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1. INTRODUCTION

The aim of this paper is to investigate the existence of infinitely many
weak solutions for the following elliptic Dirichlet problem

(1.1)

{
−div(a(x,∇u)) = λk(x)f(u), in Ω,
u = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω,
p > N , a : Ω̄ × RN → RN is a suitable continuous map of gradient type, and
λ is a positive real parameter. Further, f : R → R and k : Ω̄ → R+ are two
continuous functions.

The operator −div(a(x,∇u)) arises, for example, from the expression
of the p-Laplacian in curvilinear coordinates. We refer to the overview pa-
pers [11, 12, 18, 22, 23] for the investigation on Dirichlet problems involving
a general operator in divergence form. For example, De Nápoli and Mariani
in [11] studied the existence of solutions to equations of p-Laplacian type. They
proved the existence of at least one solution, and under further assumptions,
the existence of infinitely many solutions. In order to apply mountain pass re-
sults, they introduced a notion of uniformly convex functional that generalizes
the notion of uniformly convex norm. Duc and Vu in [12] studied the non-
uniform case. The authors in [23] established the existence and multiplicity
of weak solutions of a problem involving a uniformly convex elliptic operator
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in divergence form. They discussed the existence of one nontrivial solution
by the mountain pass lemma, when the nonlinearity has a (p− 1)-superlinear
growth at infinity, and two nontrivial solutions by minimization and moun-
tain pass when the nonlinear term has a (p − 1)-sublinear growth at infinity.
Molica Bisci and Repovš in [18], exploiting variational methods, investigated
the existence of three weak solutions for the problem (1.1). They analyzed
several special cases. They presented a concrete example of an application by
finding the existence of three nontrivial weak solutions for an uniformly elliptic
second-order problem on a bounded Euclidean domain.

In [9], Colasuonno, Pucci and Varga studied different and very general
classes of elliptic operators in divergence form looking at the existence of mul-
tiple weak solutions. Their contributions represent a nice improvement, in
several directions, of the results obtained by Kristály et al. in [16] in which a
uniform Dirichlet problem with parameter is investigated.

In the present paper, employing a smooth version of [5, Theorem 2.1]
which is a more precise version of Ricceri’s variational principle [20, Theo-
rem 2.5], which we recall in the next section, we investigate the existence of
infinitely many solutions for the problem (1.1). We shall present two types of
results as follows: the existence of either an unbounded sequence of solutions
(Theorem 3.1 and its consequences, i.e. Corollaries 3.3 and 3.6) and a sequence
of pairwise distinct non-zero solutions which converges to zero (Theorem 3.1
and Remark 3.7), depending on whether the nonlinear term has a suitable
oscillating behaviour, respectively, at infinity or at zero.

For a discussion about the existence of infinitely many solutions for diffe-
rential equations, using Ricceri’s Variational Principle [20], applying a smooth
version of Theorem 2.1 of [5] which is a more precise version of Ricceri’s Variati-
onal Principle [20] and employing a non-smooth version of Ricceri’s Variational
Principle [20], we refer the reader to the papers [1–3,6, 8, 10,13–15,17].

The outline of the paper is organized as follows: in the forthcoming
section, we shall recall our main tool (Theorem 2.1) and some basic notations
which we need in the proofs. Whereas, Section 3 is devoted to the existence of
infinitely many weak solutions for the system (1.1). To be precise, our main
result (Theorem 3.1), some of its possible consequences, the proofs and some
examples to illustrate the results are presented.

The following theorem is a special case of our main result.

Theorem 1.1. Assume that f : R → R is a non-negative continuous
function such that

lim inf
ξ→+∞

∫ ξ
0 f(t)dt

ξp
= 0 and lim sup

ξ→+∞

∫ ξ
0 f(t)dt

ξp
= +∞.
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Then, for each λ > 0, the problem{
−div(a(x,∇u)) = λk(x)f(u), in Ω,
u = 0, on ∂Ω,

admits a sequence of weak solutions which is unbounded in W 1,p
0 (Ω).

This article is organized as follows. In Section 2, we present some ne-
cessary preliminary facts that will be needed in the paper. In Section 3, we
establish our main existence results.

