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We consider a marine population that feeds mainly on phytoplankton, zooplank-
ton and living in a stratified environment composed of n layers. The life cycle
of the population is divided in two stages, juveniles and adults. Each stage is
modeled by an advection-diffusion reaction equation. Thus, we have to deal
with a nonlinear partial differential system with jumping diffusion. These layers
are arranged according to the light and temperature received by the habitat.
We formulate the model as a suitable Cauchy problem, and make use of the m-
accretive operators theory to establish well-posedness of the system. Moreover,
global solution is examined in L2 space.
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1. INTRODUCTION

It is well known that the fluctuations in anchovy stock is not only due
to fishing pressure but it also strongly relies on environmental conditions [3].
Movement and transport of fish by hydrodynamics (marine currents) is impor-
tant because it determines the distribution of the stock in a given region [11].
Spatial heterogeneity may be of striking features of the fish population and
their exploitation.

There is a relation between the distribution of nutrients and anchovy
abundance [8]. This fact is clearly observed during El Niño season where there
is a drop of photosynthesis rates which in turn impacts the food supply of
phytoplancton, and fish disperse in deep water [26].

The water column is divided into distinct layers [30]. The upper layer is
sunlit and photosynthesis is limited by the supply of nutrients. The lower layer
is dark and nutrients are abundant but photosynthesis is limited by the lack
of light. For instance in the Mediterranean sea, summer is characterized by a
marked stratification in the water column.
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Dominated by vertical movement as a response to food availability and
light, fish migrate upward during the afternoon, reside close the upper layer
and descend early in the morning [30]. Neglecting vertical migration may lead
to errors in estimates of the stock.

1.1. THE MATHEMATICAL MODEL

In this section, we give the equations of our model. Let D be an open
bounded domain with smooth boundary in R2. The x -axis is West-East po-
sitively oriented. The y -axis is South-North positively oriented. The vertical
coordinate is oriented downwards and the sea surface corresponds to z = 0.

The random walk depends on the depth of the column water and the fish
population never swim under a threshold value z = z∗, called the thermocline.
Eggs and larvae are found above the thermocline zone. Eggs production is
not possible in the cold layer. The movement is restricted to vertical one,
going from one to several ten of meters. The horizontal diffusion exhibits
several orders of magnitude higher ranging up to several kilometers. Hence,
reducing both scales to the same order of magnitude, horizontal diffusion has
been neglected.

The column water (0, z∗) is partitioned into n layers (zi−1, zi). Let

(0, z∗) = ∪i=ni=1 (zi−1, zi).

The population is living in a habitat given by

Ω = ∪i=ni=1D × (zi−1, zi).

1.1.1. Velocity

In each layer i, the field (wi1, w
i
2, w

i
3) represents velocity of marine currents

and is deduced from circulation model applied to a small volume of water,
see [24]. For simplicity, we investigate the model when the velocity of the
horizontal direction wi1, w

i
2 , 1 ≤ i ≤ n, does not depend on the variable z.

1.1.2. Modeling the distribution of the anchovy

The cycle of life of anchovy is divided in two stages: juveniles and adults.
The quantity (ui, vi) represents the population spreading in Ωi = D× (zi−1, zi)
where ui,vi are respectively the adult and juvenile density for each layer i. We
assume that the change of density occurs as a result of demographic, com-
petition process and spatial movement of population. The dynamics of such
species can be written in terms of reaction-diffusion-advection equations.
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In each layer i (1 ≤ i ≤ n), we have the following problem:
∂
∂tu

i − di1
∂2ui

∂z2
− wi1 ∂u

i

∂x − w
i
2
∂ui

∂y − w
i
3
∂ui

∂z = σvi − eui − cui(ui + vi),

in Ωi × (0, T ),

∂
∂tv

i − di2
∂2vi

∂z2
− wi1 ∂v

i

∂x − w
i
2
∂vi

∂y − w
i
3
∂vi

∂z = bui − fvi − dvi(ui + vi),

in Ωi × (0, T ).

Here the time runs in (0, T ), T is a fixed time. The parameter σ gives the
rate at which juveniles become adult. The constant b corresponds to the birth
rate. The parameters e, and f, reflect the natural mortality respectively of
adult and juveniles. The constants c and d measure the competition between
adult and juveniles. All the parameters are positive (see [20] for more details).
The model has a diffusion term with dispersion rate in each layer dia, a = 1, 2 .

The equations have to be completed by appropriate initial and boundary
conditions.

1.1.3. Vertical boundary conditions

We suppose a no-flux condition on the top and bottom layers{
∂u1

∂z (t, x, y, 0) = ∂un

∂z (t, x, y, z∗) = 0,
∂v1

∂z (t, x, y, 0) = ∂vn

∂z (t, x, y, z∗) = 0.

There is no flux of biomass across the sea surface and thermocline level.

1.1.4. Lateral boundary conditions

The lateral boundary is the part of the physical boundary from the sea
surface and the bottom surface represented by the thermocline. The system
does not show any lateral boundary conditions. Choosing the right conditions
is a difficult problem that we avoid by assuming that the initial values have a
compact support in the interior of the domain.

1.1.5. Interface conditions

The flux at the interface of each layer i (1 ≤ i ≤ n) and the continuity of
the solution give the supplementary conditions

di1
∂ui

∂z (t, x, y, zi)− wi3ui = di+1
1

∂ui+1

∂z (t, x, y, zi)− wi+1
3 ui+1,

di2
∂vi

∂z (t, x, y, zi)− wi3vi = di+1
2

∂vi+1

∂z (t, x, y, zi)− wi+1
3 vi+1,

ui+1 (t, x, y, zi) = ui (t, x, y, zi) ,
vi+1 (t, x, y, zi) = vi (t, x, y, zi) .
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These conditions impose continuity of the densities and the flux at each
interface.

