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1. INTRODUCTION

Frames for Hilbert spaces have been first introduced by Duffin and Sche-
affer in the study of some problems in nonharmonic Fourier series in 1952, [12].
A discrete frame is a countable family of elements in a separable Hilbert space
which allows for a stable, not necessarily unique, decomposition of an arbitrary
element into an expansion of the frame elements.

Recall that for a Hilbert space H and a countable index set I, a family
of vectors {fi}i∈I ⊆ H is called a discrete frame for H, if there exist constants
0 < A ≤ B < +∞ such that

A‖f‖2 ≤
∑
i∈I
|〈f, fi〉|2 ≤ B‖f‖2, f ∈ H,

the constants A and B are called frame bounds. The frame {fi}i∈I is called
tight if A = B and Parseval if A = B = 1. The frame decomposition is the
most important frame results. It shows for the frame {fi}i∈I , every element in
H has a representation as an infinite linear combination of the frame elements;
i.e., there exist coefficients {ci(f)}i∈I such that f =

∑
i∈I ci(f)fi, where f ∈ H

is arbitrary. Thus, it is natural to say that a frame is some kind of a generalized
basis. Usually, we want to work with coefficients which depend continuously
and linearly on f , by “Riesz representation theorem”, this implies that the
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i-th coefficient in the expansion of f should have on the form ci(f) = 〈f, gi〉
for some gi ∈ H. The sequence {gi}i∈I is called a dual frame of {fi}i∈I . Li [19]
provided a characterization and construction of general frame decomposition.
He showed that for generating all duals for a given frame, it is enough to
find the left-inverses of a one-to-one mapping and found a general parametric
and algebraic formula for all duals. It is usually complicated to calculate
a dual frame explicitly. Hence Christensen and Laugesen seek methods for
constructing approximate duals, see [9]. Note that the idea of approximate dual
frames has appeared previously, especially for wavelets [17], Gabor systems
[5,14], in the general context of coorbit theory [13] and the sensor modeling [20].

New applications of frames, especially in the last decade, motivated the
researcher to find some generalizations of frames like continuous frames [1,24],
fusion frames [7], g-frames [25], controlled and weighted frames [3,23], p-frames
[22], K-frames [15] and etc.

The notion of continuous frames was introduced by Kaiser in [18] and
independently by Ali, Antoine and Gazeau [1]. The windowed Fourier trans-
form and the continuous wavelet transform are just two instances of continuous
frames but at the same time the main motivation for its definition. Gabardo
and Han in [16] defined the concept of dual frames for continuous frames.

2. PRELIMINARIES

In this section, we review some notations and definitions. Throughout
this paper, H is a Hilbert space and (Ω, µ) a measure space with positive
measure µ. The set of all bounded operators on H denoted by L(H).

Definition 2.1. A weakly-measurable mapping F : Ω → H is called a
continuous frame for H with respect to (Ω, µ) if there exist constants 0 < A ≤
B <∞ such that

A‖f‖2 ≤
∫

Ω
|〈f, F (ω)〉|2dµ(ω) ≤ B‖f‖2, f ∈ H.

The constants A and B are called continuous frame bounds. The mapping
F is called tight continuous frame if A = B and if A = B = 1, it called a Par-
seval continuous frame. This mapping is called Bessel if the second inequality
holds. In this case, B is called Bessel constant.

Suppose F : Ω → H is a Bessel mapping with bound B. The operator
TF : L2(Ω, µ)→ H weakly defined by

〈TFϕ, f〉 =

∫
Ω
ϕ(ω)〈F (ω), f〉dµ(ω), ϕ ∈ L2(Ω, µ), f ∈ H,
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is well-defined, linear, bounded with bound
√
B and its adjoint is given by

T ∗F : H → L2(Ω, µ), (T ∗F f)(ω) = 〈f, F (ω)〉, ω ∈ Ω, f ∈ H.

The operator TF is called the synthesis operator and T ∗F is called the
analysis operator of F . For continuous frame F with bounded A and B, the
operator SF = TFT

∗
F is called continuous frame operator and this is bounded,

invertible, positive and AIH ≤ SF ≤ BIH. In fact,

〈SF f, g〉 =

∫
Ω
〈f, F (ω)〉〈F (ω), g〉dµ(ω), f, g ∈ H.

For all f, g ∈ H, the reconstruction formulas are as follows

〈f, g〉 =

∫
Ω
〈f, F (ω)〉〈S−1

F F (ω), g〉dµ(ω) =

∫
Ω
〈f, S−1

F F (ω)〉〈F (ω), g〉dµ(ω).

We end this short section by a well known example named wavelet frames.

Example 2.2. Let Ω = (0,+∞) × R be the affine group, with group law
(a, b)(a′, b′) = (aa′, b + ab′). An element ψ ∈ L2(R) is said to be admissible if

‖ψ‖2 = 1 and Cψ =
∫ +∞

0
|ψ̂(ξ)|2
ξ dξ < +∞. For such admissible function ψ, we

have ∫ +∞

−∞

∫ +∞

0
|〈f, TaDbψ〉|2

dadb

a2
= Cψ‖f‖2, f ∈ L2(R),

where Taf(t) = f(t − a) and Dbf(t) = 1√
b
f( tb), see [8]. That is, {TaDb

ψ}a6=0,0<b∈R is a tight continuous frame with respect to (Ω, dadb
a2

) with the
frame operator S = CψI.

