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Using split (n + t)–color partitions as an elementary tool, three generalized q–
series have been interpreted combinatorially. For some particular cases these
series can be written as infinite products which produce three “Sum-Product”
identities, which lead, in turn, to elegant three new Rogers-Ramanujan type iden-
tities for split (n + t)–color partitions. These new identities reveal the fact that
our main results have the potential to yield Rogers-Ramanujan-MacMahon type
partition identities linking split (n+ t)–color partitions with ordinary partitions.
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1. INTRODUCTION

In the literature, we learn that analytical number theory and combinato-
rics are nicely connected with each other [9,16,18]. In combinatorics, partition
theory [6] studies various enumeration problems related to partitions and is
closely related to q–series.

For λ to be a natural number, the rising q–factorial of a with base q is
defined by (a; q)0 = 1 and (a; q)λ = (1−a)(1−aq) · · · (1−aqλ−1), where |q| < 1.
Any series involving this rising q–factorial is called a q–series (or basic series
or Eulerian series). Let us recall the celebrated Rogers-Ramanujan identities:

∞∑
λ=0

qλ
2

(q; q)λ
=

∞∏
λ=1

1

(1− q5λ−1)(1− q5λ−4)
,

∞∑
λ=0

qλ
2+λ

(q; q)λ
=
∞∏
λ=1

1

(1− q5λ−2)(1− q5λ−3)
.

The sum-product identities similar to Rogers-Ramanujan identities are
referred as Rogers-Ramanujan type identities. MacMahon [17] interpreted
the famous Rogers-Ramanujan identities combinatorially by using ordinary
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partitions, now popularly known as Rogers-Ramanujan-MacMahon partition
identities. After this, several identities of Rogers-Ramanujan type have been
interpreted combinatorially by several mathematicians [4, 8, 10–12, 19] using
ordinary partitions. In 1985, Agarwal [1] introduced a new class of partiti-
ons which he named n–color partitions. In 1987, Agarwal and Andrews [3]
generalized these n–color partitions to (n + t)–color partitions. These new
partitions were used to interpret many more q–series identities combinatorially
in [2, 3, 14, 15]. Recently, Agarwal and Sood [5] introduced split (n + t)–color
partitions which further generalize Agarwal-Andrews (n + t)–color partitions.
The authors [5] have shown that this new set of partitions is very helpful to
interpret several q–series combinatorially which cannot be interpreted combi-
natorially using ordinary partitions or (n + t)–color partitions. Using split
(n+ t)–color partitions, Agarwal and Sood [5] interpreted two basic functions
of Gordon-MacIntosh [13] combinatorially. The authors [5] also posed an open
problem: “Is it possible to find Rogers-Ramanujan type identities for split
(n+ t)–color partitions?”

The purpose of this paper is to address this problem. In Section 2, we
interpret combinatorially three generalized q–series by the aid of split (n+ t)–
color partitions which for some particular cases produce identities of Rogers-
Ramanujan type for split (n + t)–color partitions. These results yield three
new Rogers-Ramanujan-MacMahon type partition identities. Before we state
our main results, we first recall some formal definitions:

Definition 1.1 ([6]). A partition of positive integer n is a finite non-
increasing sequence of positive integers α1, α2, . . . αr such that

r∑
i=1

αi = n

where α′is are called parts of the partition. The number of partitions of n is
denoted by p(n).

For example, p(3) = 3, where the relevant ordinary partitions of 3 are 3,
21, 111.

Definition 1.2 ([3]). A partition with “(n + t) copies of n”, t ≥ 0, is a
partition in which a part of size n, n ≥ 0, can come in (n+ t) different colors
denoted by subscripts: n1, n2, ..., nn+t.

Note that zeros are permitted if and only if t is greater than or equal to
one. Also, zeros are not permitted to repeat in any partition.

Remark 1.1. We note that if we take t = 0, then these are nothing but
the n–color partitions.
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Definition 1.3. The weighted difference of two parts ap, bq (a ≥ b) is
defined by a− b− p− q and is denoted by ((ap − bq)).

In [5] the split (n+ t)–color partitions are defined as:

Definition 1.4. Let ap be a part in an (n + t)–color partition of a non-
negative integer µ. We split the color ‘p’ into two parts-‘the green part’ and
‘the red part’ and denote them by ‘g’ and ‘r’ respectively, such that 1 ≤ g ≤
p, 0 ≤ r ≤ p− 1 and p = g + r. An (n+ t)–color partition in which each part
is split in this manner is called a split (n+ t)–color partition.