1.1.6. Initial conditions

At the beginning of the year, t = 0, the initial densities are ui0(x, y, z)
and vi0(x, y, z)

ui(0, x, y, z) = ui0(x, y, z), v
i(0, x, y, z) = vi0(x, y, z), in Ωi.

Since the diffusion takes place only in the vertical direction, the above
system is degenerate.

The application of advection-diffusion models to fish population dynamics
has been the subject of many studies, only few analytical results are obtained
for these models, and the main research tool is computer simulation.

With no attempt to be exhaustive, let us mention the following works:
in absence of stratification and without a preferred direction for diffusion, the
model is considered in [20]. In [4], the author describes the evolution of phy-
toplankton by a scalar equation with vertical migration. In [1], the authors
introduce a mathematical model for the coupled dynamics for phytoplankton
and its nutrient in the sea. Similar model with vertical diffusion and constant
diffusivity has been carried out in the context of atmospheric pollutants, in [10].
All the previous works assumed incompressibility condition of the fluid

div(wi1, w
i
2, w

i
3) = 0, i = 1, n.

In [15], the authors investigated global solution of the model considered in
[10] without incompressibility condition and distinct diffusivities. Most spatial
models are studied by simulations [5, 6, 18,28] and [17].

The present paper differs from previous studies in two aspects. First, the
diffusion coefficients depend on the age of the population, the depth of the
ocean and may have jumps across the interfaces. Secondly, the fluid velocity
changes with the layers. Since diffusion is ignored in horizontal direction, the
system (1.1) is ultraparabolic and classical approaches are not directly applied.
Our strategy is to use a change of variables to get rid of degeneracies of the
system. In the new coordinates, the problem is reduced to a one dimensional
non degenerate parabolic problem to which we can use semi-group theory as
in [16] and [14]. Similar methods are used with stratified domain [2].

We give an abstract setting to our problem allowing other nonlinearities
satisfying conditions below. Hence, we turn our attention to the more general
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system
(1.1)

∂
∂tu

i−di1
∂2ui

∂z2
−wi1 ∂u

i

∂x − w
i
2
∂ui

∂y − w
i
3
∂ui

∂z = f1(u
i, vi), in Ωi×(0, T ), 1≤ i ≤n,

∂
∂tv

i−di2
∂2vi

∂z2
−wi1 ∂v

i

∂x − w
i
2
∂vi

∂y − w
i
3
∂vi

∂z = f2(u
i, vi), in Ωi × (0, T ), 1≤ i≤n,

∂u1

∂z (t, x, y, 0) = ∂un

∂z (t, x, y, z∗) = 0,

∂v1

∂z (t, x, y, 0) = ∂vn

∂z (t, x, y, z∗) = 0,

di1
∂ui

∂z (t, x, y, zi)− wi3ui = di+1
1

∂ui+1

∂z (t, x, y, zi)− wi+1
3 ui+1, 1 ≤ i ≤ n− 1,

di2
∂vi

∂z (t, x, y, zi)− wi3vi = di+1
2

∂vi+1

∂z (t, x, y, zi)− wi+1
3 vi+1, 1 ≤ i ≤ n− 1,

ui(t, x, y, zi) = ui+1(t, x, y, zi), v
i(t, x, y, zi) = vi+1(t, x, y, zi), 1 ≤ i ≤ n− 1,

ui(0, x, y, z) = ui0(x, y, z), v
i(0, x, y, z) = vi0(x, y, z), in Ωi.

The main goal of this work is to assess the mathematical well-posedness
of the system (1.1).

1.2. ASSUMPTIONS AND COMMENTS

A1) Throughout the paper, we suppose that the nonlinearity f = (f1, f2)
is continuously differentiable.

A2) To preserve positiveness of the solution, we assume that f is quasi-
positive which means that

∀v ∈ R+, f1(0, v) ≥ 0 ,(1.2)

∀u ∈ R+, f2(u, 0) ≥ 0.

A3) To avoid blow-up of the solution, we will suppose that the nonline-
arity is at most linear in the positive quadrant, this implies that there exist
positive constants ai, bi such that

(1.3) ∀(u, v) ∈ R2
+: fi(u, v) ≤ aiu+ biv, i = 1, 2.

A4) We now turn to the current velocity, and we make the assumptions:

When the water column is divided into small layers, it is reasonable as a
first approximation to assume that inside each layer, the horizontal velocity is
independent of the vertical variable z, this assumption is also discussed in [15].
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For all i = 1, ...n, we suppose that wi1,w
i
2 : [0, T ]×D → R are continuous,

and for fixed t, we assume that

wi1(t, .), wi2(t, .) ∈ C1(D).

Moreover, for any i, we assume that the vertical velocity wi3 :D ×
[zi−1, zi] → R is continuously differentiable. We assume for (x, y) ∈ D that
w1
3(x, y, 0) = wn3 (x, y, z∗) = 0 and

wi3(x, y, zi) = wi+1
3 (x, y, zi), 1 ≤ i ≤ n− 1.

A5) The initial values are nonnegative,

(ui0, v
i
0) ∈ C(Ωi)× C(Ωi),

with horizontal projection of the support inside a compact of the interior
of D.

Remark 1. All the assumptions are satisfied by the nonlinearity{
f1(u

i, vi) = σvi − eui − cui(ui + vi),
f2(u

i, vi) = bui − fvi − dvi(ui + vi).

The condition ( 1.3) is consistent with quadratic nonlinearity, for instance,
for (u, v) ∈ R2

+ then

σv − eu− cu(u+ v) ≤ σv − eu ≤ au+ bv.

for some positive constants a, b.

The organization of the paper is as follows: Section 2 deals with local
existence. Section 3 is devoted to positiveness of solution. In Section 4, we
are concerned with global solution. Section 5 contains the main results of the
paper.