2. AUXILIARY RESULTS

Assume that Ω is a bounded domain in RN (N ≥ 2) with smooth boundary
∂Ω. Further, denote by X the space W 1,p

0 (Ω) endowed with the norm

‖u‖ :=

(∫
Ω
|∇u(x)|p dx

)1/p

,

the functional Iλ : X → R associated with (1.1) is introduced as following:

Iλ(u) := Φ(u)− λΨ(u),

for every u ∈ X, where

Φ(u) :=

∫
Ω
A(x,∇u(x))dx,

and

Ψ(u) :=

∫
Ω
k(x)F (u(x))dx,

for every u ∈ X, where k : Ω̄→ R+ is a positive and continuous function, and

F (s) =

∫ s

0
f(t)dt,

for every s ∈ R. By standard arguments, Φ is Gâteaux differentiable and
sequentially weakly lower semicontinuous and its Gâteaux derivative is the
functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) :=

∫
Ω
a(x,∇u(x))∇v(x)dx,

for every v ∈ X. Moreover, ψ is a Gâteaux differentiable sequentially weakly
upper continuous functional whose Gâteaux derivative is given by

Ψ′(u)(v) :=

∫
Ω
k(x)f(u(x))v(x)dx,
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for every v ∈ X. Fixing the real parameter λ, a function u : Ω → R is said to
be a weak solution of (1.1) if u ∈ X and∫

Ω
a(x,∇u(x))∇v(x)dx− λ

∫
Ω
k(x)f(u(x))v(x)dx = 0,

for every v ∈ X. Therefore, the critical points of Iλ are exactly the weak
solutions of (1.1).Our main tool is the celebrated Ricceri’s Variational Principle
[20, Theorem 2.5] that we now recall as given by Bonanno and Molica Bisci
in [5]:

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R
be two Gâteaux differentiable functionals such that Φ is sequentially weakly
lower semicontinuous, strongly continuous and coercive, and Ψ is sequentially
weakly upper semicontinuous. For every r > infX Φ, put

ϕ(r) := inf
Φ(u)<r

(
supΦ(v)<r Ψ(v)

)
−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:

(a) For every r > infX Φ and every λ ∈]0, 1/ϕ(r)[, the restriction of the
functional

Iλ := Φ− λΨ

to Φ−1(]−∞, r[) admits a global minimum, which is a critical point (local
minimum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈]0, 1/γ[, the following alternative holds:
either

(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such
that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈]0, 1/δ[, the following alternative holds:
either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local
minima) of Iλ which weakly converges to a global minimum of Φ,
with

lim
n→+∞

Φ(un) = inf
u∈X

Φ(u).
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Put

k := sup

{
maxx∈Ω|u(x)|

‖u‖
: u ∈W 1,p

0 (Ω), u 6= 0

}
.

Since p > N , one has k < ∞. For our goal it is enough to know an
explicit upper bound for the constant k. In this connection (see [21, formula
(6b)] put

m :=
N
− 1
p

√
π

[
Γ

(
1 +

N

2

)] 1
N
(
p− 1

p−N

)1− 1
p

(meas(Ω))
1
N
− 1
p ,

one has k < m. Hence

(2.1) ‖u‖∞ = max
x∈Ω̄
|u(x)| ≤ m‖u‖,

for every u ∈ X. Here Γ is the Gamma function defined by

Γ(t) :=

∫ +∞

0
zt−1e−zdz (∀t > 0) ,

and “meas(Ω)” denotes the usual Lebesgue measure of Ω. Moreover, let

D := sup
x∈Ω

dist(x, ∂Ω).

Simple calculations show that there is x0 ∈ Ω such that B(x0, D) ⊆ Ω,
where B(x0, D) is the open ball radius D centered at the point x0. We also
denote by

ωs := sN
π
N
2

Γ

(
1 + N

2

)
the measure of the N -dimensional ball of radius s > 0. At this point, for
dn > 0, let wn ∈ X be the following function

(2.2) wn(x) :=


0, x ∈ Ω \B(x0, D),

dn, x ∈ B(x0,
D
2 ),

2dn
D

(D − |x− x0|), x ∈ B(x0, D) \B(x0,
D
2 ),

that will be useful in the sequel in the proof of our theorems. One has that

‖wn‖p :=

(∫
Ω
|∇wn(x)|p dx

)
=

2pdpnωD
Dp

(
1− 1

2N

)
.

Indeed,∫
Ω
|∇wn(x)|p dx = dpn

∫
B(x0,D)\B(x0,

D
2

)

2p

Dp
dx
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=
2pdpn
Dp

(meas(B(x0, D))−meas(B(x0,
D

2
)))

=
2pdpnωD
Dp

(
1− 1

2N

)
,

where, from now on, “meas(B(x0, s))” for s > 0 stands for the Lebesgue mea-
sure of the open ball B(x0, s).

