_{\Omega \backslash\left\{\omega_{0}\right\}}\left|\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega)=0,
$$

so that $\left\langle F\left(\omega_{0}\right), S_{F}^{-1} F(\omega)\right\rangle=0$ a.e. on $\Omega \backslash\left\{\omega_{0}\right\}$. Put

$$
\Omega_{0}=\left\{\omega \in \Omega: \quad\left\langle S_{F}^{-1} F\left(\omega_{0}\right), F(\omega)\right\rangle \neq 0\right\} .
$$

It is clear that $\Omega_{0}$ is a measurable set with zero measure and $\omega_{0} \in$ $\Omega_{0}$. Thus we have the non-zero element $S_{F}^{-1} F\left(\omega_{0}\right)$ which is orthogonal to $\{F(\omega)\}_{\omega \in \Omega \backslash \Omega_{0}}$, i.e., $\{F(\omega)\}_{\omega \in \Omega \backslash \Omega_{0}}$ is incomplete.

Now we are going to give simple ways for construction of many dual pairs of a given dual pair.

Theorem 3.8. Let $(F, G)$ be a dual pair for $\mathcal{H}$ and let $U$ and $V$ be two bounded operators on $\mathcal{H}$ such that $V U^{*}=I_{\mathcal{H}}$. Then, $(U F, V G)$ is a dual pair for $\mathcal{H}$.

Proof. It is clear that if $F$ is a Bessel mapping with synthesis operator $T_{F}$ and $U$ is a bounded operator on $\mathcal{H}$, then $U F$ is a Bessel mapping with synthesis operator $T_{U F}=U T_{F}$. Hence $U F$ and $V G$ are Bessel mappings and

$$
T_{V G} T_{U F}^{*}=V T_{G} T_{F}^{*} U^{*}=V I U^{*}=I_{\mathcal{H}}
$$

Corollary 3.9. If $(F, G)$ is a dual pair for $\mathcal{H}$ and $U$ is a unitary operator, then $(U F, U G)$ is a dual pair for $\mathcal{H}$.

Theorem 3.10. Let $(F, G)$ be a dual pair for $\mathcal{H}$ and there exists a bounded operator $U \in L(\mathcal{H})$ such that $(F, U G)$ is a dual pair for $\mathcal{H}$. Then $U=I_{\mathcal{H}}$.

Proof. For all $f, g \in \mathcal{H}$,

$$
\left\langle f, U^{*} g\right\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\left\langle G(\omega), U^{*} g\right\rangle \mathrm{d} \mu=\int_{\Omega}\langle f, F(\omega)\rangle\langle U G(\omega), g\rangle \mathrm{d} \mu=\langle f, g\rangle
$$

Therefore, $U^{*}=I_{\mathcal{H}}$. Hence $U=I_{\mathcal{H}}$.
Theorem 3.11. Assume that $(F, G)$ and $(F, K)$ are dual pairs for $\mathcal{H}$. Then for all $\alpha \in \mathbb{C},(F, \alpha G+(1-\alpha) K)$ is a dual pair for $\mathcal{H}$.

Proof. Put $F_{1}=\alpha G+(1-\alpha) K$. For all $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
\int_{\Omega}\langle f, F(\omega)\rangle\left\langle F_{1}(\omega), g\right\rangle \mathrm{d} \mu(\omega)= & \int_{\Omega}\langle f, F(\omega)\rangle\langle\alpha G(\omega)+(1-\alpha) K(\omega), g\rangle \mathrm{d} \mu(\omega) \\
= & \alpha \int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega) \\
& +(1-\alpha) \int_{\Omega}\langle f, F(\omega)\rangle\langle K(\omega), g\rangle \mathrm{d} \mu(\omega) \\
= & \alpha\langle f, g\rangle+(1-\alpha)\langle f, g\rangle \\
= & \langle f, g\rangle .
\end{aligned}
$$

Now, we want to find a relationship between the arbitrary continuous Riesz basis of $\mathcal{H}$. For this purpose, we need to following definitions and propositions from [2]. Denote by $L^{2}(\Omega, \mathcal{H})$ the set of all mapping $F: \Omega \rightarrow \mathcal{H}$ such
that for all $f \in \mathcal{H}$, the functions $\omega \mapsto\langle f, F(\omega)\rangle$ defined almost everywhere on $\Omega$, belong to $L^{2}(\Omega)$.