3. THE DUALITY OF CONTINUOUS FRAMES

Reconstruction of the original vector from frames, g-frames, fusion frames,
continuous frames as well as their extensions, is typically achieved by using a
so-called (alternate or standard) dual system.

Definition 3.1. Let F and G be two Bessel mappings with synthesis ope-
rators TF and TG, respectively. We call G a dual of F if the following equality
holds

〈f, g〉 =

∫
Ω
〈f, F (ω)〉〈G(ω), g〉dµ(ω), f, g ∈ H.

In this case, (F,G) is called a dual pair for H.

This definition is equivalent to TGT
∗
F = IH. The condition

〈f, g〉 =

∫
Ω
〈f, F (ω)〉〈G(ω), g〉dµ(ω), f, g ∈ H
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is equivalent

〈f, g〉 =

∫
Ω
〈f,G(ω)〉〈F (ω), g〉dµ(ω), f, g ∈ H

because TGT
∗
F = I if and only if TFT

∗
G = I.

For the continuous frame F , the mapping S−1
F F is called standard dual

of F . It is certainly possible for a continuous frame F to have only one dual.
In this case, the continuous frame F is called a Riesz-type frame. Riesz-type
frames are actually frames, for which the analysis operator is onto. Also, the
continuous frame F is Riesz-type frame if and only if T ∗F is onto [2].

Similar to discrete case, by a simple calculation, it is easy to show that G
is a dual of F if and only if G = S−1

F F +H, where H satisfies in the condition∫
Ω〈f, F (ω)〉〈H(ω), g〉dµ(ω) = 0, for all f, g ∈ H.

It is easy verifiable that F is a tight continuous frame for H with bound
C if and only if (F, 1

CF ) is dual pair for it.

By using Example 2.2, the pair (TaDbψ,
1
Cψ
TaDbψ) is a dual pair in L2(R)

and we have

f =
1

Cψ

∫ +∞

−∞

∫ +∞

0
〈f, TaDbψ〉TaDbψ

dadb

a2
, f ∈ L2(R).

It is not clear for which wavelet frames the standard dual frame consists
of wavelet as well. More generally, there are some wavelet frames with no dual
wavelet frames at all [10].

The following is another example of continuous frame with one of its
duals.

Example 3.2. Consider H = R2 with the standard basis {e1, e2}, where
e1 = (1, 0) and e2 = (0, 1). Put BR2 = {x ∈ R2 : ‖x‖ ≤ 1}. Let Ω = BR2

and λ be the Lebesgue measure. Define F : BR2 → R2 and G : BR2 → R2 such
that

F (ω) =


1√
λ(B1)

e1, ω ∈ B1,

1√
λ(B2)

e2, ω ∈ B2,

0, ω ∈ B3,

and

G(ω) =


1√
λ(B1)

e1, ω ∈ B1,

1√
λ(B2)

e2, ω ∈ B2,

2√
λ(B3)

e2, ω ∈ B3,
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where {B1, B2, B3} is a partition of BR2 . It is easy to check that F and G are
continuous frames for R2 with respect to (BR2 , λ). For each x ∈ R2, we have

(TGT
∗
F )(x) =

(∫
B1

+

∫
B2

+

∫
B3

)
(T ∗Fx)(ω)G(ω)dλ(ω)

=

∫
B1

〈x, 1√
λ(B1)

e1〉
1√
λ(B1)

e1dλ(ω)

+

∫
B2

〈x, 1√
λ(B2)

e2〉
1√
λ(B2)

e2dλ(ω)

+ 0

= 〈x, e1〉e1 + 〈x, e2〉e2

= x

i.e., (F,G) is a dual pair for R2.

Similar to discrete frames, for continuous frame we have the following
assertion.

Proposition 3.3. The Bessel mapping F : Ω→ H is a continuous frame
for H with respect to (Ω, µ) if and only if there exists a Bessel mapping G :
Ω→ H such that for each f, g ∈ H,

〈f, g〉 =

∫
Ω
〈f, F (ω)〉〈G(ω), g〉dµ(ω).(3.1)

Proof. At first, assume that there exists a Bessel mapping G with Bessel
constant BG, satisfying (3.1). Then for any f ∈ H,

‖f‖4 =

∣∣∣∣∫
Ω
〈f, F (ω)〉〈G(ω), f〉dµ(ω)

∣∣∣∣2
≤
(∫

Ω
|〈f, F (ω)〉〈G(ω), f〉|dµ(ω)

)2

≤
(∫

Ω
|〈f, F (ω)〉|2dµ(ω)

)(∫
Ω
|〈f,G(ω)〉|2dµ(ω)

)
≤
(∫

Ω
|〈f, F (ω)〉|2dµ(ω)

)
.BG‖f‖2.

Thus, F is a continuous frame for H with lower bound B−1
G .

Conversely, let F be a continuous frame for H with the frame operator
SF . Thus, for all f, g ∈ H

〈f, g〉 =

∫
Ω
〈f, F (ω)〉〈S−1

F F (ω), g〉dµ(ω).
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Put G = S−1
F F . �

Like discrete frames [8], for Bessel mappings, we have the following corol-
lary.