3. MAIN RESULTS

In this section, we formulate our main results. Let p ≥ 1 and let Ω ⊆ RN
be a bounded Euclidean domain, where N ≥ 2. Further, let A : Ω̄× RN → R
and let A = A(x, ξ) be a continuous function in Ω̄ × RN , with continuous
gradient a(x, ξ) := ∇ξA(x, ξ) : Ω̄ × RN → RN , and assume that the following
conditions hold:
(α1) A(x, 0) = 0 for all x ∈ Ω;
(α2) A satisfies Λ1|ξ|p ≤ A(x, ξ) ≤ Λ2|ξ|p for all x ∈ Ω̄, ξ ∈ RN , where Λ1 and
Λ2 are positive constants.
(α3) a satisfies the growth condition |a(x, ξ)| ≤ c(1 + |ξ|p−1) for all x ∈ Ω,
ξ ∈ RN , c > 0;
(α4) A is p-uniformly convex, that is

A(x,
ξ + η

2
) ≤ 1

2
A(x, ξ) +

1

2
A(x, η)− k|ξ − η|p,

for every x ∈ Ω̄, ξ, η ∈ RN and some k > 0;

Put

B∞ := lim sup
ξ→+∞

F (ξ)

ξp
,

Our main result is the following theorem.

Theorem 3.1. Assume that there exist two sequences {dn} and {bn} in
]0,+∞[, with lim

n→+∞
bn = +∞, such that

(i0) F (s) ≥ 0 for every s ∈ R+;

(i1) dpn <
Λ1D

p2N−p

Λ2mpωD(2N − 1)
bpn;

(i2) A∞ := lim
n→+∞

meas(Ω)

(
max
|ξ|≤bn

F (ξ)

)
max
x∈Ω̄

k(x)−ωD/2F (dn) min
x∈Ω̄

k(x)

2N (Dbn)pΛ1−(2mdn)pΛ2ωD(2N−1)

<
min
x∈Ω̄

k(x)

mpΛ22N+p(2N−1)
B∞.
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Then, for every

λ ∈ Λ :=

 Λ22p(2N − 1)

Dp

(
min
x∈Ω̄

k(x)

)
B∞

,
1

2N (mD)pA∞

 ,
problem (1.1) admits a sequence of weak solutions which is unbounded in X.

Proof. Fix λ ∈ Λ. Our aim is to apply Theorem 2.1 part (b) with
X := W 1,p

0 (Ω) and where Φ and Ψ are the functionals introduced in Section 2.
Clearly, Φ is coercive since, by condition (α2), it follows that

Φ(u) ≥ Λ1‖u‖p → +∞,
when ‖u‖ → ∞. As seen before, the functionals Φ and Ψ satisfy the regularity
assumptions requested in Theorem 2.1. Now, we look on the existence of
critical points of the functional Iλ := Φ− λΨ in X. Therefore, our conclusion
follows provided that γ < ∞ as well as Iλ turns out to be unbounded from
below. To this end, set

rn :=
Λ1bn

p

mp
,

for all n ∈ N. Let u ∈ X be such that Φ(u) < rn, that is∫
Ω
A(x,∇u(x))dx < rn.

Hence the above relation together with condition (α2) implies that

‖u‖ <
(
rn
Λ1

) 1
p

.

Owing to (2.1) we have ‖u‖∞ ≤ bn for all n ∈ N. Then, for all n ∈ N, we
obtain

ϕ(rn) ≤ inf
Φ(u)<rn

meas(Ω)

(
max
|ξ|≤bn

F (ξ)

)
max
x∈Ω̄

k(x)−
∫

Ω k(x)F (u(x))dx

Λ1bn
p

mp − Λ2‖u‖p
.

Next, let wn be the function defined in (2.2). Clearly, wn ∈ X and since
(α2) holds, we have

Φ(wn) =

∫
Ω
A(x,∇wn(x))dx ≤ Λ22pdpnωD(2N − 1)

2NDp
.

Hence, by (i1), we have Φ(wn) < rn. Moreover, from (i0) and taking into
account that the map k is positive and continuous in Ω̄, we have∫

Ω
k(x)F (wn(x))dx ≥ ωD/2F (dn) min

x∈Ω̄
k(x).
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Therefore, one has

ϕ(rn) ≤ 2N (mD)p
meas(Ω)

(
max
|ξ|≤bn

F (ξ)

)
max
x∈Ω̄

k(x)− ωD/2F (dn) min
x∈Ω̄

k(x)

2N (Dbn)pΛ1 − (2mdn)pΛ2ωD(2N − 1)
.