Definition 3.12 ([2]). A Bessel mapping $F: \Omega \rightarrow \mathcal{H}$ is called $\mu$-complete, if

$$
\operatorname{cspan}\{F(\omega)\}_{\omega \in \Omega}=\left\{\int_{\Omega} \varphi(\omega) F(\omega) \mathrm{d} \mu(\omega) ; \quad \varphi \in L^{2}(\Omega)\right\}
$$

is dense in $\mathcal{H}$.
It is worthwhile to mention that if $F$ is $\mu$-complete, then $\{F(\omega)\}_{\omega \in \Omega}$ is a complete subset of $\mathcal{H}$. The converse is also true when $0<\mu(\{\omega\})<+\infty$ for all $\omega \in \Omega$, since $\operatorname{span}\{F(\omega)\}_{\omega \in \Omega} \subseteq \operatorname{cspan}\{F(\omega)\}_{\omega \in \Omega}$.

Proposition 3.13 ([2]). Let $F$ be a Bessel mapping. The following are equivalent
(1) $F$ is $\mu$-complete;
(2) If $f \in \mathcal{H}$ so that $\langle f, F(\omega)\rangle=0$ for almost all $\omega \in \Omega$, then $f=0$.

Definition 3.14 ([2]). A mapping $F \in L^{2}(\Omega, \mathcal{H})$ is called a continuous Riesz base for $\mathcal{H}$ with respect to $(\Omega, \mu)$, if $\{F(\omega)\}_{\omega \in \Omega}$ is $\mu$-complete and there are two positive numbers $A$ and $B$ such that

$$
A\left(\int_{\Omega_{1}}|\phi(\omega)|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}} \leq\left\|\int_{\Omega_{1}} \phi(\omega) F(\omega) \mathrm{d} \mu(\omega)\right\| \leq B\left(\int_{\Omega_{1}}|\phi(\omega)|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}
$$

for every $\phi \in L^{2}(\Omega)$ and any measurable subset $\Omega_{1}$ of $\Omega$ with $\mu\left(\Omega_{1}\right)<+\infty$. The integral is taken in the weak sense and the constant $A$ and $B$ are called continuous Riesz base bounds. It is obvious that any continuous Riesz basis is a continuous frame.

Definition 3.15 ([2]). A Bessel mapping $F$ is said to be $L^{2}$-independent if $\int_{\Omega} \varphi(\omega) F(\omega) \mathrm{d} \mu(\omega)=0$ for $\varphi \in L^{2}(\Omega, \mu)$, implies that $\varphi=0$ a. e.

Proposition 3.16 ([2]). Let $F \in L^{2}(\Omega, \mathcal{H})$ be a continuous frame for $\mathcal{H}$. Then $F$ is a continuous Riesz base for $\mathcal{H}$ if and only if $F$ is $\mu$-complete and $L^{2}$-independent.

Proposition 3.17 ([2]). Let $F \in L^{2}(\Omega, \mathcal{H})$ be a continuous frame. The following are equivalent
(1) $F$ is a continuous Riesz base for $\mathcal{H}$;
(2) $F$ is a Riesz-type continuous frame for $\mathcal{H}$;
(3) $T_{F}^{*}$ is onto.

Theorem 3.18. Let $F$ and $G$ be two continuous Riesz bases for $\mathcal{H}$. Then there exists an invertible operator $\Theta \in L(\mathcal{H})$ such that $G=S_{G} \Theta^{*} F$.

Proof. Assume $f \in \mathcal{H}$ such that $\left(T_{G} T_{F}^{*}\right) f=0$. We have for all $\omega \in \Omega$, $T_{G}\left(T_{F}^{*} f(\omega)\right)=0$. Hence $\int_{\Omega}\langle f, F(\omega)\rangle G(\omega) \mathrm{d} \mu(\omega)=0$. Since $G$ is $L^{2}$-independent, then $\langle f, F(\omega)\rangle=0$ for almost all $\omega \in \Omega$. The $\mu$-completeness of $F$ implies $f=0$. Therefore $T_{G} T_{F}^{*}$ is one to one. According to Proposition 3.17, $T_{F}^{*}$ is onto, because $F$ is a continuous Riesz base. The synthesis $T_{G}$ is onto because $G$ is a continuous frame [24]. Hence, $T_{G} T_{F}^{*}$ is onto. Putting $\Theta=\left(T_{G} T_{F}^{*}\right)^{-1}$, for any $f, g \in \mathcal{H}$,

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\Theta^{-1} \Theta f, g\right\rangle \\
& =\left\langle T_{F}^{*} \Theta f, T_{G}^{*} g\right\rangle \\
& =\int_{\Omega}\langle\Theta f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\left\langle f, \Theta^{*} F(\omega)\right\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega) .
\end{aligned}
$$

It follows that $\Theta^{*} F$ is a dual of $G$, but $G$ has only one dual. Hence $S_{G}^{-1} G=\Theta^{*} F$, or $G=S_{G} \Theta^{*} F$.

Definition 3.19. [2] A continuous orthonormal basis for $\mathcal{H}$ with respect to $(\Omega, \mu)$ is a continuous Parseval frame $F$ for which

$$
\left\|\int_{\Omega} \phi(\omega) F(\omega) \mathrm{d} \mu(\omega)\right\|=\|\phi\|_{2}, \quad \phi \in L^{2}(\Omega) .
$$

One may easily see that if $F$ is a continuous orthonormal base for $\mathcal{H}$, then it is a continuous Riesz base.