Corollary 3.4. If (F,G) is a dual pair for H, then both F and G are
continuous frames for H.

Improving and extending Theorem 3.6 of [24] for standard dual, we have
the following theorem for any dual pairs. It shows that we can remove some
elements from a continuous frame so that the remaining set is still a continuous
frame.

Theorem 3.5. Let (F,G) be a dual pair for H and there exists ω0 ∈ Ω
such that µ({ω0})〈F (ω0), G(ω0)〉 6= 1. Then F : Ω\{ω0} → H is a continuous
frame for H.

Proof. We assume that the Bessel constants F and G are BF and BG,
(respectively). If f ∈ H, then

〈F (ω0), f〉 =

∫
Ω\{ω0}

〈F (ω0), G(ω)〉〈F (ω), f〉dµ(ω)

+ 〈F (ω0), G(ω0)〉〈F (ω0), f〉µ({ω0}).

Therefore,

|〈f, F (ω0)〉|2 ≤ 1

|1− µ({ω0})〈F (ω0), G(ω0)〉|2

(∫
Ω\{ω0}

|〈f, F (ω)〉|2dµ(ω)

)
(∫

Ω\{ω0}
|〈F (ω0), G(ω)〉|2dµ(ω)

)

≤ BG‖F (ω0)‖2

|1− µ({ω0})〈F (ω0), G(ω0)〉|2

(∫
Ω\{ω0}

|〈f, F (ω)〉|2dµ(ω)

)
.

Put C = BG‖F (ω0)‖2
|1−µ({ω0})〈F (ω0),G(ω0)〉|2 . We have

B−1
G ‖f‖

2 ≤ (1 + Cµ({ω0}))
∫

Ω\{ω0}
|〈f, F (ω)〉|2dµ(ω).

Hence F : Ω\{ω0} → H is a continuous frame with lower bound
B−1
G

1+Cµ({ω0}) . �

Concerning the above theorem, a question occurs. What happens in case
µ({ω0})〈F (ω0), S−1

F F (ω0)〉 = 1? To achieve this purpose, we need the following
lemma.
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Lemma 3.6 ([24]). The continuous frame coefficients {〈f, S−1
F F (ω)〉}ω∈Ω

have minimal L2-norm among all coefficients {φ(ω)}ω∈Ω for which

f =

∫
Ω
φ(ω)F (ω)dµ(ω)

for some φ ∈ L2(Ω, µ); i.e.,∫
Ω
|φ(ω)|2dµ(ω) =

∫
Ω
|〈f, S−1

F F (ω)〉|2dµ(ω) +

∫
Ω
|φ(ω)−〈f, S−1

F F (ω)〉|2dµ(ω).

Theorem 3.7. Let F be a continuous frame for H with respect to (Ω, µ)
with frame operator SF and ω0 ∈ Ω. If µ({ω0})〈F (ω0), S−1

F F (ω0)〉 = 1, then
there exists a non-empty measurable set Ω0 ⊂ Ω such that ω0 ∈ Ω0, µ(Ω0) = 0
and {F (ω)}ω∈Ω\Ω0

is incomplete.

Proof. We have

F (ω0) =

∫
Ω
〈F (ω0), S−1

F F (ω)〉F (ω)dµ(ω) =

∫
Ω

χ{ω0}

µ({ω0})
F (ω)dµ(ω),

such that χ{ω0} is the characteristic function of a set {ω0} ⊂ Ω. So Lemma 3.6

yields the following relation between {χ{ω0}(ω)

µ({ω0}) } and {〈F (ω0), S−1
F F (ω)〉}∫

Ω
|
χ{ω0}(ω)

µ({ω0})
|2dµ(ω) =

∫
Ω
|〈F (ω0), S−1

F F (ω)〉|2dµ(ω)

+

∫
Ω
|
χ{ω0}(ω)

µ({ω0})
− 〈F (ω0), S−1

F F (ω)〉|2dµ(ω)

=

∫
Ω\{ω0}

|〈F (ω0), S−1
F F (ω)〉|2dµ(ω)

+ |〈F (ω0), S−1
F F (ω0)〉|2µ({ω0})

+

∫
Ω\{ω0}

|
χ{ω0}(ω)

µ({ω0})
− 〈F (ω0), S−1

F F (ω)〉|2dµ(ω)

+ | 1

µ({ω0})
− 〈F (ω0), S−1

F F (ω0)〉|2µ(ω0).

From the above formula,∫
Ω\{ω0}

|〈F (ω0), S−1
F F (ω)〉|2dµ(ω) = 0,

so that 〈F (ω0), S−1
F F (ω)〉 = 0 a.e. on Ω\{ω0}. Put

Ω0 = {ω ∈ Ω : 〈S−1
F F (ω0), F (ω)〉 6= 0}.
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It is clear that Ω0 is a measurable set with zero measure and ω0 ∈
Ω0. Thus we have the non-zero element S−1

F F (ω0) which is orthogonal to
{F (ω)}ω∈Ω\Ω0

, i.e., {F (ω)}ω∈Ω\Ω0
is incomplete. �

Now we are going to give simple ways for construction of many dual pairs
of a given dual pair.