2. LOCAL EXISTENCE

Before starting with the treatment of the problem (1.1), we perform a
change of variables. The problem is solved along the horizontal components,
on the characteristic lines. On these lines, the system is reduced to one dimen-
sional parabolic equations with vertical components.
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2.1. CHANGE OF VARIABLES

For each layer (zi−1, zi), we define the characteristic lines (xi(t, x0, y0),
yi(t, x0, y0)) as solutions of the Cauchy problem:

dxi

dt = −wi1(t, xi, yi),
dyi

dt = −wi2(t, xi, yi),
xi(0) = x0, y

i(0) = y0.

From assumptions made on the functions wik for k = 1, 2, these solutions
are defined on (0, T ) and are C1 in all variables. Let

It =
{

(x0, y0) ∈ R2 : (xi(t, x0, y0), y
i(t, x0, y0)) ∈ D

}
.

For each i, and for fixed t, define the map Ψi
t : It → D by

Ψi
t(x0, y0) = (xi, yi).

The map Ψi
t defines a diffeomorphism. Indeed, let (xi, yi) be fixed in D,

then there exists a unique (x0, y0) defined by

(x0, y0) = Ψi
−t(x

i, yi).

Writing the solution (ui, vi) in the new coordinates (t, x0, y0, z), we have

ϕi1(t, x0, y0, z) = ui(t,Ψi
t(x0, y0), z),

and
ϕi2(t, x0, y0, z) = vi(t,Ψi

t(x0, y0), z).

For notational convenience, we will occasionally omit the reference to
(x0, y0). For each (x0, y0), we associate the following system:

(2.1)



∂
∂tϕ

i
1 − di1

∂2ϕi
1

∂z2
− wi3

∂ϕi
1

∂z = f1(ϕ
i
1, ϕ

i
2), in (zi−1, zi), 1 ≤ i ≤ n,

∂
∂tϕ

i
2 − di2

∂2ϕi
2

∂z2
− wi3

∂ϕi
2

∂z = f2(ϕ
i
1, ϕ

i
2), in (zi−1, zi), 1 ≤ i ≤ n,

d1
1
∂ϕ1

k
∂z (t, 0) =

∂ϕn
k

∂z (t, z∗) = 0, for z = 0, z∗, k = 1, 2,

dik
∂ϕi

k
∂z (t, zi)− wi3ϕik(t, zi) = di+1

k
∂ϕi+1

k
∂z (t, zi)− wi+1

3 ϕi+1
k (t, zi),

1 ≤ i ≤ n− 1, k = 1, 2,

ϕik(t, zi) = ϕi+1
k (t, zi), k = 1, 2, 1 ≤ i ≤ n− 1,

ϕi1(0, z) = ui0(z), ϕ
i
2(0, z) = vi0(z).
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Here wi3(Ψ
i
t(x0, y0), z) = w̃i3 (z) . For writing simplicity, we shall no longer

indicate the superscript ” ”̃ but we keep the same notation wi3.

We need to define the following functions, for k = 1, 2

ϕk =


ϕ1
k in (z0, z1),

ϕ2
k in (z1, z2),

...
ϕnk in (zn−1, zn).

For the initial conditions, we have

ϕ0
1 =


u10 in (z0, z1),
u20 in (z1, z2),

...
un0 in (zn−1, zn),

and

ϕ0
2 =


v10 in (z0, z1),
v20 in (z1, z2),

...
vn0 in (zn−1, zn).

For k = 1, 2, let

dk =


d1
k in (z0, z1),

d2
k in (z1, z2),

...
dnk in (zn−1, zn).

Similarly, the map w3 is defined by

w3 =


w1
3 in (z0, z1),

w2
3 in (z1, z2),

...
wn3 in (zn−1, zn).

From the conditions on wi3, 1 ≤ i ≤ n, the assumptions on the interfaces
will be just

dik
∂ϕik
∂z

(t, zi) = di+1
k

∂ϕi+1
k

∂z
(t, zi), 1 ≤ i ≤ n− 1, k = 1, 2.
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Instead of (2.1), we will consider the system

(2.2)



∂
∂tϕ1 − ∂

∂z (d1(z)
∂ϕ1

∂z )− w3
∂ϕ1

∂z = f1(ϕ1, ϕ2) in (0, z∗)× (0, T ),

∂
∂tϕ2 − ∂

∂z (d2(z)
∂ϕ2

∂z )− w3
∂ϕ2

∂z = f2(ϕ1, ϕ2), in (0, z∗)× (0, T ),
ϕ1(0, z) = ϕ0

1(z), ϕ
2(0, z) = ϕ2

0(z),

∂ϕ1

∂z = ∂ϕ2

∂z = 0, for z = 0, z∗.

We limit the study of this problem in a finite time interval when the
species remains in the water column and does not reach the lateral boundary.
For any (ui0, v

i
0), 1 ≤ i ≤ n, let

T i(ui0,vi0)
= sup


t > 0 : ϕi1(s, x0, y0, z) ∈ D, ∀ (x0, y0, z) ∈ support ui0,

∀s ∈ [0, t[ , and ϕi2(s, x0, y0, z) ∈ D,
∀ (x0, y0, z) ∈ support vi0, ∀s ∈ [0, t[

 .

Then, we define the time of observation by

To = min
1≤i≤n

T i(ui0,vi0)
.

Remark 2. Since D is open, then for t ∈ (0, To), Ψi
t(x0, y0) /∈ ∂D, and the

support of the solutions does not cross the lateral boundaries. The quantity To
is the time for which no material goes through the lateral boundaries. Hence,
we do not need lateral boundaries in the sequel.