Corollary 3.20. If $F$ and $G$ are two continuous orthonormal basis for $\mathcal{H}$, then there exists an invertible operator $\Theta \in L(\mathcal{H})$ such that $G=\Theta^{*} F$.

## 4. APPROXIMATE DUALITY OF CONTINUOUS FRAMES

In Section 3, by definition of the dual frame, we saw that if the Bessel mapping $G$ is a dual of Bessel mapping $F$, then for all arbitrary elements $f, g \in \mathcal{H}$, we have the dual frame expansion $\langle f, g\rangle=\int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega)$. Unfortunately, it might be difficult, or even impossible, to calculate a dual frame explicitly. This limitation leads us to seek continuous frames that are "close to dual". For solving this problem in discrete frames, Christensen and Laugesen in [9] introduced the concept of approximately dual frames. By using their ideas in this section, we investigate and improve this notion for continuous frames. Here, we are generalizing the definition 3.1. of [9] to continuous cases and then we will obtain our results. For clarifying, some examples will be presented.

Throughout this section, we assume that $F$ and $G$ are Bessel mappings with synthesis operators $T_{F}$ and $T_{G}$, respectively.

Definition 4.1. Two Bessel mappings $F$ and $G$ are called approximately dual continuous frames for $\mathcal{H}$ if $\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|<1$ or $\left\|I_{\mathcal{H}}-T_{F} T_{G}^{*}\right\|<1$.

It is clear that in this case, $T_{G} T_{F}^{*}$ is an invertible operator.
Example 4.2. Similar to Example 3.2, let $\mathcal{H}=\mathbb{R}^{2}$ and $\left\{e_{1}, e_{2}\right\}$ be standard base for it. Also, let $0<\varepsilon<1$ be arbitrary. Put $\Omega=B_{\mathbb{R}^{2}}$ and $\lambda$ is the Lebesgue measure. Define the continuous frames $F$ and $G$ for $\mathbb{R}^{2}$ with respect to $\left(B_{\mathbb{R}^{2}}, \lambda\right)$ by

$$
F(\omega)= \begin{cases}\frac{1}{\sqrt{\lambda\left(B_{1}\right)}} e_{1}, & \omega \in B_{1}, \\ \frac{1}{\sqrt{\lambda\left(B_{2}\right)}} e_{2}, & \omega \in B_{2}, \\ 0, & \omega \in B_{3},\end{cases}
$$

and

$$
G(\omega)= \begin{cases}\frac{\varepsilon}{\sqrt{\lambda\left(B_{1}\right)}} e_{1}, & \omega \in B_{1} \\ 0, & \omega \in B_{2} \\ \frac{1}{\sqrt{\lambda\left(B_{3}\right)}} e_{2}, & \omega \in B_{3}\end{cases}
$$

where $\left\{B_{1}, B_{2}, B_{3}\right\}$ is a partition of $B_{\mathbb{R}^{2}}$. For all $x \in \mathbb{R}^{2}$

$$
\begin{aligned}
\left(T_{G} T_{F}^{*}\right)(x) & =\int_{B_{\mathbb{R}^{2}}}\left(T_{F}^{*} x\right)(\omega) G(\omega) \mathrm{d} \lambda(\omega) \\
& =\left(\int_{B_{1}}+\int_{B_{2}}+\int_{B_{3}}\right)\left(T_{F}^{*} x\right)(\omega) G(\omega) \mathrm{d} \lambda(\omega) \\
& =\int_{B_{1}}\left\langle x, \frac{\varepsilon}{\sqrt{\lambda\left(B_{1}\right)}} e_{1}\right\rangle \frac{1}{\sqrt{\lambda\left(B_{1}\right)}} e_{1} \mathrm{~d} \lambda(\omega)+0+0 \\
& =\varepsilon\left\langle x, e_{1}\right\rangle e_{1} .
\end{aligned}
$$

Thus

$$
\left\|x-\left(T_{G} T_{F}^{*}\right)(x)\right\|^{2}=(1-\varepsilon)^{2}\left|\left\langle x, e_{1}\right\rangle\right|^{2}+\left|\left\langle x, e_{2}\right\rangle\right|^{2}<\|x\|^{2} .
$$

Therefore, $F$ and $G$ are approximately dual continuous frames for $\mathbb{R}^{2}$.
The following theorem shows that a Bessel mapping $F$ is a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$, if there exists a Bessel mapping $G$ such that $F$ and $G$ are approximately dual frames.

THEOREM 4.3. If $F$ and $G$ are approximately dual continuous frames, then both $F$ and $G$ are continuous frames for $\mathcal{H}$ with respect to $(\Omega, \mu)$.