Theorem 3.8. Let (F,G) be a dual pair for H and let U and V be two
bounded operators on H such that V U∗ = IH. Then, (UF, V G) is a dual pair
for H.

Proof. It is clear that if F is a Bessel mapping with synthesis operator
TF and U is a bounded operator on H, then UF is a Bessel mapping with
synthesis operator TUF = UTF . Hence UF and V G are Bessel mappings and

TV GT
∗
UF = V TGT

∗
FU
∗ = V IU∗ = IH. �

Corollary 3.9. If (F,G) is a dual pair for H and U is a unitary ope-
rator, then (UF,UG) is a dual pair for H.

Theorem 3.10. Let (F,G) be a dual pair for H and there exists a bounded
operator U ∈ L(H) such that (F,UG) is a dual pair for H. Then U = IH.

Proof. For all f, g ∈ H,

〈f, U∗g〉 =

∫
Ω
〈f, F (ω)〉〈G(ω), U∗g〉dµ =

∫
Ω
〈f, F (ω)〉〈UG(ω), g〉dµ = 〈f, g〉.

Therefore, U∗ = IH. Hence U = IH. �

Theorem 3.11. Assume that (F,G) and (F,K) are dual pairs for H.
Then for all α ∈ C, (F, αG+ (1− α)K) is a dual pair for H.

Proof. Put F1 = αG+ (1− α)K. For all f, g ∈ H, we have∫
Ω
〈f, F (ω)〉〈F1(ω), g〉dµ(ω) =

∫
Ω
〈f, F (ω)〉〈αG(ω) + (1− α)K(ω), g〉dµ(ω)

= α

∫
Ω
〈f, F (ω)〉〈G(ω), g〉dµ(ω)

+ (1− α)

∫
Ω
〈f, F (ω)〉〈K(ω), g〉dµ(ω)

= α〈f, g〉+ (1− α)〈f, g〉
= 〈f, g〉. �

Now, we want to find a relationship between the arbitrary continuous
Riesz basis of H. For this purpose, we need to following definitions and pro-
positions from [2]. Denote by L2(Ω,H) the set of all mapping F : Ω→ H such
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that for all f ∈ H, the functions ω 7→ 〈f, F (ω)〉 defined almost everywhere on
Ω, belong to L2(Ω).

Definition 3.12 ([2]). A Bessel mapping F : Ω→ H is called µ-complete,
if

cspan{F (ω)}ω∈Ω =

{∫
Ω
ϕ(ω)F (ω)dµ(ω); ϕ ∈ L2(Ω)

}
is dense in H.

It is worthwhile to mention that if F is µ-complete, then {F (ω)}ω∈Ω is a
complete subset of H. The converse is also true when 0 < µ({ω}) < +∞ for
all ω ∈ Ω, since span{F (ω)}ω∈Ω ⊆ cspan{F (ω)}ω∈Ω.

Proposition 3.13 ([2]). Let F be a Bessel mapping. The following are
equivalent

(1) F is µ-complete;

(2) If f ∈ H so that 〈f, F (ω)〉 = 0 for almost all ω ∈ Ω, then f = 0.

Definition 3.14 ( [2]). A mapping F ∈ L2(Ω,H) is called a continuous
Riesz base for H with respect to (Ω, µ), if {F (ω)}ω∈Ω is µ-complete and there
are two positive numbers A and B such that

A

(∫
Ω1

|φ(ω)|2dµ(ω)

) 1
2

≤
∥∥∥∥∫

Ω1

φ(ω)F (ω)dµ(ω)

∥∥∥∥ ≤ B(∫
Ω1

|φ(ω)|2dµ(ω)

) 1
2

,

for every φ ∈ L2(Ω) and any measurable subset Ω1 of Ω with µ(Ω1) < +∞.
The integral is taken in the weak sense and the constant A and B are called
continuous Riesz base bounds. It is obvious that any continuous Riesz basis is
a continuous frame.

Definition 3.15 ([2]). A Bessel mapping F is said to be L2-independent if∫
Ω ϕ(ω)F (ω)dµ(ω) = 0 for ϕ ∈ L2(Ω, µ), implies that ϕ = 0 a. e.

Proposition 3.16 ([2]). Let F ∈ L2(Ω,H) be a continuous frame for H.
Then F is a continuous Riesz base for H if and only if F is µ-complete and
L2-independent.

Proposition 3.17 ([2]). Let F ∈ L2(Ω,H) be a continuous frame. The
following are equivalent

(1) F is a continuous Riesz base for H;

(2) F is a Riesz-type continuous frame for H;

(3) T ∗F is onto.