Hence, bearing in mind assumption (i2), we can write

(3.1) γ ≤ lim inf
n→+∞

ϕ(rn) ≤ 2N (mD)pA∞ < +∞,

Assumption (i2) together with (3.1), implies

Λ ⊆]0,
1

γ
[.

Fix λ ∈ Λ. We conclude that condition (b) of Theorem 2.1 can be applied,
and either Iλ has a global minimum or there exists a sequence {un} ⊂ X of
weak solutions of the system (1.1) such that limn→∞‖un‖ = +∞. The other
step is to show that the functional Iλ has no global minimum. For fixed λ, we
claim that the functional Φ−λΨ is unbounded from below, since condition (i2)
yields A∞ < +∞. Now, we claim that the functional Iλ is unbounded from
below. Since

1

λ
<

Dp

(
min
x∈Ω̄

k(x)

)
B∞

Λ22p(2N − 1)
,

we can consider a real sequence {cn} and a positive constant τ such that
{cn} → ∞ as n→∞ and

1

λ
< τ <

Dp

(
min
x∈Ω̄

k(x)

)(
lim supn→+∞ F (cn)

)
Λ22p(2N − 1)cnp

,

First, assume that B∞ = +∞. Accordingly, fix M such that

M >
Λ22p(2N − 1)ωD

2NDpωD/2

(
min
x∈Ω̄

k(x)

)
λ

and let {cn} be a real sequence such that limn→+∞ cn = +∞, and

F (cn) > Mcpn (∀n ∈ N).

Further, for each n ≥ 1, define sn ∈ X given by

(3.2) sn(x) :=


0, x ∈ Ω \B(x0, D),

cn, x ∈ B(x0,
D
2 ),

2cn
D

(D − |x− x0|), x ∈ B(x0, D) \B(x0,
D
2 ).
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By using condition (i0), we infer

Ψ(sn) =

∫
Ω
k(x)F (sn(x))dx ≥

∫
B(x0,

D
2

)
k(x)F (cn)dx,

for every n ∈ N. Then, we have

Iλ(sn) ≤ Φ(sn)− λ
∫
B(x0,

D
2

)
k(x)F (cn)dx.

Consequently, one has

Iλ(sn) < Λ2‖sn‖p − λMωD/2 min
x∈Ω̄

k(x)cpn

=

(
Λ22pωD
Dp

(1− 1

2N
)− λMωD/2 min

x∈Ω̄
k(x)

)
cpn

for every n ∈ N. Then, it follows that

lim
n→+∞

Iλ(sn) = −∞.

Next, assume that B∞ < +∞. Since λ > Λ22p(2N−1)

Dp
(

min
x∈Ω̄

k(x)

)
B∞

, we can fix ε > 0

such that ε < B∞ − Λ22p(2N−1)

Dp
(

min
x∈Ω̄

k(x)

)
λ
. Therefore, also calling {cn} a sequence of

positive numbers such that limn→+∞ cn = +∞ and

ωD
2N

(B∞ − ε)cpn < F (cn)

(
ωD/2 min

x∈Ω̄
k(x)

)
<
ωD
2N

(B∞ + ε)cpn (∀n ∈ N),

arguing as before and by choosing {sn} in X as above, one has

Iλ(sn) <

(
Λ22pωD(2N − 1)

2NDp
− λωD

2N
(B∞ − ε)

)
cpn.

So, limn→+∞ Iλ(sn) = −∞. Hence, our claim holds true; it follows that
Iλ has no global minimum. Therefore, Theorem 2.1 assures that there is a
sequence {un} ⊂ X of critical points of Iλ such that limn→∞‖un‖ = +∞, and
we have the conclusion. Therefore, owing to Theorem 2.1(b), the functional
Iλ admits an unbounded sequence {un} ⊂ X of critical points. Then, problem
(1.1) admits a sequence of weak solutions which is unbounded in X. �

Now, put

B0 := lim sup
ξ→0+

F (ξ)

ξp
.