Proof. Since $\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|<1$, the operator $T_{G} T_{F}^{*}$ is an invertible operator on $\mathcal{H}$ and

$$
\left\|\left(T_{G} T_{F}^{*}\right)^{-1}\right\| \leq \frac{1}{1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|}
$$

Denote by $B_{F}$ and $B_{G}$ the Bessel constants of $F$ and $G$, respectively. For all $f \in \mathcal{H}$

$$
\begin{aligned}
\|f\| & \leq\left\|\left(T_{G} T_{F}^{*}\right)^{-1}\right\|\left\|T_{G} T_{F}^{*} f\right\| \\
& \leq \frac{1}{1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|} \sup _{\|g\|=1}\left|\left\langle T_{G} T_{F}^{*} f, g\right\rangle\right| \\
& \leq \frac{1}{1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|} \sup _{\|g\|=1} \int_{\Omega}|\langle f, F(\omega)\rangle\langle G(\omega), g\rangle| \mathrm{d} \mu(\omega) \\
& \leq \frac{1}{1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|} \sup _{\|g\|=1}\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}|\langle G(\omega), g\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}} \\
& \leq \frac{1}{1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|} \sup _{\|g\|=1}\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}} \sqrt{B_{G}}\|g\| \\
& =\frac{\sqrt{B_{G}}}{1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|}\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}
\end{aligned}
$$

Hence $F$ is a continuous frame with lower bound $B_{G}^{-1}\left(1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|\right)^{2}$. Similarly, $G$ is a continuous frame with lower bound $B_{F}^{-1}\left(1-\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|\right)^{2}$.

The following theorem shows that the sum of two approximately dual continuous frames is a continuous frame.

THEOREM 4.4. If $F$ and $G$ are approximately dual continuous frames, then $F+G$ is a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$.

Proof. Suppose $T_{F}$ and $T_{G}$ be synthesis operators of $F$ and $G$ (respectively) and $A_{F}, B_{F}, A_{G}$ and $B_{G}$ be lower and upper bounds of $F$ and $G$, respectively. It is clear that $F+G$ is a Bessel mapping with Bessel constant $B_{F}+B_{G}$. Since $\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|<1$ or $\left\|I_{\mathcal{H}}-T_{F} T_{G}^{*}\right\|<1$, then $\left\|2 I_{\mathcal{H}}-\left(T_{G} T_{F}^{*}+T_{F} T_{G}^{*}\right)\right\|<2$, and as $T_{G} T_{F}^{*}+T_{F} T_{G}^{*}$ is self-adjoint, then by Lemma 2.2.2 in [21], $T_{G} T_{F}^{*}+T_{F} T_{G}^{*}$ is a positive operator. For each $f \in \mathcal{H}$, we have

$$
\begin{aligned}
\int_{\Omega}|\langle f,(F+G)(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)= & \int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)+\left\langle\left(T_{G} T_{F}^{*}+T_{F} T_{G}^{*}\right) f, f\right\rangle \\
& +\int_{\Omega}|\langle f, G(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) \\
\geq & \int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)+\int_{\Omega}|\langle f, G(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) \\
\geq & \left(A_{F}+A_{G}\right)\|f\|^{2}
\end{aligned}
$$

i.e., the lower bound condition holds.

It is clear that if $(F, G)$ is a dual pair for $\mathcal{H}$, then $F$ and $G$ are approximately dual continuous frames, but its converse isn't true in general. The following theorem shows that any approximate dual continuous frames are a kind of dual pair (as special sense).

THEOREM 4.5. If $F$ and $G$ are approximately dual continuous frames, then there exists an invertible operator $\Theta: \mathcal{H} \rightarrow \mathcal{H}$ such that $\left(\Theta^{*} F, G\right)$ is a dual pair for $\mathcal{H}$.

Proof. Since $\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|<1$, then $T_{G} T_{F}^{*}$ is an invertible operator on $\mathcal{H}$. For each $f, g \in \mathcal{H}$

$$
\begin{aligned}
\langle f, g\rangle & =\left\langle\left(T_{G} T_{F}^{*}\right)\left(T_{G} T_{F}^{*}\right)^{-1} f, g\right\rangle \\
& =\int_{\Omega}\left\langle f,\left(\left(T_{G} T_{F}^{*}\right)^{-1}\right)^{*} F(\omega)\right\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega)
\end{aligned}
$$

The result follows by putting $\Theta=\left(T_{G} T_{F}^{*}\right)^{-1}$.
THEOREM 4.6. Let $(F, G)$ be a dual pair for $\mathcal{H}$ and let $U$ and $V$ be two bounded operators on $\mathcal{H}$ such that $\left\|I_{\mathcal{H}}-V U^{*}\right\|<1$. Then $U F$ and $V G$ are approximately dual continuous frames.