2.2. CAUCHY PROBLEM FORMULATION

In this section, we formulate the initial value-problem which will be stu-
died. We introduce the functional spaces which we use in the remainder of this
work. Let

Y = L2(0, z∗)× L2(0, z∗).

endowed with the standard norm. To transform (2.2) to a Cauchy problem,
we define the operator (k = 1, 2)

Akϕ = − ∂

∂z
(dk(z)

∂ϕ

∂z
)− w3

∂ϕ

∂z

where

D(Ak) =

{
ϕ ∈ L2(0, z∗) ∩H2(zi−1, zi), Akϕ ∈ L2(0, z∗),

∂ϕ

∂z
= 0 for z = 0, z∗

}
Here H2(zi−1, zi) is the Sobolev space with standard norm. Let A :

D(A) ⊂ Y → Y be the operator defined by
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A(ϕ1, ϕ2) = (A1ϕ1, A2ϕ2)

= (− ∂

∂z
(d1(z)

∂ϕ1

∂z
)− w3

∂ϕ1

∂z
,− ∂

∂z
(d2(z)

∂ϕ2

∂z
)− w3

∂ϕ2

∂z
),

where

D(A) =

{
ϕ ∈ Y ∩ (H2(zi−1, zi))

2, Aϕ ∈ Y, ∂ϕ
∂z

= 0 for z = 0, z∗
}

= D(A1)×D(A2).

Let ϕ = (ϕ1, ϕ2) and F (ϕ) = (f1(ϕ1, ϕ2), f2(ϕ1, ϕ2)). We are led to the
Cauchy problem

(2.3)

{
∂
∂tϕ+Aϕ = F (ϕ),

ϕ(0) = ϕ0.

We perform an analytical study of (2.3), by using m-accretive operators.

Proposition 1. The operator A is quasi accretive on Y.

Proof. We prove that there exists λ > 0 such that

(λu+A1u, u)L2(0,z∗) ≥ 0, ∀u ∈ D(A1).

To see this, let

c1 = min di, 1 ≤ i ≤ n,
then

(λu+A1u, u)L2(0,z∗) =

∫ z∗

0

[
λu2 + d1(z)(

∂u

∂z
)2 − w3(z)

∂u

∂z
u

]
dz

≥ λ

∫ z∗

0
u2dz + c1

∫ z∗

0
(
∂u

∂z
)2dz −

∫ z∗

0
w3(z)

∂u

∂z
u dz.

Young’s inequality gives∫ z∗

0
w3(z)

∂u

∂z
u dz ≤ ‖w3‖∞ (ρ

∫ z∗

0
(
∂u

∂z
)2dz +

1

ρ

∫ z∗

0
u2dz),

for some ρ > 0.

We arrive at

(λu+A1u, u)L2(0,z∗) ≥ λ

∫ z∗

0
u2dz + c1

∫ z∗

0
(
∂u

∂z
)2dz

−‖w3‖∞ (ρ

∫ z∗

0
(
∂u

∂z
)2dz +

1

ρ

∫ z∗

0
u2dz)

= (λ− ‖w3‖∞ /ρ)

∫ z∗

0
u2dz + (c1 − ‖w3‖∞ ρ)
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0
(
∂u

∂z
)2dz ≥ 0.

provided that λ, ρ verify

(λ− ‖w3‖∞ /ρ) > 0, (c1 − ‖w3‖∞ ρ) > 0.

Similarly, we have

(λu+A2u, u)L2(0,z∗) ≥ 0, ∀u ∈ D(A2).

We conclude that there exists λ > 0 such that:

(λϕ+Aϕ,ϕ)Y ≥ 0,∀ϕ ∈ D(A).

Consequently, A is quasi-accretive. �

To prove that A is quasi m-accretive on Y , we need to show that the range
R(λI +A) = Y. For convenience, we denote by c a general positive constant.

Proposition 2. The operator A is quasi m-accretive on Y.

Proof. There exists λ > 0 such that for all f ∈ L2(0, z∗), there exists
u ∈ D(A1) such that

λu+A1u = f.

Indeed, for u, v ∈ H1(0, z∗), let

a(u, v) = λ

∫ z∗

0
uvdz +

∫ z∗

0
d1(z)

∂u

∂z

∂v

∂z
dz −

∫ z∗

0
w3(z)

∂u

∂z
vdz,

and

l(v) =

∫ z∗

0
fvdz.

It is easy to show that

|a(u, v)| ≤ c ‖u‖H1(0,z∗) ‖v‖H1(0,z∗) ,

and
|l(v)| ≤ c ‖v‖H1 .

Furthermore

a(u, u) = (λu+A1u, u)L2(0,z∗)

≥ (λ− ‖w3‖∞ /ρ)

∫ z∗

0
u2dz + (c1 − ‖w3‖∞ ρ)

∫ z∗

0
(
∂u

∂z
)2dz

≥ c ‖u‖2H1(0,z∗) ,

provided that λ, ρ verify

(λ− ‖w3‖∞ /ρ) > 0, (c1 − ‖w3‖∞ ρ) > 0.
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The bilinear form a is then coercive and the Lax Milgram Theorem im-
plies that the equation a(u, v) = l(v) has a unique solution u ∈ H1(0, z∗).

It remains to verify that

λu+A1u = f.

For that, let v ∈ H1(0, z∗), we obtain

(2.4)

∫ z∗

0
d1(z)

∂u

∂z

∂v

∂z
dz = −λ

∫ z∗

0
uvdz +

∫ z∗

0
w3(z)

∂u

∂z
vdz +

∫ z∗

0
fvdz.

In particular, for all v ∈ C1
c (0, z∗)∣∣∣∣∣

∫ z∗

0
d1(z)

∂u

∂z

∂v

∂z
dz

∣∣∣∣∣ ≤ λ
∫ z∗

0
|uv| dz +

∫ z∗

0

∣∣∣∣w3(z)
∂u

∂z
v

∣∣∣∣dz +

∫ z∗

0
|fv|dz.

Holder’s inequality gives∣∣∣∣∣
∫ z∗

0
d1(z)

∂u

∂z

∂v

∂z
dz

∣∣∣∣∣ ≤ c ‖v‖L2(0,z∗) .