Theorem 3.18. Let F and G be two continuous Riesz bases for H. Then
there exists an invertible operator Θ ∈ L(H) such that G = SGΘ∗F.
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Proof. Assume f ∈ H such that (TGT
∗
F )f = 0. We have for all ω ∈ Ω,

TG(T ∗F f(ω)) = 0. Hence
∫

Ω〈f, F (ω)〉G(ω)dµ(ω) = 0. Since G is L2-inde-
pendent, then 〈f, F (ω)〉 = 0 for almost all ω ∈ Ω. The µ-completeness of F
implies f = 0. Therefore TGT

∗
F is one to one. According to Proposition 3.17, T ∗F

is onto, because F is a continuous Riesz base. The synthesis TG is onto because
G is a continuous frame [24]. Hence, TGT

∗
F is onto. Putting Θ = (TGT

∗
F )−1,

for any f, g ∈ H,

〈f, g〉 = 〈Θ−1Θf, g〉
= 〈T ∗FΘf, T ∗Gg〉

=

∫
Ω
〈Θf, F (ω)〉〈G(ω), g〉dµ(ω)

=

∫
Ω
〈f,Θ∗F (ω)〉〈G(ω), g〉dµ(ω).

It follows that Θ∗F is a dual of G, but G has only one dual. Hence
S−1
G G = Θ∗F , or G = SGΘ∗F . �

Definition 3.19. [2] A continuous orthonormal basis for H with respect to
(Ω, µ) is a continuous Parseval frame F for which∥∥∥∥∫

Ω
φ(ω)F (ω)dµ(ω)

∥∥∥∥ = ‖φ‖2, φ ∈ L2(Ω).

One may easily see that if F is a continuous orthonormal base for H, then
it is a continuous Riesz base.

Corollary 3.20. If F and G are two continuous orthonormal basis for
H, then there exists an invertible operator Θ ∈ L(H) such that G = Θ∗F.

4. APPROXIMATE DUALITY OF CONTINUOUS FRAMES

In Section 3, by definition of the dual frame, we saw that if the Bessel map-
ping G is a dual of Bessel mapping F , then for all arbitrary elements f, g ∈ H,
we have the dual frame expansion 〈f, g〉 =

∫
Ω〈f, F (ω)〉〈G(ω), g〉dµ(ω). Unfor-

tunately, it might be difficult, or even impossible, to calculate a dual frame
explicitly. This limitation leads us to seek continuous frames that are “close to
dual”. For solving this problem in discrete frames, Christensen and Laugesen
in [9] introduced the concept of approximately dual frames. By using their ideas
in this section, we investigate and improve this notion for continuous frames.
Here, we are generalizing the definition 3.1. of [9] to continuous cases and then
we will obtain our results. For clarifying, some examples will be presented.

Throughout this section, we assume that F and G are Bessel mappings
with synthesis operators TF and TG, respectively.
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Definition 4.1. Two Bessel mappings F and G are called approximately
dual continuous frames for H if ‖IH − TGT ∗F ‖ < 1 or ‖IH − TFT ∗G‖ < 1.

It is clear that in this case, TGT
∗
F is an invertible operator.

Example 4.2. Similar to Example 3.2, letH = R2 and {e1, e2} be standard
base for it. Also, let 0 < ε < 1 be arbitrary. Put Ω = BR2 and λ is the Lebesgue
measure. Define the continuous frames F and G for R2 with respect to (BR2 , λ)
by

F (ω) =


1√
λ(B1)

e1, ω ∈ B1,

1√
λ(B2)

e2, ω ∈ B2,

0, ω ∈ B3,
and

G(ω) =


ε√
λ(B1)

e1, ω ∈ B1,

0, ω ∈ B2,
1√
λ(B3)

e2, ω ∈ B3,

where {B1, B2, B3} is a partition of BR2 . For all x ∈ R2

(TGT
∗
F )(x) =

∫
BR2

(T ∗Fx)(ω)G(ω)dλ(ω)

=

(∫
B1

+

∫
B2

+

∫
B3

)
(T ∗Fx)(ω)G(ω)dλ(ω)

=

∫
B1

〈x, ε√
λ(B1)

e1〉
1√
λ(B1)

e1dλ(ω) + 0 + 0

= ε〈x, e1〉e1.

Thus

‖x− (TGT
∗
F )(x)‖2 = (1− ε)2|〈x, e1〉|2 + |〈x, e2〉|2 < ‖x‖2.

Therefore, F and G are approximately dual continuous frames for R2.

The following theorem shows that a Bessel mapping F is a continuous
frame for H with respect to (Ω, µ), if there exists a Bessel mapping G such
that F and G are approximately dual frames.

Theorem 4.3. If F and G are approximately dual continuous frames,
then both F and G are continuous frames for H with respect to (Ω, µ).

Proof. Since ‖IH−TGT ∗F ‖ < 1, the operator TGT
∗
F is an invertible operator

on H and

‖(TGT ∗F )−1‖ ≤ 1

1− ‖IH − TGT ∗F ‖
.
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Denote by BF and BG the Bessel constants of F and G, respectively. For
all f ∈ H

‖f‖ ≤ ‖(TGT ∗F )−1‖‖TGT ∗F f‖

≤ 1

1−‖IH−TGT ∗F ‖
sup
‖g‖=1

|〈TGT ∗F f, g〉|

≤ 1

1−‖IH−TGT ∗F ‖
sup
‖g‖=1

∫
Ω
|〈f, F (ω)〉〈G(ω), g〉|dµ(ω)

≤ 1

1−‖IH−TGT ∗F ‖
sup
‖g‖=1

(∫
Ω
|〈f, F (ω)〉|2dµ(ω)

) 1
2
(∫

Ω
|〈G(ω), g〉|2dµ(ω)

) 1
2

≤ 1

1− ‖IH − TGT ∗F ‖
sup
‖g‖=1

(∫
Ω
|〈f, F (ω)〉|2dµ(ω)

) 1
2 √

BG ‖g‖

=

√
BG

1− ‖IH − TGT ∗F ‖

(∫
Ω
|〈f, F (ω)〉|2dµ(ω)

) 1
2

.