Arguing as in the proof of Theorem 3.1 and applying part(c) of Theo-
rem 2.1, we get the following theorem.
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Theorem 3.2. Assume that (i0) holds and there exist two sequences {cn}
and {an} in ]0,+∞[, with lim

n→+∞
an = 0, such that

(i3) cpn <
Λ1D

p2N−p

Λ2mpωD(2N − 1)
apn;

(i4) A0 := lim
n→+∞

meas(Ω)

(
max
|ξ|≤an

F (ξ)

)
max
x∈Ω̄

k(x)−ωD/2F (cn) min
x∈Ω̄

k(x)

2N (Dan)pΛ1−(2mcn)pΛ2ωD(2N−1)

<
min
x∈Ω̄

k(x)

mpΛ22N+p(2N−1)
B0.

Then, for every

λ ∈ Λ′ :=

 Λ22p(2N − 1)

Dp

(
min
x∈Ω̄

k(x)

)
B0

,
1

2N (mD)pA0

 ,
problem (1.1) admits a sequence of non-zero solutions which converges to zero.

Proof. We take X,Φ and Ψ as in the proof of Theorem 3.1. In a similar
way, we prove that δ <∞. Put

rn :=
Λ1bn

p

mp
,

for all n ∈ N. We claim that the functional Iλ does not have a local minimum
at zero. Now, we fixed λ such that

1

λ
<

Dp

(
min
x∈Ω̄

k(x)

)
B0

Λ22p(2N − 1)
,

we can consider a real sequence {cn} and a positive constant τ such that
{cn} → 0 as n→∞ and

1

λ
< τ <

Dp

(
min
x∈Ω̄

k(x)

)(
lim supn→+∞ F (cn)

)
Λ22p(2N − 1)cnp

,

If we take sn as in the proof of Theorem 3.1, of course the sequence {sn}
strongly converges to 0 in X and Iλ(sn) < 0 for each n ∈ N. Since Iλ(0) = 0,
that means that 0 is not a local minimum of Iλ. The part (c) of Theorem 2.1
ensures that there exists a sequence {un} in X of critical points of Iλ such that
limn→∞‖un‖ = 0, and the proof is complete. �
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Now, we point out some consequences of Theorem 3.1. First, by setting

A∞ := lim inf
ξ→+∞

max
|t|≤ξ

F (t)

ξp
,

we get the following result.

Corollary 3.3. Assume that (i0) holds and

(i5) A∞ <

Λ1D
p min
x∈Ω̄

k(x)

meas(Ω)

(
max
x∈Ω̄

k(x)

)
mpΛ22p(2N − 1)

B∞.

Then, for each

λ ∈

 Λ22p(2N − 1)

Dp

(
min
x∈Ω̄

k(x)

)
B∞

,
Λ1

meas(Ω)

(
max
x∈Ω̄

k(x)

)
mpA∞

 ,
problem (1.1) admits an unbounded sequence of weak solutions in X.

Proof. Let {bn} be a sequence of positive numbers which goes to infinity
such that

lim
n→+∞

max
|ξ|≤bn

F (ξ)

bpn
= A∞.

Taking dn = 0 for every n ∈ N, by Theorem 3.1 the conclusion fol-
lows. �

A special case of Corollary 3.3 is the following.

Corollary 3.4. Assume that (i0) holds and

(i6) A∞ < Λ1

meas(Ω)

(
max
x∈Ω̄

k(x)

)
mp

and B∞ > Λ22p(2N−1)
Dp min

x∈Ω̄
k(x) .

Then, the following problem{
−div(a(x,∇u)) = k(x)f(u), in Ω,
u = 0, on ∂Ω,

admits a sequence of weak solutions which is unbounded in X.

Remark 3.5. When f is a nonnegative function, assumption (i0) holds
and condition (i5) becomes

(i′5) A′∞ := lim inf
ξ→+∞

F (ξ)

ξp
<

Λ1D
p min
x∈Ω̄

k(x)

meas(Ω)

(
max
x∈Ω̄

k(x)

)
mpΛ22p(2N − 1)

B∞.
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In this case, (i′5) ensures that for each

λ ∈

 Λ22p(2N − 1)

Dp

(
min
x∈Ω̄

k(x)

)
B∞

,
Λ1

meas(Ω)

(
max
x∈Ω̄

k(x)

)
mpA′∞

 ,
problem (1.1) admits an unbounded sequence of weak solutions in X.

Proof. Obviously, from (i′5) we obtain (i5). Taking dn = 0 for every n ∈ N,
by Theorem 3.1 the conclusion follows. �

The next result is a consequence of Theorem 3.1 and guarantees the
existence of infinitely many weak solutions to (1.1) for each λ which lies in
a precise half-line.