A classical result (see for instance [21], p. 124) implies that

d1(z)
∂u

∂z
∈ H1(0, z∗).

Now, by choosing v ∈ C1
c (zi−1, zi), in (2.4), 1 ≤ i ≤ n, we obtain∫ zi

zi−1

di1
∂u

∂z

∂v

∂z
dz = −λ

∫ zi

zi−1

uvdz +

∫ zi

zi−1

w3(z)
∂u

∂z
vdz +

∫ zi

zi−1

fvdz,

hence ∣∣∣∣∣
∫ zi

zi−1

∂u

∂z

∂v

∂z
dz

∣∣∣∣∣ ≤ c ‖v‖L2(zi−1,zi)
, 1 ≤ i ≤ n,

it follows that
∂u

∂z
∈ H1(zi−1, zi),

i.e., u ∈ H2(zi−1, zi), 1 ≤ i ≤ n. We conclude that u ∈ D(A).
Since

d1(z)
∂u

∂z
∈ H1(0, z∗),

and
u ∈ H2(zi−1, zi),

this yields that
u ∈ C1[zi−1, zi], 1 ≤ i ≤ n.

Integrating by part (2.4), one can see that for all v ∈ H1(0, z∗),
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(2.5) −
∫ z∗

0

∂

∂z
(d1(z)

∂u

∂z
)vdz + dn1

∂u

∂z
(z∗)v(z∗)− d1

1

∂u

∂z
(0)v(0)

= −λ
∫ z∗

0
uv +

∫ z∗

0
w3(z)

∂u

∂z
v +

∫ z∗

0
fv,

In particular, for all v ∈ H1
0 (0, z∗), we obtain

−
∫ z∗

0
(
∂

∂z
(d1(z)

∂u

∂z
) + λu− w3(z)

∂u

∂z
− f )vdz = 0,

hence

− ∂

∂z
(d1(z)

∂u

∂z
) + λu− w3(z)

∂u

∂z
− f = 0.

By (2.5), it follows that for all v ∈ H1(0, z∗),

dn1
∂u

∂z
(z∗)v(z∗)− d1

1

∂u

∂z
(0)v(0) = 0.

Now, by choosing v1(z) = exp(z) and v2(z) = 1
exp(z) respectively in (2.5),

we obtain an algebraic system, where the solution is

∂u

∂z
(z∗) =

∂u

∂z
(0) = 0.

We conclude that u satisfies{
λu− ∂

∂z (d1(z)
∂u
∂z )− w3(z)

∂u
∂z = f,

∂u
∂z (z∗) = ∂u

∂z (0) = 0.
That is

u ∈ D(A1),λu+A1u = f.

Similarly, we show that A2 is quasi m accretive. �

Since A is quasi m-accretive in Y , then -A generates a quasi contractive
semigroup S(t) on Y with ‖S(t)‖Y ≤ ewt, (see [22]). Here S(t) = (S1(t), S2(t))
on Y, where S1(t), S2(t) are semi groups generated respectively by −A1,−A2.
The mild solution of the system{

∂
∂tϕ+Aϕ = 0,
ϕ(0) = ϕ0

is given by
(ϕ1, ϕ2) = S(t)ϕ0.

Since it is in general non trivial to show that the operator F leaves Y
invariant, then it is convenient to work in the framework of continuous function.
Let

X = C[0, z∗]× C[0, z∗].
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In the next lemma, we show that the part of A in X, considered as an
operator on X, generates a C0 semigroup on X. For self-completeness of the
paper, we give a proof strongly inspired from [19].

Lemma 1. Let Ac = A\C[0,z∗], the restriction of A to

D(Ac) = {u ∈ D(A) ∩X,Acu ∈ X} .

Then −Ac generates a C0 semigroup Sc(t)on X, and for ϕ0 ∈ X, the
mild solution S(t)ϕ0 ∈ C([0,∞[, X).

For the convenience of the reader, we give a brief proof, see Appendix A.

We define C([0, δ], X) to be the set of continuous functions ϕ(t) defined
on 0 ≤ t ≤ δ, taking values in X. With this notation, we say that ϕ(t) ∈
C([0, δ], X) is a mild solution of (2.3) provided for every 0 ≤ t ≤ δ, we have

ϕ(t) = Sc(t)ϕ0 +

∫ t

0
Sc(t− s)F (ϕ(s))ds, 0 ≤ t ≤ δ,

where Sc(t) is the semigroup generated on X by Ac. We are ready now, to
establish local existence of solution of (2.2).

Proposition 3. There exists Tmax > 0 such that for any initial data
ϕ0 ∈ D(Ac), the problem (2.3) has a unique classical solution (ϕ1, ϕ2) ∈
(C([0, Tmax[, X) ∩ C(]0, Tmax[, D(Ac)) ∩ C1(]0, Tmax[, X)).If Tmax <∞, then

lim
t→Tmax

‖(ϕ1, ϕ2)‖X = +∞.

Proof. This result is well known and we give only a sketch of the proof.
The first step is to convert the system using variation of constants formula, to
an integral equation

ϕ(t) = Sc(t)ϕ0 +

∫ t

0
Sc(t− s)F (ϕ(s))ds.

Since F : X → X is continuously differentiable, by standard contraction
arguments, one can prove existence of a local mild solution defined on a max-
imal interval [0, Tmax[.

The hypotheses on ϕ0 and F implies that this solution is classical. �

3. POSITIVITY OF THE SOLUTION

The system (2.2) preserves positiveness. If initial conditions ϕ0
1, ϕ

0
2 are

positive, then the solution of system (2.2) is positive.

Proposition 4. If (ϕ0
1, ϕ

0
2) is positive, then (ϕ1(t, .), ϕ2(t, .)) is positive.
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Proof. Let Π : R2 → (R+
)2 the orthogonal projection onto the positive

cone (R+
)2 of R2.