Proof. Since $U F$ and $V G$ are Bessel mappings with synthesis operators $T_{U F}=U T_{F}$ and $T_{V G}=V T_{G}$ ( resp.), so we have

$$
\left\|I_{\mathcal{H}}-T_{V G} T_{U F}^{*}\right\|=\left\|I_{\mathcal{H}}-V T_{G} T_{F}^{*} U^{*}\right\|=\left\|I_{\mathcal{H}}-V U^{*}\right\|<1
$$

Corollary 4.7. If $(F, G)$ is a dual pair for $\mathcal{H}$ and $U$ is a unitary operator on $\mathcal{H}$, then $(U F, U G)$ is approximately dual continuous frames.

We proceed this section with the following result which gives a sufficient and necessary condition for two continuous frames $F$ and $G$ under which they are approximately continuous frames. To this end, recall that every bounded and positive operator $U: \mathcal{H} \rightarrow \mathcal{H}$ has a unique bounded and positive square root $U^{\frac{1}{2}}$. Moreover, if the operator $U$ is self-adjoint (resp. invertible), then $U^{\frac{1}{2}}$ is also self-adjoint (resp. invertible), see A.6.7 of [8].

Theorem 4.8. Let $F$ be continuous frame and $G$ a Bessel mapping for $\mathcal{H}$ with upper bounds $B_{F}$ and $B_{G}$, respectively. Then $F$ and $G$ are approximately dual continuous frames if and only if there exists a bounded operator $D \in \mathcal{B}(\mathcal{H})$ such that

$$
T_{F} T_{G}^{*}=S_{F}^{\frac{1}{2}} D, \quad D D^{*} \leq B_{G} I_{\mathcal{H}}, \quad\left\|I_{\mathcal{H}}-S_{F}^{\frac{1}{2}} D\right\|<1
$$

Proof. Since $F$ is a continuous frame for $\mathcal{H}$, then $S_{F}$ is a bounded and positive operator. Hence it has a unique bounded square root $S_{F}^{\frac{1}{2}}$. The proof
of the "only if" part is trivial. To prove the "if" part, suppose that $F$ and $G$ are approximately dual continuous frames. For each $f \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\|T_{G} T_{F}^{*} f\right\| & =\sup _{\|g\|=1}\left|\left\langle T_{G} T_{F}^{*} f, g\right\rangle\right| \\
& =\sup _{\|g\|=1}\left|\int_{\Omega}\langle f, F(\omega)\rangle\langle G(\omega), g\rangle \mathrm{d} \mu(\omega)\right| \\
& \leq \sup _{\|g\|=1}\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}|\langle g, G(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}} \\
& \leq \sqrt{B_{G}}\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}
\end{aligned}
$$

Therefore, we have

$$
\left\langle\left(T_{F} T_{G}^{*}\right)\left(T_{F} T_{G}^{*}\right)^{*} f, f\right\rangle \leq B_{G}\left\langle S_{F} f, f\right\rangle, \quad f \in \mathcal{H}
$$

Thus for all $f \in \mathcal{H}$

$$
\left(T_{F} T_{G}^{*}\right)\left(T_{F} T_{G}^{*}\right)^{*} \leq B_{G} S_{F}^{\frac{1}{2}} S_{F}^{\frac{1}{2}}
$$

The above inequality results:
(1) According to Theorem 1 of [11], there exists a bounded operator $D \in$ $B(\mathcal{H})$ such that $T_{F} T_{G}^{*}=S_{F}^{\frac{1}{2}} D$.
(2) Theorem 2.2.5 in [21] implies that $D D^{*} \leq B_{G} I_{\mathcal{H}}$.

Now, we can prove the following theorems.
TheOrem 4.9. Let $F$ be a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$. Then $F$ and the Bessel mapping $G$ are approximately dual continuous frames if and only if

$$
G=D^{*} S_{F}^{-\frac{1}{2}} F+K
$$

where $D$ is a bounded operator on $\mathcal{H}$ for which $\left\|I_{h}-S_{F}^{\frac{1}{2}} D\right\|<1$ and $K$ is a Bessel mapping with property $T_{F} T_{K}^{*}=0$.

Proof. First, we put $G=D^{*} S_{F}^{-\frac{1}{2}} F+K$, then for each $f \in \mathcal{H}$, the $\omega \mapsto$ $\langle f, G(\omega)\rangle$ is a measurable function. Also, for each $f \in \mathcal{H}$, we have

$$
\int_{\Omega}|\langle f, G(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) \leq\left(B_{K}+\|D\|^{2}\right)\|f\|^{2}
$$

Therefore, $G$ is a Bessel mapping with Bessel bound $B_{G}=B_{K}+\|D\|^{2}$.