Example 1.1. In 52+1, the green part is 2 and the red part is 1.

Remark 1.2. We note that if r = 0, then we will not write it. Thus for
instance, we will write 53 for 53+0.

2. SPLIT (n+ t)–COLOR PARTITIONS AS A COMBINATORIAL TOOL

In this section, we will use split (n+ t)–color partitions as a combinato-
rial tool to interpret three generalized q–series combinatorially which lead to
Rogers-Ramanujan type identities for split (n+ t)–color partitions.

Definition 2.1. Let T = {−1, 1, 3, 5, 7, · · · }. For |q| < 1, i ε T and 1 ≤
k ≤ 3, we define f ik(q) by

(2.1) f i1(q) =
∞∑
λ=0

qλ[1+(λ−1)(i+3)/2](−q; q2)λ
(q4; q4)λ(q; q2)λ

(2.2) f i2(q) =

∞∑
λ=0

qλ[3+(λ−1)(i+3)/2](−q; q2)λ
(q4; q4)λ(q; q2)λ

(2.3) f i3(q) =

∞∑
λ=0

qλ[1+(λ+1)(i+3)/2](−q; q2)λ
(q4; q4)λ(q; q2)λ+1

For i = −1, (2.1)–(2.3) produces the following three q–series “Sum-
Product” identities of Rogers-Ramanujan type, respectively.

(2.4)

∞∑
λ=0

qλ
2
(−q; q2)λ

(q4; q4)λ(q; q2)λ
=

(−q2; q10)∞(−q5; q10)∞(−q8; q10)∞(−q; q2)∞
(q10; q10)−1∞ (q3; q10)−1∞ (q7; q10)−1∞ (q2; q2)∞

,

(2.5)

∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ
=

(−q4; q10)∞(−q5; q10)∞(−q6; q10)∞(−q; q2)∞
(q10; q10)−1∞ (q; q10)−1∞ (q9; q10)−1∞ (q2; q2)∞

,
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(2.6)
∞∑
λ=0

qλ
2+2λ(−q; q2)λ

(q4; q4)λ(q; q2)λ+1
=

(−q; q2)∞
(q20; q20)∞(q5; q20)∞(q15; q20)∞(q2; q2)∞

.

The identities (2.4)–(2.6) are appearing in Chu and Zhang compendium
[7]. We shall prove that the q–series (2.1)–(2.3) have their combinatorial coun-
terparts in the form of the following theorems, respectively, which in con-
junction with the identities (2.4)–(2.6) yield three new Rogers-Ramanujan type
identities for split (n+ t)–color partitions.

2.1. COMBINATORIAL IDENTITIES

Theorem 2.1. Let Ai1(µ) denote the number of split n–color partitions of
µ such that (i) if ap is the smallest or the only part in the partition, then a ≡
p(mod4), (ii) the red part of the subscripts cannot exceed 1 and (iii) the weighted
difference between any two consecutive parts is > i and is ≡ i+1(mod4). Then

∞∑
µ=0

Ai1(µ)qµ = f i1(q)

Theorem 2.2. Let Ai2(µ) denote the number of split n–color partitions
of µ such that (i) if ap is the smallest or the only part in the partition, then
a ≡ p + 2(mod4), (ii) the red part of the subscripts cannot exceed 1, (iii) all
parts are greater than or equal to 3 and (iv) the weighted difference between
any two consecutive parts is > i and is ≡ i+ 1(mod4). Then

∞∑
µ=0

Ai2(µ)qµ = f i2(q)

Theorem 2.3. Let Ai3(µ) denote the number of split (n+ 2)–color parti-
tions of µ such that (i) the smallest part or the only part is of the form aa+2,
(ii) the red part of the subscripts cannot exceed 1, (iii) the red part of the
subscript of the smallest part is 0 and (iv) the weighted difference between any
two consecutive parts is > i and is ≡ i+ 1(mod4). Then

∞∑
µ=0

Ai3(µ)qµ = f i3(q)

Remark 2.1. In the weighted difference condition of the above theorems
we consider the whole subscript p and not its parts g and r, separately.
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2.2. PROOFS OF THEOREMS 2.1–2.3

To prove these theorems, we study a more general partition function
Aik(m,µ) (1 ≤ k ≤ 3) which counts the partitions of µ of the kind as described
in Theorem 2. j (1 ≤ j ≤ 3) with the added restriction that there be exactly
m parts. This technique is easily implementable on computer to obtain the
tables of Aik(m,µ).