Corollary 3.6. Assume that (i0) holds and let there exist two sequences
{dn} and {bn} in ]0,+∞[, with lim

n→+∞
bn = +∞, such that (i1) and

(i5) meas(Ω)

(
max
|ξ|≤bn

F (ξ)

)
max
x∈Ω̄

k(x) = ωD/2F (dn) min
x∈Ω̄

k(x) for each n ∈ N,

are satisfied. If B∞ > 0, Then for each λ > Λ22p(2N−1)

Dp
(

min
x∈Ω̄

k(x)

)
B∞

, problem (1.1)

admits an unbounded sequence of solutions.

Proof. From (i5) we obtain A∞ = 0. Hence, since B∞ > 0, (i2) of
Theorem 3.1 holds and the proof is complete. �

Remark 3.7. From Theorem 3.2 we obtain the same consequences of The-
orem 3.1. Namely, substituting ξ → +∞ with ξ → 0+, statements such as
Corollaries 3.3, 3.4 and 3.6 can be established.

Example 3.8. Set

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1

4(n+ 1)!
,

for every n ∈ N. Let {gn} be a sequence of non-negative functions such that

(i) gn ∈ C0([an, bn]) such that g(an) = g(bn) = 0 for every n ∈ N;

(ii)
∫ bn
an
gn(t)dt 6= 0 for every n ∈ N.

For instance, we can choose the sequence {gn} as follows:

gn(ξ) :=

√√√√ 1

16(n+ 1)!2
−

(
ξ − n!(n+ 2)

2

)2
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for all n ∈ N. Define the function f : R→ R as follows:

f(ξ) :=

 [(n+ 1)!p − n!p]
gn(ξ)∫ bn

an
gn(t)dt

, if ξ ∈
⋃+∞
n=1[an, bn],

0, otherwise.

We have ∫ (n+1)!

n!
f(t)dt =

∫ bn

an

f(t)dt = (n+ 1)!p − n!p

and

F (an) = n!p − 1, F (bn) = (n+ 1)!p − 1

for every n ∈ N. Hence,

lim
n→+∞

F (bn)

bpn
= 2p, lim

n→+∞

F (an)

apn
= 0.

Therefore, we can prove that

lim inf
ξ→+∞

F (ξ)

ξp
= 0, lim sup

ξ→+∞

F (ξ)

ξp
= 2p.

Then,

0 = lim inf
ξ→+∞

F (ξ)

ξp
<

min
x∈Ω̄

k(x)

mpΛ22N+p(2N − 1)
lim sup
ξ→+∞

F (ξ)

ξp
.

By Theorem 3.1, for each

λ >
Λ2(2N − 1)

Dp min
x∈Ω̄

k(x)
,

the problem {
−div(a(x,∇u)) = λk(x)f(u), in Ω,
u = 0, on ∂Ω,

possesses a sequence of weak solutions which is unbounded in X.

Following Omari and Zanolin in [19], we give a concrete example of po-
sitive continuous function f : R → R such that its potential F satisfies our
growth conditions at zero. Precisely, let {sn}, {tn} and {δn} be real sequences
defined by

sn := 2−
n!
2 , tn := 2−2n!, δn := 2−(n!)2

.

Observe that, definitively, one has

sn+1 < tn < sn − δn.
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Example 3.9. With the above notations, let f : R → R be a continuous
nondecreasing function such that f(t) = 0 in ]−∞, 0], f(t) > 0 for every t > 0
and

f(t) := p−n!, ∀t ∈ [sn+1, sn − δn],

for n sufficiently large. Define F : R→ R given by F (ξ) =
∫ ξ

0 f(t)dt, for every
ξ ∈ R. Then

F (sn)

snp
≤ q(sn+1)sn + q(sn)δn

snp
→ 0,

and
F (tn)

tnp
≥ q(sn+1)tn − sn+1

tnp
→ +∞.

Hence

lim inf
ξ→0+

max
|t|≤ξ

F (t)

ξp
= 0, lim sup

ξ→0+

F (ξ)

ξp
= +∞.

Thus, the following Dirichlet problem{
−div(a(x,∇u)) = λk(x)f(u), in Ω,
u = 0, on ∂Ω,

for every λ > 0, admits a sequence {un} of pairwise distinct weak solutions
such that

lim
n→∞

‖un‖ = 0.
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