Hence F is a continuous frame with lower bound B−1
G (1−‖IH−TGT ∗F ‖)2.

Similarly, G is a continuous frame with lower boundB−1
F (1−‖IH−TGT ∗F ‖)2. �

The following theorem shows that the sum of two approximately dual
continuous frames is a continuous frame.

Theorem 4.4. If F and G are approximately dual continuous frames,
then F +G is a continuous frame for H with respect to (Ω, µ).

Proof. Suppose TF and TG be synthesis operators of F and G (respecti-
vely) and AF , BF , AG and BG be lower and upper bounds of F and G, respecti-
vely. It is clear that F +G is a Bessel mapping with Bessel constant BF +BG.
Since ‖IH−TGT ∗F ‖ < 1 or ‖IH−TFT ∗G‖ < 1, then ‖2IH−(TGT

∗
F +TFT

∗
G)‖ < 2,

and as TGT
∗
F +TFT

∗
G is self-adjoint, then by Lemma 2.2.2 in [21], TGT

∗
F +TFT

∗
G

is a positive operator. For each f ∈ H, we have∫
Ω
|〈f, (F +G)(ω)〉|2dµ(ω) =

∫
Ω
|〈f, F (ω)〉|2dµ(ω) + 〈(TGT ∗F + TFT

∗
G)f, f〉

+

∫
Ω
|〈f,G(ω)〉|2dµ(ω)

≥
∫

Ω
|〈f, F (ω)〉|2dµ(ω) +

∫
Ω
|〈f,G(ω)〉|2dµ(ω)

≥ (AF +AG)‖f‖2,

i.e., the lower bound condition holds. �
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It is clear that if (F,G) is a dual pair for H, then F and G are approx-
imately dual continuous frames, but its converse isn’t true in general. The
following theorem shows that any approximate dual continuous frames are a
kind of dual pair (as special sense).

Theorem 4.5. If F and G are approximately dual continuous frames,
then there exists an invertible operator Θ : H → H such that (Θ∗F,G) is a
dual pair for H.

Proof. Since ‖IH − TGT ∗F ‖ < 1, then TGT
∗
F is an invertible operator on

H. For each f, g ∈ H

〈f, g〉 = 〈(TGT ∗F )(TGT
∗
F )−1f, g〉

=

∫
Ω
〈f, ((TGT ∗F )−1)∗F (ω)〉〈G(ω), g〉dµ(ω).

The result follows by putting Θ = (TGT
∗
F )−1. �

Theorem 4.6. Let (F,G) be a dual pair for H and let U and V be two
bounded operators on H such that ‖IH − V U∗‖ < 1. Then UF and V G are
approximately dual continuous frames.

Proof. Since UF and V G are Bessel mappings with synthesis operators
TUF = UTF and TV G = V TG ( resp.), so we have

‖IH − TV GT ∗UF ‖ = ‖IH − V TGT ∗FU∗‖ = ‖IH − V U∗‖ < 1. �

Corollary 4.7. If (F,G) is a dual pair for H and U is a unitary operator
on H, then (UF,UG) is approximately dual continuous frames.

We proceed this section with the following result which gives a sufficient
and necessary condition for two continuous frames F and G under which they
are approximately continuous frames. To this end, recall that every bounded
and positive operator U : H → H has a unique bounded and positive square
root U

1
2 . Moreover, if the operator U is self-adjoint (resp. invertible), then U

1
2

is also self-adjoint (resp. invertible), see A.6.7 of [8].

Theorem 4.8. Let F be continuous frame and G a Bessel mapping for H
with upper bounds BF and BG, respectively. Then F and G are approximately
dual continuous frames if and only if there exists a bounded operator D ∈ B(H)
such that

TFT
∗
G = S

1
2
FD, DD∗ ≤ BGIH, ‖IH − S

1
2
FD‖ < 1.

Proof. Since F is a continuous frame for H, then SF is a bounded and

positive operator. Hence it has a unique bounded square root S
1
2
F . The proof
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of the “only if” part is trivial. To prove the “if” part, suppose that F and G

are approximately dual continuous frames. For each f ∈ H, we have

‖TGT ∗F f‖ = sup
‖g‖=1

|〈TGT ∗F f, g〉|

= sup
‖g‖=1

|
∫

Ω
〈f, F (ω)〉〈G(ω), g〉dµ(ω)|

≤ sup
‖g‖=1

(∫
Ω
|〈f, F (ω)〉|2dµ(ω)

) 1
2
(∫

Ω
|〈g,G(ω)〉|2dµ(ω)

) 1
2

≤
√
BG

(∫
Ω
|〈f, F (ω)〉|2dµ(ω)

) 1
2

.