For 1 ≤ k ≤ 3, f ik(z; q) will denote the 2–variable generating function

(2.7) f ik(z; q) =
∞∑
µ=0

∞∑
m=0

Aik(m,µ)zmqµ,

where |q| < 1 and |z| < |q|−1.

2.3. PROOF OF THEOREM 2.1

Proof. We shall prove that

∞∑
µ=0

Ai1(µ)qµ =

∞∑
λ=0

qλ[1+(λ−1)(i+3)/2](−q; q2)λ
(q4; q4)λ(q; q2)λ

.

Let Ai1(m,µ) denote the number of partitions enumerated by Ai1(µ) into
exactly m parts. We shall first prove the identity,

Ai1(m,µ) =Ai1(m,µ− 4m) +Ai1(m− 1, µ−m(i+ 3) + i+ 2) +Ai1(m− 1, µ

−m(i+ 5) + i+ 3) +Ai1(m,µ− 2m+ 1)−Ai1(m,µ− 6m+ 1).(2.8)

To prove Theorem 2.1, we split the partitions enumerated by Ai1(m,µ)
into four classes:
(i) those that do not contain aa or a(a−1)+1 as a part,
(ii) those that contain 11 as a part,
(iii) those that contain 21+1 as a part and
(iv) those that contain aa, (a ≥ 2) or a(a−1)+1, (a ≥ 3) as a part.

We now transform the partitions in class (i) by subtracting 4 from each
part ignoring the subscripts. Obviously, this transformation will not disturb
the inequalities between the parts and so the transformed partition will be of
the type enumerated by Ai1(m,µ− 4m).

Next, we transform the partitions in class (ii) by deleting the part 11 and
then subtracting i + 3 from all the remaining parts ignoring the subscripts.
The transformed partition will be of the type enumerated by Ai1(m − 1, µ −
m(i+ 3) + i+ 2).
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Next, we transform the partitions in class (iii) by deleting the part 21+1

and then subtracting i+5 from all the remaining parts ignoring the subscripts.
The transformed partition will be of the type enumerated by Ai1(m − 1, µ −
m(i+ 5) + i+ 3).

Finally, we transform the partitions in class (iv) by replacing aa by (a−
1)a−1 or a(a−1)+1 by (a− 1)(a−2)+1 as the case may be and then subtracting 2
from all the remaining parts. This will produce a partition of µ− 2m+ 1 into
m parts. It is important to note here that by this transformation we get only
those partitions of µ−2m+1 into m parts which contain a part of the form aa
or a(a−1)+1. Therefore, the actual number of partitions which belong to class
(iv) is Ai1(m,µ− 2m+ 1)−Ai1(m,µ− 6m+ 1), where Ai1(m,µ− 6m+ 1) is the
number of partitions of µ− 2m+ 1 into m parts which are free from the parts
like aa or a(a−1)+1.

The above transformations are clearly reversible and so establish a bi-
jection between the partitions enumerated by Ai1(m,µ) and those enumerated
by Ai1(m,µ− 4m) +Ai1(m− 1, µ−m(i+ 3) + i+ 2) +Ai1(m− 1, µ−m(i+ 5) +
i+3)+Ai1(m,µ−2m+1)−Ai1(m,µ−6m+1). This leads to the identity (2.8)

Let

(2.9) hi(z; q) =
∞∑

m,µ=0

Ai1(m,µ)zmqµ

Substituting for Ai1(m,µ) from (2.8) into (2.9) and then simplifying, we
get

hi(z; q) = hi(zq4; q) + zqhi(zqi+3; q) + zq2hi(zqi+5; q) + q−1hi(zq2; q)

− q−1hi(zq6; q)
setting

hi(z; q) =
∞∑
λ=0

αi,λ(q)zλ

and then comparing the coefficients of zλ, we get

(2.10) αi,λ(q) =
q1+(λ−1)(i+3)(1 + q2λ−1)αi,λ−1(q)

(1− q4λ)(1− q2λ−1)
Iterating (2.10) λ–times and observing αi,0(q) = 1, we may easily get