Now, for all $f \in \mathcal{H}$ and $\omega \in \Omega$, we have

$$
\begin{aligned}
\left(T_{G}^{*} f\right)(\omega) & =\left\langle f, D^{*} S_{F}^{-\frac{1}{2}} F(\omega)\right\rangle+\langle f, K(\omega)\rangle \\
& =\left\langle S_{F}^{-\frac{1}{2}} D f, F(\omega)\right\rangle+\langle f, K(\omega)\rangle \\
& =T_{F}^{*}\left(S_{F}^{-\frac{1}{2}} D f\right)(\omega)+\left(T_{K}^{*} f\right)(\omega)
\end{aligned}
$$

and

$$
\begin{aligned}
T_{F} T_{G}^{*} f & =T_{F} T_{F}^{*}\left(S_{F}^{-\frac{1}{2}} D f\right)+T_{F} T_{K}^{*} f \\
& =S_{F}^{\frac{1}{2}} D f
\end{aligned}
$$

Hence $T_{F} T_{G}^{*}=S_{F}^{\frac{1}{2}} D$. Moreover,

$$
\left\langle D D^{*} f, f\right\rangle=\left\langle D^{*} f, D^{*} f\right\rangle=\left\|D^{*} f\right\|^{2} \leq\|D\|^{2}\|f\|^{2} \leq B_{G}\|f\|^{2}=B_{G}\langle f, f\rangle,
$$

for all $f \in \mathcal{H}$. Now, we use previous theorem to conclude that $F$ and $G$ are approximately dual continuous frames.

Conversely, let $F$ and $G$ be approximately dual continuous frames. According to Theorem 4.8, there exists an invertible operator $D$ in $\mathcal{B}(\mathcal{H})$ such that $T_{F} T_{G}^{*}=S_{F}^{\frac{1}{2}} D$ and $\left\|I_{\mathcal{H}}-S_{F}^{\frac{1}{2}} D\right\|<1$. Put $K=G-D^{*} S_{F}^{-\frac{1}{2}} F$. It is clear that $K$ is a Bessel mapping with bound $B_{K}=B_{G}+\|D\|^{2}$. We have for all $f \in \mathcal{H}$ and all $\omega \in \Omega$,

$$
\begin{aligned}
\left(T_{G}^{*}-T_{F}^{*} S_{F}^{-\frac{1}{2}} D f\right)(\omega) & =\langle f, G(\omega)\rangle-\left\langle S_{F}^{-\frac{1}{2}} D f, F(\omega)\right\rangle \\
& =\langle f, G(\omega)\rangle-\left\langle f, D^{*} S_{F}^{-\frac{1}{2}} F(\omega)\right\rangle \\
& =\left\langle f, G(\omega)-D^{*} S_{F}^{-\frac{1}{2}} F(\omega)\right\rangle \\
& =\langle f, K(\omega)\rangle \\
& =\left(T_{K}^{*} f\right)(\omega) .
\end{aligned}
$$

Thus

$$
T_{F} T_{K}^{*}=T_{F} T_{G}^{*}-T_{F} T_{F}^{*} S_{F}^{-\frac{1}{2}} D=T_{F} T_{G}^{*}-S_{F}^{\frac{1}{2}} D=0
$$

and this completes the proof.
Theorem 4.10. Let $F$ be a continuous frame for $\mathcal{H}$ with respect to $(\Omega, \mu)$. Then $F$ and the Bessel mapping $G$ are approximately dual continuous frames if and only if

$$
G=D^{*} S_{F}^{-\frac{1}{2}} F-F+S_{F} K
$$

where $D$ is a bounded operator on $\mathcal{H}$ for which $\left\|I_{\mathcal{H}}-S_{F}^{\frac{1}{2}} D\right\|<1$ and $K$ is a

Bessel mapping such that $(F, K)$ is a dual pair for $\mathcal{H}$.
Proof. Put $G=D^{*} S_{F}^{-\frac{1}{2}} F-F+S_{F} K$ is a Bessel mapping with Bessel constant $B_{G}=\|D\|^{2}+B_{F}+B_{G}$. Since $T_{G}^{*}=T_{F}^{*} S_{F}^{-\frac{1}{2}} D-T_{F}^{*}+T_{K}^{*} S_{F}$, then $T_{F} T_{G}^{*}=S_{F}^{\frac{1}{2}} D$. Moreover,

$$
D D^{*} \leq B_{G} I_{\mathcal{H}}
$$

Conversely, let $F$ and $G$ be approximately dual continuous frames. According to Theorem 4.8, there exists an invertible operator $D$ in $\mathcal{B}(\mathcal{H})$ such that $T_{F} T_{G}^{*}=$ $S_{F}^{\frac{1}{2}} D$ and $\left\|I_{\mathcal{H}}-S_{F}^{\frac{1}{2}} D\right\|<1$. Put $K=S_{F}^{-1} G-S_{F}^{-1} D^{*} S_{F}^{-\frac{1}{2}} F-S_{F}^{-1} F$. It is clear that $K$ is a Bessel mapping with bound $B_{K}=\left(B_{G}+\|D\|^{2}+B_{F}\right)\left\|S_{F}^{-1}\right\|^{2}$. Since

$$
T_{K}^{*}=T_{G}^{*} S_{F}^{-1}-T_{F}^{*} S_{F}^{-\frac{1}{2}} D S_{F}^{-1}+T_{F}^{*} S_{F}^{-1}
$$

then $T_{F} T_{K}^{*}=I_{\mathcal{H}}$ and this completes the proof.

