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This paper investigates two questions on p-extensions given in [9]. Precisely, we
investigate the question of whether p-extensions and associate p-extensions coi-
ncide. We note by studying some particular cases that they tend to be the same
notion as in the classical case of integral domains. The second question concerns
the transfer of the unique factorization property for domains under associate
p-extensions. We give a partial positive answer to this question. Moreover, we
investigate the transfer of other factorization properties under p-extensions.
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1. INTRODUCTION

Throughout this paper all rings are commutative with identity; in parti-
cular, R and S denote such rings, and all modules are unitary. The set of all
units of R will be denoted by U(R).

Recall, from [8], that a ring extension R ↪→ S is said to be a p-extension,
if the principal ideals of S are generated by elements of R; that is, for every
s ∈ S, there is an r ∈ R such that sS = rS. Also recall that a ring extension
R ↪→ S is said to be an associate p-extension if, for every s ∈ S, there is an
r ∈ R and a unit u ∈ S such that r = su.

Clearly, a ring extension R ↪→ S is a p-extension if and only if, for each
s ∈ S, there are an r ∈ R and t1, t2 ∈ S such that r = st1 and s = rt2. Recall
that two nonzeros, nonunits e, f ∈ R are said to be associates (resp., strong
associates), if Re = Rf (resp., e = uf for some u ∈ U(R)) (see [4, Defini-
tion 2.1]). Thus, a ring extension R ↪→ S is a p-extension (resp., an associate
p-extension) if and only if, every element of S is an associate (resp., a strong
associate) to an element of R. Also, clearly, an associate p-extension is a
p-extension, while if S is an integral domain, a ring extension R ↪→ S is an
associate p-extension if and only if it is a p-extension; and, in this case, they are
already known by the well-centered concept (see [15]). The term well-centered
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is also used in [13] for rings with zero-divisors to mean an associate p-extension.
In [8], the authors asked whether there is a p-extension which is not an associate
p-extension. In the second section of this paper, we deal with this question.
We show that in fact it seems like the two notions coincide rather than they
are different. This is confirmed by analyzing some particular cases. We end
the section with a study of p-extensions and associate p-extensions between
n-trivial ring extensions which are recently introduced in [3] (see Theorem 2.6
and Corollaries 2.7, 2.8 and 2.10). It gives both new results and an extension
of some results established in [8].

In Section 3, we investigate the transfer of some factorization properties
under associate p-extensions. Namely, Theorem 3.8 gives a partial answer to
the question posed at the end of the paper [8] concerning the transfer of the
unique factorization property for domains under associate p-extensions.

2. p-EXTENSIONS AND ASSOCIATE p-EXTENSIONS

In this section, we investigate the question of whether p-extensions and
associate p-extensions coincide. We show, following the study of some situati-
ons, that indeed they tend to be the same notions.

We start with extensions of Présimplifiable rings. Recall that a ring S
is said to be présimplifiable if, for every a and b in S, ab = a implies a = 0
or b ∈ U(S). Présimplifiable rings were introduced and studied by Bouvier
in a series of papers (see, for instance, [10] and [11]). Integral domains and
quasi-local rings are examples of présimplifiable rings.

Proposition 2.1. Let f : R ↪→ S be a ring extension. If S is présimpli-
fiable, then f is a p-extension if and only if it is an associate p-extension.

Proof. Suppose that f : R ↪→ S is a p-extension, and consider an s ∈ S.
The case s = 0 is trivial. Assume that s 6= 0. Then, there are an r ∈ R and
two elements t1, t2 ∈ S such that st1 = r and rt2 = s. Then, s = t1t2s and so
t1t2 ∈ U(S) (since S is présimplifiable), as desired. �

Corollary 2.2. Let f : R ↪→ S be a ring extension. If S is quasi-local,
then f is a p-extension if and only if it is an associate p-extension.

It is clear that when f : R ↪→ S is a ring extension and S is an integral
domain, then R is also an integral domain, and, in this case, f being a p-
extension or an associate p-extension is the same. In the following result, we
show that if f : R ↪→ S is a p-extension and R is an integral domain, then
also S is an integral domain, and thus f is an associate p-extension. In fact,
we establish this result in a more general context. Recall from [8] that an
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extension f : R ↪→ S is said to be rigid if, given an s ∈ S, there exists an r ∈ R
such that AnnS(s) = AnnS(r). Clearly, every p-extension is rigid (see [8]).