(2.11) αi,λ(q) =
qλ[1+(λ−1)(i+3)/2](−q; q2)λ

(q4; q4)λ(q; q2)λ

Thus

hi(z; q) =

∞∑
λ=0

qλ[1+(λ−1)(i+3)/2](−q; q2)λ
(q4; q4)λ(q; q2)λ

= f i1(z; q)
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Now

∞∑
µ=0

Ai1(µ)qµ =

∞∑
µ=0

( ∞∑
m=0

Ai1(m,µ)

)
qµ = f i1(1; q) = f i1(q)

This completes the proof of Theorem 2.1. �

2.4. PROOF OF THEOREM 2.2

Proof. As the proof of this theorem is almost similar to the previous
theorem so we will omit its detailed proof. We give the outline of the proof of
this theorem.

To prove Theorem 2.2, we split the partitions enumerated by Ai2(m,µ)
into four classes:
(i) those that do not contain aa−2 or a(a−3)+1 as a part,
(ii) those that contain 31 as a part,
(iii) those that contain 41+1 as a part and
(iv) those that contain aa−2, (a ≥ 4) or a(a−3)+1, (a ≥ 5) as a part.

Now by performing some elementary reversible transformations in these
classes which establish a bijection between the partitions enumerated by
Ai2(m,µ) and those enumerated by Ai2(m,µ− 4m) +Ai2(m− 1, µ−m(i+ 3) +
i) +Ai2(m− 1, µ−m(i+ 5) + i+ 1) +Ai2(m,µ− 2m+ 1)−Ai2(m,µ− 6m+ 1).
This leads to the following recurrence relation

Ai2(m,µ) =Ai2(m,µ− 4m) +Ai2(m− 1, µ−m(i+ 3) + i) +Ai2(m− 1, µ

−m(i+ 5) + i+ 1) +Ai2(m,µ− 2m+ 1)−Ai2(m,µ− 6m+ 1).

Now using (2.7) for k = 2 and after simplification, we get the following
q–functional equation

f i2(z; q) =f i2(zq
4; q) + zq3f i2(zq

i+3; q) + zq4f i2(zq
i+5; q) + q−1f i2(zq

2; q)

− q−1f i2(zq6; q)

Now proceeding in the same manner as the previous theorem we get our
result. �

2.5. PROOF OF THEOREM 2.3

Proof. Let Ci(µ) denote the number of split n–color partitions of µ enu-
merated by Ai1(µ) with the added restriction that the smallest part is of the
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form aa and let Ci(m,µ) denote the number of split n–color partitions of µ
enumerated by Ci(µ) into m–parts. Further let

gi(q) =
∞∑
µ=0

Ci(µ)qµ,

gi(z; q) =
∞∑

m,µ=0

Ci(m,µ)zmqµ.

Using the arguments of the proof of Theorem 2.1, we see that

Ci(m,µ) =Ai1(m− 1, µ−m(i+ 3) + i+ 2) +
1

2

[
Ai1(m− 1, µ−m(i+ 5)

+ i+ 3) +Ai1(m,µ− 2m+ 1)−Ai1(m,µ− 6m+ 1)
]
.(2.12)

Translating (2.12) into a q–functional equation, we get

gi(z; q) =zqf i1(zq
i+3; q) +

1

2
zq2f1(zq

i+5; q) +
1

2
q−1f i1(zq

2; q)(2.13)

− 1

2
q−1f i1(zq

6; q)

setting

gi(z; q) =

∞∑
λ=0

βi,λ(q)zλ

and then comparing the coefficients of zλ in (2.13), we get

2βi,λ(q) =2q(i+3)(λ−1)+1αi,λ−1(q) + q(i+5)(λ−1)+2αi,λ−1(q) + q2λ−1αi,λ(q)

− q6λ−1αi,λ(q).

Substituting the value of αi,λ(q) from (2.11) and then simplifying, we get

βi,λ(q) =
qλ[1+(λ−1)(i+3)/2](−q; q2)λ−1

(q4; q4)λ−1(q; q2)λ
.

Thus

(2.14) gi(z; q) =

∞∑
λ=0

q(λ+1)[1+λ(i+3)/2](−q; q2)λzλ+1

(q4; q4)λ(q; q2)λ+1
= zqf i3(z; q).

Define P i(m,µ) by

f i3(z; q) =
∞∑
µ=0

∞∑
m=0

P i(m,µ)zmqµ.