### 4.1. ON PERTURBATION OF CONTINUOUS FRAMES

Perturbation theory is a very important concept in several areas of mathematics. It went back to classical perturbation results by Paley and Wienr in 1934. The perturbations of discrete frames have been discussed in [6]. For continuous frames, it was studied in [4,24]. In this subsection, we are giving some results on perturbation of continuous frames from the point of view of the duality notion.

Theorem 4.11. Let $F$ be a Parseval continuous frame and $G$ be a Bessel mapping. Assume that there exist constants $\lambda, \gamma \geq 0$ such that

$$
\begin{aligned}
\left\|\int_{\Omega} \phi(\omega)(F(\omega)-G(\omega)) \mathrm{d} \mu(\omega)\right\| \leq & \lambda\left\|\int_{\Omega} \phi(\omega) F(\omega) \mathrm{d} \mu(\omega)\right\| \\
& +\gamma\left(\int_{\Omega}|\phi(\omega)|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}
\end{aligned}
$$

for all $\phi \in L^{2}(\Omega)$. If $\lambda+\gamma<1$, then $(F, G)$ is an approximately dual continuous frames.

Proof. For all $f \in \mathcal{H}$

$$
\begin{aligned}
\left\|f-\left(T_{G} T_{F}^{*}\right)(f)\right\| & =\left\|\int_{\Omega}\langle f, F(\omega)\rangle(F(\omega)-G(\omega)) \mathrm{d} \mu(\omega)\right\| \\
& \leq \lambda\left\|\int_{\Omega}\langle f, F(\omega)\rangle F(\omega) \mathrm{d} \mu(\omega)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\gamma\left(\int_{\Omega}|\langle f, F(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}} \\
& <\|f\| .
\end{aligned}
$$

Thus $\left\|I_{\mathcal{H}}-T_{G} T_{F}^{*}\right\|<1$. Consequently, $F$ and $G$ are approximately dual continuous frames.

Theorem 4.12. Let $F, G$ and $K$ be Bessel mappings and $B_{G}$ be the Bessel constant of $G$. Assume that there exists $\lambda>0$ such that $\lambda B_{G}<1$ and for all $f \in \mathcal{H}$

$$
\int_{\Omega}|\langle f, F(\omega)-K(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) \leq \lambda\|f\|^{2}
$$

If $(F, G)$ is a dual pair for $\mathcal{H}$, then $G$ and $K$ are approximately dual continuous frames.

Proof. Since for any $f \in \mathcal{H},\left(T_{F}^{*} f-T_{K}^{*} f\right)(\omega)=\langle f, F(\omega)-K(\omega)\rangle$, then

$$
\left\|\left(T_{F}^{*}-T_{K}^{*}\right) f\right\|^{2}=\int_{\Omega}|\langle f, F(\omega)-K(\omega)\rangle|^{2} \leq \lambda\|f\|^{2}
$$

and consequently, $\left\|T_{F}^{*}-T_{H}^{*}\right\| \leq \sqrt{\lambda}$. Now we have

$$
\left\|I_{\mathcal{H}}-T_{G} T_{K}^{*}\right\|=\left\|T_{G}\left(T_{F}^{*}-T_{K}^{*}\right)\right\| \leq\left\|T_{G}\right\|\left\|T_{F}^{*}-T_{K}^{*}\right\| \leq \sqrt{\lambda B_{G}}<1
$$

Theorem 4.13. Let $(F, G)$ be a dual pair for $\mathcal{H}$ and $K: \Omega \rightarrow \mathcal{H}$ be a Bessel mapping. Assume that there exist constants $\lambda, \gamma \geq 0$ such that

$$
\begin{aligned}
\left\|\int_{\Omega} \phi(\omega)(F(\omega)-K(\omega)) \mathrm{d} \mu(\omega)\right\| \leq \lambda \| & \int_{\Omega} \phi(\omega) F(\omega) \mathrm{d} \mu(\omega) \| \\
& +\gamma\left(\int_{\Omega}|\phi(\omega)|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}}
\end{aligned}
$$

for all $\phi \in L^{2}(\Omega)$. If $\lambda+\gamma \sqrt{B_{G}}<1$, Then $G$ and $K$ are approximately dual continuous frames, where $B_{G}$ is Bessel constant of $G$.