Proposition 2.3. Let R ↪→ S be a rigid extension. If R is an integral
domain, then S is an integral domain.

Proof. Let s1, s2 ∈ S such that s1s2 = 0. By hypothesis, there are r1, r2 ∈
R such that AnnS(s1) = AnnS(r1) and AnnS(s2) = AnnS(r2). Then, s1 ∈
AnnS(s2) = AnnS(r2), so r2s1 = 0. Hence, r2 ∈ AnnS(s1) = AnnS(r1), which
implies that r1r2 = 0. Then, r1 = 0 or r2 = 0 (since R is an integral domain).
Then, s1 = 0 or s2 = 0. Therefore, S is an integral domain. �

As a simple consequence, we get the following result.

Corollary 2.4. Let f : R ↪→ S be a ring extension. If R is an integral
domain, then f is a p-extension if and only if it is an associate p-extension.

Recall that a subset I of R is said to be absorbing if, R\I 6= φ and for
every x ∈ I and nonzero r ∈ R\I, xr ∈ I (see [9]). From [9, Theorem 3.4], if,
for an extension R ↪→ S, S\R is an absorbing subset of S, then R is an integral
domain. Then we get the following result.

Corollary 2.5. Suppose that f : R ↪→ S is a p-extension. If S\R is an
absorbing subset of S, then f is an associate p-extension.

The results above show that if one would like to look for the existence of an
example of a p-extension which is not an associate p-extension, it is necessary
to consider only rings with zero-divisors. As an important class of rings with
zero-divisors, the trivial extension of rings (also called idealization) has been
used by many authors and in various contexts in order to produce examples of
rings with zero-divisors satisfying preassigned conditions (see, for instance, [6]
and [14]). Here we investigate p-extensions in the following generalization of
the classical trivial extension which is recently introduced in [3] as follows1:
Let M = (Mi)

n
i=1 be a family of R-modules and {ϕi,j} i+j≤n

1≤i,j≤n−1

be a family of

bilinear maps such that each ϕi,j is written multiplicatively:

ϕi,j : Mi ×Mj −→ Mi+j

(mi,mj) 7−→ ϕi,j(mi,mj) := mimj

such that the following two assertions hold:

• (mimj)mk = mi(mjmk) for mi ∈ Mi, mj ∈ Mj and mk ∈ Mk with
1 ≤ i, j, k ≤ n− 2 and i+ j + k ≤ n, and

1 Note that a particular associate p-extension was introduced in [13, Definition 3.0]. The
authors used the trivial extension to investigate questions raised by Heinzer and Roitman
in [15].
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• mimj = mjmi for every mi ∈Mi and mj ∈Mj with 1 ≤ i, j ≤ n− 1 and
i+ j ≤ n.

The n-trivial extension of R by M is the ring, denoted by RnnM1n · · ·n
Mn or simply RnnM , whose underlying additive group is R⊕M1⊕ · · · ⊕Mn

with multiplication given by

(m0, ...,mn)(m′0, ...,m
′
n) = (

∑
j+k=i

mjm
′
k)

for all (mi), (m′i) ∈ Rnn M .

As done in [13, Example 3.3], if we consider inclusions of rings A ⊆ B $ C.
Then, we can show that A n B ⊆ B n C is not an associate p-extension. For
this reason, we restrict our attention to extensions of trivial extensions with
the same family of modules. Namely, for the remainder of this section we use
the following notations:

Let f : R ↪→ S be a ring extension. Let M = (Mi)
n
i=1 be a family of

S-modules and {ϕi,j} i+j≤n
1≤i,j≤n−1

be a family of bilinear maps. Then, naturally

we get the following ring extension f̃ : RnnM ↪→ S nnM such that f̃(mi) :=
(f(m0),m1, ...,mn).

Theorem 2.6. The following assertions hold:

1. The ring extension f̃ is an associate p-extension if and only if f is an
associate p-extension.

2. If f̃ is a p-extension, then f is also a p-extension.

Furthermore, if S is a présimplifiable ring, then f̃ is a p-extension if and
only if f̃ is an associate p-extension.