We see by coefficient comparison in (2.14) that

Ci(m+ 1, µ+ 1) = P i(m,µ)
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Now if we replace the part aa in a partition enumerated by Ci(m+1, µ+1)
by (a−1)a+1, we see that the resulting partition is enumerated by Ai3(m+1, µ).
Thus we have

P i(m,µ) = Ai3(m+ 1, µ)
and so ∞∑

µ=0

∞∑
m=0

Ai3(m+ 1, µ)zmqµ = f i3(z; q)

Now
∞∑
µ=0

Ai3(µ)qµ =

∞∑
µ=0

( ∞∑
m=1

Ai3(m,µ)

)
qµ =

∞∑
µ=0

( ∞∑
m=0

Ai3(m+ 1, µ)

)
qµ

= f i3(1; q) = f i3(q)

This completes the proof of Theorem 2.3. �

2.6. ROGERS-RAMANUJAN TYPE IDENTITIES
FOR SPLIT (n+ t)–COLOR PARTITIONS

For the case i = −1 of Theorems 2.1–2.3 in conjunction with the identities
(2.4)–(2.6) produces the following Rogers-Ramanujan type identities for split
(n + t)–color partitions which are similar to Rogers-Ramanujan-MacMahon
type partition identities.

Theorem 2.4. Let A−11 (µ) denote the number of split n–color partitions
of µ such that (i) if ap is the smallest or the only part in the partition, then
a ≡ p(mod4), (ii) the red part of the subscripts cannot exceed 1 and (iii) the
weighted difference between any two consecutive parts is nonnegative and is
≡ 0(mod4). Let

B1(µ) =

µ∑
l=0

C1(µ− l)D1(l),

where C1(µ) is the number of partitions of µ into parts ≡ ±2,±4,±8(mod20)
and D1(µ) denotes the number of partitions of µ into distinct parts ≡ ±1,±2,
5(mod10), where parts ≡ 5(mod10) are counted twice. Then A−11 (µ) = B1(µ),
for all µ.

Example 2.1. A−11 (5) = 5, since the relevant partitions are: 55, 54+1, 51,
42 + 11, 41+1 + 11.

Also, B1(5) =
5∑
l=0

C1(5− l)D1(l)

= C1(5)D1(0) + C1(4)D1(1) + · · ·+ C1(0)D1(5)
= 0(1) + 2(1) + 0(1) + 1(1) + 0(0) + 1(2)
= 5.
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Theorem 2.5. Let A−12 (µ) denote the number of split n–color partitions
of µ such that (i) if ap is the smallest or the only part in the partition, then
a ≡ p + 2(mod4), (ii) the red part of the subscripts cannot exceed 1, (iii) all
parts are greater than or equal to 3 and (iv) the weighted difference between
any two consecutive parts is nonnegative and is ≡ 0(mod4). Let

B2(µ) =

µ∑
l=0

C2(µ− l)D2(l),

where C2(µ) is the number of partitions of µ into parts ≡ ±4,±6,±8(mod20)
and D2(µ) denotes the number of partitions of µ into distinct parts ≡ ±3,±4,
5(mod10), where parts ≡ 5(mod10) are counted twice. Then A−12 (µ) = B2(µ),
for all µ.

Example 2.2. A−12 (5) = 2, since the relevant partitions are: 53, 52+1.

Also, B2(5) =
5∑
l=0

C2(5− l)D2(l)

= C2(5)D2(0) + C2(4)D2(1) + · · ·+ C2(0)D2(5)
= 0(1) + 1(0) + 0(0) + 0(1) + 0(1) + 1(2)
= 2.

Theorem 2.6. Let A−13 (µ) denote the number of split (n+ 2)–color par-
titions of µ such that (i) the smallest part or the only part is of the form aa+2,
(ii) the red part of the subscripts cannot exceed 1, (iii) the red part of the
subscript of the smallest part is 0 and (iv) the weighted difference between any
two consecutive parts is nonnegative and is ≡ 0(mod4). Let B3(µ) denote the
number of partitions of µ into parts ≡ ±1,±3,±4 ± 7,±8 ± 9(mod20). Then
A−13 (µ) = B3(µ), for all µ.

Example 2.3. A−13 (5) = 3, since the relevant partitions are: 57, 53 + 02,
52+1 + 02. Also, B3(5) = 3, since the relevant partitions are: 4 + 1, 3 + 1 + 1,
1 + 1 + 1 + 1 + 1.
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