We denote by (u, v) the solution of (2.2). From (1.2), it follows that

f1(Π(u, v))u− ≥ 0, f2(Π(u, v))v− ≥ 0.

Consider the modified system

(3.1)



∂
∂tu−

∂
∂z (d1(z)

∂u
∂z )− w3

∂u
∂z = f1(Π(u, v)), on (0, z∗)× (0, Tmax),

∂
∂tv −

∂
∂z (d2(z)

∂v
∂z )− w3

∂v
∂z = f2(Π(u, v)), on (0, z∗)× (0, Tmax),

u(0, z) = u0(z), v(0, z) = v0(z), in (0, z∗),

∂u
∂z = ∂v

∂z = 0, for z = 0, z∗.

Multiplying the first equation of (3.1) by u− and integrating over (0, z∗),
we have

−1

2

d

dt

∥∥u−(t)
∥∥2
L2(0,z∗)

−
∫ z∗

0
d1(z)(

∂u−

∂z
)2dz +

∫ z∗

0
w3
∂u−

∂z
u−dz ≥ 0.

This implies that

−1

2

d

dt

∥∥u−(t)
∥∥2
L2(0,z∗)

−
∫ z∗

0
d1(z)(

∂u−

∂z
)2dz ≥ −c1

∫ z∗

0

∣∣∣∣∂u−∂z u−
∣∣∣∣dz,

where c1 = max[0,z∗] |w3(z)| .
By Young’s inequality, we get∫ z∗

0

∣∣∣∣∂u−∂z u−
∣∣∣∣ dz ≤ ∫ z∗

0
(ρ(

∂u−

∂z
)2 +

1

ρ
(u−)2)dz,

for some ρ > 0.
So

− 1

2

d

dt

∥∥u−(t)
∥∥2
L2(0,z∗)

−
∫ z∗

0
d1(z)(

∂u−

∂z
)2dz ≥ −c1ρ

∫ z∗

0
(
∂u−

∂z
)2dz

− c1
1

ρ

∫ z∗

0
(u−)2dz,

and

1

2

d

dt

∥∥u−(t)
∥∥2
L2(0,z∗)

+

∫ z∗

0
d1(z)(

∂u−

∂z
)2dz − c1ρ

∫ z∗

0
(
∂u−

∂z
)2dz

− c1
1

ρ

∫ z∗

0
(u−)2dz ≤ 0,
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consequently

1

2

d

dt

∥∥u−(t)
∥∥2
L2(0,z∗)

+

∫ z∗

0
(d1(z)− c1ρ)(

∂u−

∂z
)2dz + (c2 −

c1
ρ

)

∫ z∗

0
(u−)2dz

≤ c2
∫ z∗

0
(u−)2dz,

provided that c2, ρ satisfy

min
[0,z∗]

d1(z)− c1ρ > 0, c2 −
c1
ρ
> 0.

We deduce that

1

2

d

dt

∥∥u−(t)
∥∥2
L2(0,z∗)

≤ c2
∫ z∗

0
(u−)2dz.

Since ϕ0
1 ≥ 0, Gronwall’s inequality implies that u− = 0.

Similarly v− = 0.

Since on the positive cone, fi(u, v) = fi ◦ Π(u, v), we deduce that the
solution (u, v) of (2.2) is positive. �

4. GLOBAL EXISTENCE OF THE SOLUTION

In order to show that the solution is global in L2, it is sufficient to prove
that the L2-norm of the solution cannot tend to infinity in finite time.

Let (u, v) be a solution of (2.2), then

Proposition 5. For all t ∈ (0, Tmax), ‖u(t)‖L2(0,z∗) + ‖v(t)‖
L2(0,z∗)

≤
c exp(t).

Proof. From (1.3),there exist L > 0 such that fk(u, v) ≤ L(u + v + 1),
k = 1, 2.

Let Qt = [0, t]× (0, z∗), t ∈ (0, Tmax), and (u, v) be the solution of

∂
∂tu−

∂
∂z (d1(z)

∂u
∂z )− w3

∂u
∂z = L(u+ v + 1) in (0, z∗)× (0, t),

∂
∂tv −

∂
∂z (d2(z)

∂v
∂z )− w3

∂v
∂z = L(u+ v + 1) in (0, z∗)× (0, t),

u(0, z) = v0, v(0, z) = v0,
∂u
∂z = ∂v

∂z = 0, for z = 0, z∗

with v0 ≥ u0, v0 ≥ v0.
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Since f1(u, v) ≤ L(u+v+1), f2(u, v) ≤ L(u+v+1), then (w1, w2)=(u, v)−
(u, v) satisfies

∂
∂tw1 − ∂

∂z (d1(z)
∂w1
∂z )− w3

∂w1
∂z ≥ 0 in (0, z∗)× (0, t)

∂
∂tw2 − ∂

∂z (d2(z)
∂w2
∂z )− w3

∂w2
∂z ≥ 0 in (0, z∗)× (0, t)

w1(0, z) ≥ 0, w2(0, z) ≥ 0
∂w1
∂z = ∂w2

∂z = 0, for z = 0, z∗

We show that (w1, w2) is positive by the same arguments given to prove
positiveness.

From the Theorem of page 143 in [27], we have the estimates

∀t ∈ (0, Tmax), ‖u(t)‖L2(0,z∗) ≤ c+

∫ t

0
‖(u+ v)(s)‖L2(0,z∗) ds,

∀t ∈ (0, Tmax), ‖v(t)‖L2(0,z∗) ≤ c+

∫ t

0
‖(u+ v)(s)‖L2(0,z∗) ds,

hence for all t ∈ (0, Tmax),

‖u(t)‖L2(0,z∗) + ‖v(t)‖
L2(0,z∗)

≤ ‖u(t)‖L2(0,z∗) + ‖v(t)‖L2(0,z∗) ≤

c+

∫ t

0
(‖u(s)‖L2(0,z∗) + ‖v(s)‖L2(0,z∗)).