Proof. 1) Suppose that f̃ is an associate p-extension. Let 0 6= s ∈ S.
By hypothesis, there are (ei) ∈ R nn M and (xi) ∈ U(S nn M) such that
(s, 0, ..., 0)(xi) = (ei). So sx0 = e0 ∈ R. Therefore, f is an associate p-
extension (since U(S nn M) = U(S) nn M by [3, Proposition 4.9 (2)]).

Conversely, suppose that f is an associate p-extension. Let (ei) ∈ SnnM .
We may suppose that (ei) 6= 0 and e0 6= 0. Then, there are an u ∈ U(S) and
an r ∈ R such that e0u = r. We have (ei)(u, 0, ..., 0) ∈ R nn M . Therefore, f̃
is an associate p-extension.

2) Let 0 6= s ∈ S. We have (s, 0, ..., 0) ∈ S nn M , so there are (ei) ∈
R nn M and (xi), (yi) ∈ S nn M such that (s, 0, ..., 0) = (ei)(xi) and (ei) =
(s, 0, ..., 0)(yi). Then, s = e0x0 and e0 = sy0. Therefore, sS = e0S, as desired.

Suppose that S is présimplifiable and f̃ is a p-extension. Then, by (2),
f is a p-extension. Then, by Proposition 2.1, f is an associate p-extension.
Hence, from (1), f̃ is an associate p-extension. �
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As consequences we get the following results.

Corollary 2.7. Suppose that S is a présimplifiable ring. Then the fol-
lowing assertions are equivalent:

1. f : R ↪→ S is a p-extension.

2. f : R ↪→ S is an associate p-extension.

3. f̃ : Rnn M ↪→ S nn M is an associate p-extension.

4. f̃ : Rnn M ↪→ S nn M is a p-extension.

Corollary 2.8. If f : R ↪→ S is an associate p-extension, then f̃ is a
p-extension if and only if f̃ is an associate p-extension.

We end this section with the case where S is a field.

Lemma 2.9. If S is a field, then R ↪→ S is an associate p-extension.

Proof. Obvious. �

Corollary 2.10. If S is a field, then RnnM ↪→ SnnM is an associate
p-extension.

Proof. Use Lemma 2.9 and Theorem 2.6. �

3. TRANSFER RESULTS OF SOME FACTORIZATION PROPERTIES

Let S be a commutative ring. A nonunit a ∈ S is said to be irreducible
or an atom if a = bc implies a and b are associates or a and c are associates.
Recall that a ring S is called atomic if every (nonzero) nonunit of S is a
product of irreducible elements (atoms) of S. Also recall that an integral
domain S is said to be a unique factorization domain (UFD) if S is atomic and
if 0 6= r1 · · · rm = s1 · · · sn are two factorizations into atoms, then n = m and,
after a suitable reordering, ri and si are associates for each i = 1, ..., n.

In [8, Unresolved Questions (2)] the authors asked: Is it the case that if
S is a p-extension of R and R is a UFD, then so is S?

At the end of this section, we will show that the desired transfer holds
under the condition that S\R is an absorbing subset of S (see Theorem 3.8).
Before that, we present some results that study the transfer results for va-
rious kind of factorization properties. For a background on factorization in
commutative rings see, for instance, [1, 4] and [5].

We start with the transfer result of the atomicity.

Lemma 3.1. Suppose that R ↪→ S is a p-extension, and S\R is an absor-
bing subset of S. Then every irreducible element in R is irreducible in S.
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Proof. Let r ∈ R be a nonzero nonunit. Suppose that r is irreducible in R
but it is not irreducible in S. Let then r = s1s2 for some s1, s2 ∈ S\U(S). Since
R ↪→ S is an associate p-extension (by Corollary 2.5), there are u1, u2 ∈ U(S)
and r1, r2 ∈ R such that s1u1 = r1 and s2u2 = r2. Then, r = u−11 u−12 r1r2. We
have u−11 u−12 ∈ R. Otherwise u−11 u−12 ∈ S\R. Then, since S\R is an absorbing
subset of S and r1r2 ∈ R, u−11 u−12 r1r2 ∈ S\R; that is r ∈ S\R which is absurd.
Hence u−11 u−12 ∈ R. Since r is irreducible in R, either u−11 u−12 r1 ∈ U(R) or
r2 ∈ U(R). If r2 ∈ U(R), then r2 ∈ U(S); absurd since r is not irreducible in
S. Then, u−11 u−12 r1 ∈ U(R) and so r1 ∈ U(R). But this implies that r1 ∈ U(S)
which is also absurd. Therefore, r is irreducible in S. �

Theorem 3.2. Suppose that R ↪→ S is a p-extension, and S\R is an
absorbing subset of S. If R is atomic, then S is atomic.