Therefore, we have

〈(TFT ∗G)(TFT
∗
G)∗f, f〉 ≤ BG〈SF f, f〉, f ∈ H.

Thus for all f ∈ H

(TFT
∗
G)(TFT

∗
G)∗ ≤ BGS

1
2
FS

1
2
F .

The above inequality results:

(1) According to Theorem 1 of [11], there exists a bounded operator D ∈
B(H) such that TFT

∗
G = S

1
2
FD.

(2) Theorem 2.2.5 in [21] implies that DD∗ ≤ BGIH. �

Now, we can prove the following theorems.

Theorem 4.9. Let F be a continuous frame for H with respect to (Ω, µ).

Then F and the Bessel mapping G are approximately dual continuous frames

if and only if

G = D∗S
− 1

2
F F +K,

where D is a bounded operator on H for which ‖Ih − S
1
2
FD‖ < 1 and K is a

Bessel mapping with property TFT
∗
K = 0.

Proof. First, we put G = D∗S
− 1

2
F F + K, then for each f ∈ H, the ω 7→

〈f,G(ω)〉 is a measurable function. Also, for each f ∈ H, we have∫
Ω
|〈f,G(ω)〉|2dµ(ω) ≤ (BK + ‖D‖2)‖f‖2.

Therefore, G is a Bessel mapping with Bessel bound BG = BK + ‖D‖2.
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Now, for all f ∈ H and ω ∈ Ω, we have

(T ∗Gf)(ω) = 〈f,D∗S−
1
2

F F (ω)〉+ 〈f,K(ω)〉

= 〈S−
1
2

F Df, F (ω)〉+ 〈f,K(ω)〉

= T ∗F (S
− 1

2
F Df)(ω) + (T ∗Kf)(ω)

and

TFT
∗
Gf = TFT

∗
F (S

− 1
2

F Df) + TFT
∗
Kf

= S
1
2
FDf.

Hence TFT
∗
G = S

1
2
FD. Moreover,

〈DD∗f, f〉 = 〈D∗f,D∗f〉 = ‖D∗f‖2 ≤ ‖D‖2‖f‖2 ≤ BG‖f‖2 = BG〈f, f〉,

for all f ∈ H. Now, we use previous theorem to conclude that F and G are

approximately dual continuous frames.

Conversely, let F and G be approximately dual continuous frames. Ac-

cording to Theorem 4.8, there exists an invertible operator D in B(H) such

that TFT
∗
G = S

1
2
FD and ‖IH − S

1
2
FD‖ < 1. Put K = G −D∗S−

1
2

F F . It is clear

that K is a Bessel mapping with bound BK = BG + ‖D‖2. We have for all

f ∈ H and all ω ∈ Ω,

(T ∗G − T ∗FS
− 1

2
F Df)(ω) = 〈f,G(ω)〉 − 〈S−

1
2

F Df,F (ω)〉

= 〈f,G(ω)〉 − 〈f,D∗S−
1
2

F F (ω)〉

= 〈f,G(ω)−D∗S−
1
2

F F (ω)〉
= 〈f,K(ω)〉
= (T ∗Kf)(ω).

Thus

TFT
∗
K = TFT

∗
G − TFT ∗FS

− 1
2

F D = TFT
∗
G − S

1
2
FD = 0,

and this completes the proof. �

Theorem 4.10. Let F be a continuous frame for H with respect to (Ω, µ).

Then F and the Bessel mapping G are approximately dual continuous frames

if and only if

G = D∗S
− 1

2
F F − F + SFK,

where D is a bounded operator on H for which ‖IH − S
1
2
FD‖ < 1 and K is a
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Bessel mapping such that (F,K) is a dual pair for H.

Proof. Put G = D∗S
− 1

2
F F − F + SFK is a Bessel mapping with Bessel

constant BG = ‖D‖2 + BF + BG. Since T ∗G = T ∗FS
− 1

2
F D − T ∗F + T ∗KSF , then

TFT
∗
G = S

1
2
FD. Moreover,

DD∗ ≤ BGIH.
Conversely, let F and G be approximately dual continuous frames. According

to Theorem 4.8, there exists an invertible operatorD in B(H) such that TFT
∗
G =

S
1
2
FD and ‖IH−S

1
2
FD‖ < 1. Put K = S−1

F G−S−1
F D∗S

− 1
2

F F −S−1
F F . It is clear

that K is a Bessel mapping with bound BK = (BG+‖D‖2 +BF )‖S−1
F ‖2. Since

T ∗K = T ∗GS
−1
F − T

∗
FS
− 1

2
F DS−1

F + T ∗FS
−1
F ,

then TFT
∗
K = IH and this completes the proof. �

4.1. ON PERTURBATION OF CONTINUOUS FRAMES

Perturbation theory is a very important concept in several areas of mat-

hematics. It went back to classical perturbation results by Paley and Wienr

in 1934. The perturbations of discrete frames have been discussed in [6]. For

continuous frames, it was studied in [4, 24]. In this subsection, we are giving

some results on perturbation of continuous frames from the point of view of

the duality notion.