Gronwall’s inequality implies that for all t ∈ (0, Tmax),

‖u(t)‖L2(0,z∗) + ‖v(t)‖
L2(0,z∗)

≤ c exp(t). �

5. SOLVABILITY OF PROBLEM (2.1) and (1.1)

Let (x0, y0) be in the support of (ui0, v
i
0), then

Proposition 6. Suppose (ϕ1
0, ϕ

2
0) ∈ D(Ac). The system (2.1) has a uni-

que positive solution (ϕ1, ϕ2) such that for each 1 ≤ i ≤ n(
ϕi1, ϕ

i
2

)
∈ C([0, To], H

2(zi−1, zi)) ∩ C1(]0, To], L
2(zi−1, zi)).

Proof. Let (ϕ1, ϕ2) the solution of the system

(5.1)



∂
∂tϕ1 − ∂

∂z (d1(z)
∂ϕ1

∂z )− w3
∂ϕ1

∂z = f1(ϕ1, ϕ2) in (0, z∗)× (0, T0],

∂
∂tϕ2 − ∂

∂z (d2(z)
∂ϕ2

∂z )− w3
∂ϕ2

∂z = f2(ϕ1, ϕ2), in (0, z∗)× (0, T0],

ϕ1(0, z) = ϕ0
1(z), ϕ

2(0, z) = ϕ2
0(z),

∂ϕ1

∂z = ∂ϕ2

∂z = 0, for z = 0, z∗.
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Let ψ ∈ C∞c (0, z∗), we have{ ∫ z∗
0 ( ∂∂tϕ1 − ∂

∂z (d1(z)
∂ϕ1

∂z )− w3(z)
∂ϕ1

∂z )ψdz =
∫ z∗
0 f1(ϕ1, ϕ2)ψdz,∫ z∗

0 (∂ϕ2

∂t −
∂
∂z (d2(z)

∂ϕ2

∂z )− w3
∂ϕ2

∂z )ψdz =
∫ z∗
0 f2(ϕ1, ϕ2)ψdz.

So

i=n∑
i=1

∫ zi

zi−1

(
∂

∂t
ϕ1 −

∂

∂z
(d1(z)

∂ϕ1

∂z
)− w3(z)

∂ϕ1

∂z
)ψ =

i=n∑
i=1

∫ zi

zi−1

f1(ϕ1, ϕ2)ψ,

i=n∑
i=1

∫ zi

zi−1

(
∂ϕ2

∂t
− ∂

∂z
(d2(z)

∂ϕ2

∂z
)− w3

∂ϕ2

∂z
)ψ =

i=n∑
i=1

∫ zi

zi−1

f2(ϕ1, ϕ2)ψ.

For ψ ∈ C∞c (zi−1, zi), 1 ≤ i ≤ n, we find that∫ zi

zi−1

(
∂

∂t
ϕi1 − di1

∂2ϕi1
∂z2

− w3
∂ϕi1
∂z

)ψdz =

∫ zi

zi−1

f1(ϕ
i
1, ϕ

i
2)ψdz, 1 ≤ i ≤ n,∫ zi

zi−1

(
∂ϕi2
∂t
− di2

∂2ϕi2
∂z2

− w3
∂ϕi2
∂z

)ψdz =

∫ zi

zi−1

f2(ϕ
i
1, ϕ

i
2)ψdz, 1 ≤ i ≤ n,

for 1 ≤ i ≤ n, and in the distributional sense, we obtain{
∂
∂tϕ

i
1 − di1

∂2ϕi
1

∂z2
− w3(z)

∂ϕi
1

∂z = f1(ϕ
i
1, ϕ

i
2),

∂
∂tϕ

i
2 − di2

∂2ϕi
2

∂z2
− w3

∂ϕi
2

∂z = f2(ϕ
i
1, ϕ

i
2).

The transmission conditions between layers give

∂ϕ1
k

∂z
(t, 0) =

∂ϕnk
∂z

(t, z∗) = 0, k = 1, 2.

Since (ϕ1, ϕ2) is continuous then

ϕik(t, zi) = ϕi+1
k (t, zi), k = 1, 2, 1 ≤ i ≤ n− 1.

For ψ ∈ H1(0, z∗), we have{ ∫ zi
0 ( ∂∂tϕ1 − ∂

∂z (d1(z)
∂ϕ1

∂z )− w3(z)
∂ϕ1

∂z )ψdz =
∫ zi
0 f1(ϕ1, ϕ2)ψdz,∫ z∗

zi
(∂ϕ1

∂t −
∂
∂z (d2(z)

∂ϕ1

∂z )− w3
∂ϕ1

∂z )ψdz =
∫ z∗
zi
f1(ϕ1, ϕ2)ψdz.

The integration by part yields

∫ zi
0 (∂ϕ1

∂t ψ +
∫ zi
0 d1(z)

∂ϕ1

∂z
∂ψ
∂z −

∫ zi
0 w3(z)

∂ϕ1

∂z ψdz − di1
∂ϕi

1
∂z (zi)ψ(zi)

=
∫ zi
0 f1(ϕ1, ϕ2)ψ,∫ z∗

zi
(∂ϕ1

∂t ψ +
∫ z∗
zi

d1(z)
∂ϕ1

∂z
∂ψ
∂z −

∫ z∗
zi
w3

∂ϕ1

∂z ψdz + di+1
1

∂ϕi+1
1
∂z (zi)ψ(zi)

=
∫ z∗
zi
f1(ϕ1, ϕ2)ψ.
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Summing all the inequalities, we find∫ z∗
0 (∂ϕ1

∂t ψdz +
∫ z∗
0 (d1(z)

∂ϕ1

∂z
∂ψ
∂z − w3(z)

∂ϕ1

∂z ψ)dz − di1
∂ϕi

1
∂z (zi)ψ(zi)

+di+1
1

∂ϕi+1
1
∂z (zi)ψ(zi) =

∫ z∗
0 f1(ϕ1, ϕ2)ψdz.