Proof. Let s ∈ S. Since R ↪→ S is an associate p-extension, there are
u ∈ U(S) and r ∈ R such that su = r (by Corollary 2.5), so s = u−1r. Since
R is atomic, r is a product of irreducible elements of R, so, by Lemma 3.1, r
is a product of irreducible elements of S. Then, s is a product of irreducible
elements of S. This shows that S is atomic. �

We say that R satisfies the ascending chain condition on principal ideals
(ACCP) if there does not exist an infinite strictly ascending chain of principal
ideals of R. It is well-known that this property guarantees that the ring is
atomic but the converse does not hold (see [12]). In [12, Proposition 2.1], it
was observed that if R ⊆ S is an extension of integral domains with U(S)∩R =
U(R), then R satisfies ACCP if S satisfies ACCP. Next result studies the ascent
of ACCP property.

In the proof of the following result we use the fact that, for an extension
R ↪→ S, if S\R is an absorbing subset of S, then rS ∩R = rR for every r ∈ R
(see [9, Theorem 3.4]).

Proposition 3.3. Suppose that R ↪→ S is a p-extension, and S\R is an
absorbing subset of S. If R satisfies ACCP, then S satisfies ACCP.

Proof. Suppose that R satisfies ACCP and S does not. Consider an
ascending chain of principal ideals of S:

s1S ⊆ s2S ⊆ · · · ⊆ smS ⊆ · · ·

Then, by hypothesis, there is an ri ∈ R, such that siS = riS for every
i ∈ N. Then

r1S ∩R ⊆ r2S ∩R ⊆ · · · ⊆ rmS ∩R ⊆ · · ·
Since S\R is an absorbing subset of S, we get using [9, Theorem 3.4],

r1R ⊆ r2R ⊆ · · · ⊆ rmR ⊆ · · ·
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Since R satisfies ACCP, there is an n ∈ N such that rnR = riR for every

i ≥ n. Let us prove that snS = siS for every i ≥ n. Let i ≥ n. We prove

that siS ⊆ snS. We have si ∈ siS = riS, so si = rix for some x ∈ S. But

ri ∈ riR = rnR, so ri = rnr
′ for some r′ ∈ R, then si = rnr

′x = rn(r′x) ∈
rnS = snS, then siS ⊆ snS for every i ≥ n. �

Recall that a ring R is said to be a bounded factorial ring (BFR) if, for

each nonzero nonunit x ∈ R, there is a natural number N(x) so that for any

factorization x = x1 · · ·xn, where each xi is irreducible, we have n ≤ N(x).

For domains we say BFD instead of BFR. In [2, p. 16], it is proved that if

U(S)∩R = U(R), then R is a BFD whenever S is a BFD. Next result studies

the ascent of this property.

Theorem 3.4. Suppose that R ↪→ S is a p-extension with S\R is an

absorbing subset of S. Then if R is a BFD, then S is also a BFD.

Proof. Since S\R is an absorbing subset of S, R ↪→ S is an associate

p-extension (by Corollary 2.5). Let s ∈ S be a nonzero nonunit. Suppose that

s has a factorization s = s1 · · · sn where n ∈ N and si is a nonunit. Since R ↪→ S

is an associate p-extension, there are ui ∈ U(S) and ri ∈ R, for i = 1, ..., n,

such that siui = ri, so s = ur1 · · · rn, where u = u−11 · · ·u−1n , so n ≤ N(r)

(since R is a BFD) where r = r1 · · · rn . Hence, S is a BFD. �

Recall that an integral domain R is said to be a finite factorization domain

(FFD) if each nonzero nonunit of R has only a finite number of nonassociate

divisors and hence, only a finite number of factorizations up to order and

associates.

Unlike the previous factorization properties, it was observed in [7, p. 8]

that for an extension R ⊆ S of integral domain, we may have U(S)∩R = U(R)

and S is an FFD but R is not an FFD. However, in [2, p. 17], it was mentioned

if S is an FFD and U(S) ∩ qf(R) = U(R), where qf(R) is the quotient field of

R, then R is an FFD.