Proof. For all $f \in \mathcal{H}$

$$
\begin{aligned}
\left\|f-\left(T_{K} T_{G}^{*}\right)(f)\right\|= & \left\|\int_{\Omega}\langle f, G(\omega)\rangle(F(\omega)-K(\omega)) \mathrm{d} \mu(\omega)\right\| \\
\leq & \lambda\left\|\int_{\Omega}\langle f, G(\omega)\rangle F(\omega) \mathrm{d} \mu(\omega)\right\| \\
& +\gamma\left(\int_{\Omega}|\langle f, G(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{\frac{1}{2}} \\
\leq & \left(\lambda+\gamma \sqrt{B_{G}}\right)\|f\|
\end{aligned}
$$

Thus $\left\|I_{\mathcal{H}}-T_{K} T_{G}^{*}\right\|<1$.
Acknowledgements. The authors would like to thank the referee(s) for their useful suggestions and comments.

## REFERENCES

[1] S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert spaces. Ann. Physics 222 (1993), 1-37.
[2] A.A. Arefijamaal, R.A. Kamyabi Gol, R. Raisi Tousi and N. Tavallaei, A new approach to continuous Riesz bases. J. Sci. Iran 24 (2013), 63-69.
[3] P. Balazs, J.P. Antoine and A. Grybos, Weighted and controlled frames. Int. J. Wavelets Multiresolut. Inf. Process. 8 (2010), 109-132.
[4] P. Balazs, D. Bayer and A. Rahimi, Multipliers for continuous frames in Hilbert spaces. J. Phys. A 45 (2012), Article ID 244023, 20 p.
[5] P. Balazs, H.G. Feichtinger, M. Hampejs and G. Kracher, Double preconditioning for Gabor frames. IEEE Trans. Signal Process. 54 (2006), 4597-4610.
[6] P.G. Cazassa and O. Christensen, Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3 (1997), 543-557.
[7] P.G. Casazza and G. Kutyniok, Frames of subspaces. In: C. Heil et al. (Eds.), Wavelets, Frames and Operator Theory. Contempt. Math. 345, Amer. Math. Soc. Providence, RI., 87-113, 2004.
[8] O. Christensen, An Introduction to Frames and Riesz Bases. Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2016.
[9] O. Christensen and R. S. Laugesen, Approximately dual frames in Hilbert spaces and applications to Gabor frames. Sampl. Theory Signal Image Process. 9 (2010), 1-3, 77-89.
[10] I. Daubechies and B. Han, The canonical dual frame of a wavelet frame. Appl. Comput. Harmon. Anal. 12 (2002), 269-285.
[11] R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert spaces. Proc. Amer. Math. Soc. 17 (1966), 413-415.
[12] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341-366.
[13] H.G. Feichtinger and K. Grochenig, Banach spaces related to integrable group representations and their atomic decomposition. I. J. Funct. Anal. 86 (1989), 307-340.
[14] H.G. Feichtinger and N. Kaiblinger, Varing the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc. 356 (2004), 2001-2003.
[15] L. Gǎvruta, Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139-144.
[16] J.P. Gabardo and D. Han, Frame associated with measurable spaces. Adv. Comput. Math. 18 (2003), 3, 127-147.
[17] M. Holschneider, Wavelet. An Analysis Tool. Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1995.
[18] G. Kaiser, A Friendly Guide to Wavelets. Birkhäuser, Boston, MA, 1994.
[19] S. Li, On general frame decompositions. Numer. Funct. Anal. Optim. 16 (1995), 9-10, 1181-1191.
[20] S. Li and D. Yan, Frame fundamental sensor modeling and stability of one-sided frame perturbation. Acta Appl. Math. 107 (2009), 91-103.
[21] G.J. Murphy, $C^{*}$ - Algebra and Operator Theory. Academic Press, San Diego, 1990.
[22] A. Rahimi and P. Balazs, Multipliers for p-Bessel sequences in Banach spaces. Integral Equations Operator Theory 68 (2010), 2, 193-205.
[23] A. Rahimi and A. Fereydooni, Controlled G-frames and their G-multipliers in Hilbert spaces. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 21 (2013), 2, 223-236.
[24] A. Rahimi, A. Najati and Y.N. Dehghan, Continuous frames in Hilbert spaces. Methods Funct. Anal. Topology 12 (2006), 2, 170-182.
[25] W. Sun, G-frames and G-Riesz bases. J. Math. Anal. Appl. 322 (2006), 437-452.
Received 13 December 2016
University of Maragheh, Department of Mathematics, Maragheh, Iran
rahimi@maragheh.ac.ir
University of Maragheh, Department of Mathematics, Maragheh, Iran
darvishi_z@ymail.com
University of Maragheh, Department of Mathematics, Maragheh, Iran
bdaraby@maragheh.ac.ir