Integration by part gives∫ z∗
0 (∂ϕ1

∂t −
∂
∂z (d1(z)

∂ϕ1

∂z )− w3(z)
∂ϕ1

∂z )ψdz − di1
∂ϕi

1
∂z (zi)ψ(zi)

+di+1
1

∂ϕi+1
1
∂z (zi)ψ(zi) =

∫ z∗
0 f1(ϕ1, ϕ2)ψdz.

Since ϕ1 is a solution of (5.1), we deduce that

−di1
∂ϕi1
∂z

(zi)ψ(zi) + di+1
1

∂ϕi+1
1

∂z
(zi)ψ(zi) = 0,∀ψ ∈ H1(0, z∗).

So

di+1
1

∂ϕi+1
1

∂z
(zi) = di1

∂ϕi1
∂z

(zi), 1 ≤ i ≤ n− 1.

We proceed similarly for ϕ2. �

Proposition 7. For all (x0, y0) in the support of (ui0, v
i
0), 1 ≤ i ≤ n, the

system (1.1) has a unique positive solution (ui, vi), defined on the maximal
time of observation [0, To]

Proof. It suffices to see that for t ∈ [0, To] , (xi, yi) ∈ D and z ∈ [zi−1, zi, ],

(ui(t, xi, yi, z), vi(t, xi, yi, z)) = (ϕ1(t,Ψ
i
−t(x

i, yi), z), ϕ2(t,Ψ
i
−t(x

i, yi), z)),

1 ≤ i ≤ n.

Define a solution to system (1.1) by writing

u =


u1 in (z0, z1),
u2 in (z1, z2),

...
un in (zn−1, zn),

and

v =


v1 in (z0, z1),
v2 in (z1, z2),

...
vn in (zn−1, zn). �
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6. CONCLUDING REMARKS

The role of fishery on the economy of some countries is crucial. It is a
source of foreign revenue and protein. The employment in fisheries is conside-
rable. A few thousands people are employed in anchovy industry in Peru [7].
Thus the impact of fishery on political stability is dramatic.

For many countries, the ocean is an important source of food. That ma-
kes the study of marine ecosystems a question of crucial importance. Hence,
mathematical modelling of marine ecology plays an essential role. The dis-
tribution of fish population is economic determinant for fishery management.
Pytoplankton with zooplankton distributions occupy a central position in the
variation of fish population. They are considered as marker of the presence
of many marine species, and modulate the movement of fish in marine sys-
tems. Since phytoplankton concentration is limited by the availability of light
and nutrients, photosynthesis provided by phytoplankton does not occur below
thermocline zone.

Fish species dynamics, distribution and their abundance are of great im-
portance. We develop a complex mathematical model describing the dynamics
of fish population. Complexity can arise from the variability of biological and
physical parameters on water column. The model includes hydrodynamics
parameters and stage structure, it shows the response of the species through
movement and biological reactions to an aquatic environment.

We assume that the column water is divided into several layers. Under
reasonably restrictive assumptions, we establish existence and positiveness of
solutions. It is difficult to solve empirically the system because spatial and
temporal data are generally not well known. This is why it is necessary to carry
on the modelling effort to study complex models. The model is applicable to
a broad range of vertically stratified habitat.

Similar methods can be used for populations spreading in a region frag-
mented in patches with different life conditions.

Recently, in [25], the authors show that the ocean can be divided in
hydrodynamic regions delimited by intense oceanic structures such as jets,
fronts and eddies. The oceanic frontiers constitute a barrier for many fish
species. Thus, on the lateral boundary, we can assume that the currents are
inward, and using Fishera function see [23]. We can show that the boundary
condition must not be given on lateral boundary, this point will be examined
in a forthcoming paper.

There is a wealth of directions to be explored and improvements to be
made. For instance, it is more realistic to include fishing effort in the model.
Since the phytoplankton serves as a favorite food for the anchovy, it would
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be interesting to investigate the system with another trophic level such phy-
toplankton.

The global solution is obtained in L2 space. Even in one dimension, the
Lp theory (p ≥ 2) for parabolic problem with piecewise constant coefficients is
not completely understood (see for instance [12]). For these kinds of problems,
Lp estimates are established only for the whole and half space see [9] and
[13]. At our knowledge, the case of bounded domain and Neumann boundary
conditions do not seem to have been systematically treated, and consequently,
the existence of global solution in L∞ remains open for our problem.

6.1. APPENDIX A

Proof of Lemma 1. It is clear that Ac is closed. In fact, let un be a
sequence in X such that un → u and Ac un → v in X. Then the sequence
converges in Y. Since A is the generator of quasi contractive semigroup S(t)
on Y then u ∈ D(A) and Au = v. But since u, v ∈ X, then u ∈ D(Ac). This
implies that Ac is closed. Lemma 5.1.6 in [19] shows that Ac is densely defined
on X. Since A is the generator of quasi contractive semigroup, then there exists
ω0 > 0 such that λI+A is invertible for λ > ω0 , then λI+Ac is injective. For
f ∈ X there exists u ∈ D(A) such that (λI +A) u = f. By elliptic regularity,
u ∈ X. Hence λI+Ac is invertible by closed graph theorem. Using lemma 5.1.4
in [19], we derive that ‖S(t)u‖X ≤ ewt ‖u‖X for all u ∈ X. Now the relation

R (λ,A)u =
+∞∫
0

e−λtS(t)udt, gives that the nth derivative of the analytical

function λ → R (λ,Ac), verifies that
∥∥∥R (λ,Ac)(n) u

∥∥∥
X
≤ Mn!

(λ−ω0 )n+1 ‖u‖X for

all u ∈ X, see lemma 5.1.4 in [19]. The rest of the proof is a consequence of
the theorem 2.7.2 in [19].
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