Theorem 4.11. Let F be a Parseval continuous frame and G be a Bessel

mapping. Assume that there exist constants λ, γ ≥ 0 such that

‖
∫

Ω
φ(ω)(F (ω)−G(ω))dµ(ω)‖ ≤λ‖

∫
Ω
φ(ω)F (ω)dµ(ω)‖

+ γ

(∫
Ω
|φ(ω)|2dµ(ω)

) 1
2

,

for all φ ∈ L2(Ω). If λ+γ < 1, then (F,G) is an approximately dual continuous

frames.

Proof. For all f ∈ H

‖f − (TGT
∗
F )(f)‖ = ‖

∫
Ω
〈f, F (ω)〉(F (ω)−G(ω))dµ(ω)‖

≤ λ‖
∫

Ω
〈f, F (ω)〉F (ω)dµ(ω)‖
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+ γ

(∫
Ω
|〈f, F (ω)〉|2dµ(ω)

) 1
2

< ‖f‖.

Thus ‖IH − TGT ∗F ‖ < 1. Consequently, F and G are approximately dual

continuous frames. �

Theorem 4.12. Let F , G and K be Bessel mappings and BG be the Bessel

constant of G. Assume that there exists λ > 0 such that λBG < 1 and for all

f ∈ H ∫
Ω
|〈f, F (ω)−K(ω)〉|2dµ(ω) ≤ λ‖f‖2.

If (F,G) is a dual pair for H, then G and K are approximately dual continuous

frames.

Proof. Since for any f ∈ H, (T ∗F f − T ∗Kf)(ω) = 〈f, F (ω)−K(ω)〉, then

‖(T ∗F − T ∗K)f‖2 =

∫
Ω
|〈f, F (ω)−K(ω)〉|2 ≤ λ‖f‖2

and consequently, ‖T ∗F − T ∗H‖ ≤
√
λ. Now we have

‖IH − TGT ∗K‖ = ‖TG(T ∗F − T ∗K)‖ ≤ ‖TG‖‖T ∗F − T ∗K‖ ≤
√
λBG < 1. �

Theorem 4.13. Let (F,G) be a dual pair for H and K : Ω → H be a

Bessel mapping. Assume that there exist constants λ, γ ≥ 0 such that

‖
∫

Ω
φ(ω)(F (ω)−K(ω))dµ(ω)‖ ≤λ‖

∫
Ω
φ(ω)F (ω)dµ(ω)‖

+ γ

(∫
Ω
|φ(ω)|2dµ(ω)

) 1
2

,

for all φ ∈ L2(Ω). If λ + γ
√
BG < 1, Then G and K are approximately dual

continuous frames, where BG is Bessel constant of G.

Proof. For all f ∈ H

‖f − (TKT
∗
G)(f)‖ = ‖

∫
Ω
〈f,G(ω)〉(F (ω)−K(ω))dµ(ω)‖

≤ λ‖
∫

Ω
〈f,G(ω)〉F (ω)dµ(ω)‖

+ γ

(∫
Ω
|〈f,G(ω)〉|2dµ(ω)

) 1
2

≤ (λ+ γ
√
BG)‖f‖.
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Thus ‖IH − TKT ∗G‖ < 1. �

Acknowledgements. The authors would like to thank the referee(s) for their useful
suggestions and comments.

REFERENCES

[1] S.T. Ali, J.P. Antoine and J.P. Gazeau, Continuous frames in Hilbert spaces. Ann.
Physics 222 (1993), 1–37.

[2] A.A. Arefijamaal, R.A. Kamyabi Gol, R. Raisi Tousi and N. Tavallaei, A new approach
to continuous Riesz bases. J. Sci. Iran 24 (2013), 63–69.

[3] P. Balazs, J.P. Antoine and A. Grybos, Weighted and controlled frames. Int. J. Wavelets
Multiresolut. Inf. Process. 8 (2010), 109–132.

[4] P. Balazs, D. Bayer and A. Rahimi, Multipliers for continuous frames in Hilbert spaces.
J. Phys. A 45 (2012), Article ID 244023, 20 p.

[5] P. Balazs, H.G. Feichtinger, M. Hampejs and G. Kracher, Double preconditioning for
Gabor frames. IEEE Trans. Signal Process. 54 (2006), 4597–4610.

[6] P.G. Cazassa and O. Christensen, Perturbation of operators and applications to frame
theory. J. Fourier Anal. Appl. 3 (1997), 543–557.

[7] P.G. Casazza and G. Kutyniok, Frames of subspaces. In: C. Heil et al. (Eds.), Wavelets,
Frames and Operator Theory. Contempt. Math. 345, Amer. Math. Soc. Providence,
RI., 87–113, 2004.

[8] O. Christensen, An Introduction to Frames and Riesz Bases. Appl. Numer. Harmon.
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[15] L. Gǎvruta, Frames for operators. Appl. Comput. Harmon. Anal. 32 (2012), 139–144.

[16] J.P. Gabardo and D. Han, Frame associated with measurable spaces. Adv. Comput.
Math. 18 (2003), 3, 127–147.

[17] M. Holschneider, Wavelet. An Analysis Tool. Oxford Math. Monogr., The Clarendon
Press, Oxford Univ. Press, New York, 1995.

[18] G. Kaiser, A Friendly Guide to Wavelets. Birkhäuser, Boston, MA, 1994.
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