Theorem 3.5. Suppose that R ↪→ S is a p-extension with S\R is an

absorbing subset of S. If R is an FFD, then S is also an FFD.

Proof. Let 0 6= s ∈ S be a nonunit. Since S\R is an absorbing subset of

S and by Corollary 2.5, R ↪→ S is an associate p-extension, so that there are

u ∈ U(S) and r ∈ R such that s = u−1r. Since R is an FFD, r has only a

finite number of factorizations up to order and associates, hence s has only a

finite number of factorizations up to order and associates, then S is FFD, as

desired. �
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Now we study the transfer result of the UFD property. We need the
following lemmas.

Lemma 3.6. Assume that S\R is an absorbing subset of S, then U(S) ∩
R = U(R).

Proof. Let s ∈ U(S) ∩ R, then there is s′ ∈ S such that ss′ = 1. Then,
s′ ∈ R, otherwise, s′ ∈ S\R, since s ∈ R. Thus, 1 = ss′ ∈ S\R, absurd.
Therefore, U(S) ∩R = U(R). �

Lemma 3.7. Suppose that R ↪→ S is an associate p-extension. If U(S) ∩
R = U(R), then every irreducible element of S is an associate to an irreducible
element of R.

Proof. Let s ∈ S be a nonzero nonunit. Suppose that s is irreducible in S.
Since s ∈ S and by hypothesis, there are u ∈ U(S) and r ∈ R such that su = r.
We show that r is irreducible in R. Assume that r = r1r2 for some r1, r2 ∈ R,
then s = u−1r1r2. Since s is irreducible in S, we get either u−1r1 ∈ U(S) or
r2 ∈ U(S). If r2 ∈ U(S), then r2 ∈ U(S) ∩ R = U(R). If u−1r1 ∈ U(S), then
r1 ∈ U(S) ∩R = U(R). Hence, r is irreducible in R, as desired. �

Theorem 3.8. Suppose that R ↪→ S is a p-extension with S\R is an
absorbing subset of S. Then if R is a UFD, then S is also a UFD.

Proof. Since R is a UFD, R is atomic. Then, by Theorem 3.2, S is also
atomic.

Now, suppose that p1 · · · pn = q1 · · · qm where both pi, qj are irreducibles
in S for i = 1, ..., n and j = 1, ...,m. By Corollary 2.5, R ↪→ S is an associate
p-extension, then there are ui, vj ∈ U(S) and p′i, q

′
j ∈ R such that pi = u−1i p′i

and qj = vjq
′
j . By Lemmas 3.6 and 3.7, p′i and q′j are irreducibles in R. Hence

we have u′p′1 · · · p′n = v′q′1 · · · q′m, where u′ = u−11 · · ·u−1n and v′ = v−11 · · · v−1m .
Then, u′, v′ ∈ R, otherwise p′1 · · · p′n = u′−1v′q′1 · · · q′m ∈ S\R (since S\R is an
absorbing subset of S), absurd. Then, using the unicity of factorization in R,
it follows that n = m and p′i and q′i are associates, so pi and qi are associates
for every i = 1, ..., n, as desired. �
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[10] A. Bouvier, Anneaux présimplifiables. Rev. Roumaine Math. Pures Appl. 19 (1974),
6, 713–724.

[11] A. Bouvier, Anneaux présimplifiables. C. R. Acad. Sci. Paris Sér. A-B 274 (1972),
1605–1607.

[12] A. Grams, Atomic rings and the ascending chain condition for principal ideals. Math.
Proc. Cambridge Philos. Soc. 75 (1974), 321–329.

[13] N. Mahdou and A. Mimouni, Well-centered overrings of a commutative ring in pullbacks
and trivial extensions. Rocky Mountain J. Math. 42 (2012), 223–234.

[14] J.A. Huckaba, Commutative Rings with Zero Divisors. Monographs and Textbooks in
Pure and Applied Mathematics 117, Marcel Dekker, Inc., New York, 1988.

[15] W. Heinzer and M. Roitman, Well-centered overrings of an integral domain. J. Algebra
272 (2004), 435–455.

Received 2 January 2017 Mohammed V University in Rabat,
Faculty of Sciences,

Centre de Recherche de Mathématiques
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