GENERALIZED MATRICES, K-THEORY AND CYCLIC COHOMOLOGY

SEYED EBRAHIM AKRAMI* and REZA MOHAMMADI

Communicated by Henri Moscovici

Abstract

We generalize the concept of a matrix over an ordinary algebra to the concept of a matrix over an algebra in a monoidal category. Based on this concept we extend K-theory and cyclic cohomology and Alain Connes' pairing between them.

AMS 2010 Subject Classification: 19D55, 46L80, 58B34, 20G42, 18D10.
Key words: generalized matrices, monoidal category, K-theory, cyclic cohomology.

1. INTRODUCTION

The idea of NCG (non-commutative geometry) is to extend the domain of classical concepts. The classical concept of a space is extended to the concept of an algebra or a C^{*}-algebra and the classical concept of a vector bundle over a space is extended to a finitely generated projective module over an algebra or idempotent matrices over this algebra. Then the classical topological K-theory is extended to algebraic and operator K-theory. Also, classical de Rham cohomology is extended to cyclic cohomology and classical index formula is extended as a pairing between operator K-theory and cyclic cohomology [2].

In this article, we extend the concept of a matrix over an algebra and therefore, we extend K-theory and cyclic cohomology. This work is based on the following simple idea. Let A be a complex associative algebra. Every matrix $X=\left(a_{i j}\right)$ of size $m \times n$ over A can be regarded as a linear map $\mathbb{C}^{m} \xrightarrow{T} A \otimes \mathbb{C}^{n}$, $T e_{i}=\sum_{j} a_{i j} \otimes e_{j}$. The crucial point is that the later has meaning in any monoidal category \mathcal{C} if we replace spaces \mathbb{C}^{m} and \mathbb{C}^{n} with objects V, W of the category and take A an algebra in \mathcal{C}. Thus, we may extend the concept of a matrix instead of being a rectangle table of elements of an algebra to be a morphism $V \rightarrow A \otimes W$ and call it a matrix over A of size $V \times W$. Notice that since $\operatorname{Hom}_{A-M o d}\left(A \otimes \mathbb{C}^{m}, A \otimes \mathbb{C}^{n}\right) \cong \operatorname{Hom}_{\mathbb{C}-V e c}\left(\mathbb{C}^{m}, A \otimes \mathbb{C}^{n}\right)$ thus, one can define similarly a matrix over an algebra $A \in \mathcal{C}$ as a morphism $A \otimes V \rightarrow A \otimes W$. This later viewpoint is used in [4] and [5].

[^0]
2. GENERALIZED MATRICES

Let \mathcal{O} be the class of objects of a category \mathcal{C}. We denote the set of morphisms with initial object u and terminal object v, by $H_{u, v}$ and the set of loops, i.e. morphisms whose initial and terminal objects are the same object u, by E_{u}. We denote the composition of a morphism $f \in H_{u, v}$ with a morphism $g \in H_{v, w}$ by $f \circ g \in H_{u, w}$.

We define two maps s and r called source and range maps as follows. For any morphism $f \in H_{u, v}$, we set $s(f):=u$ and $r(f):=v$. We have $s(f \circ g)=s(f), r(f \circ g)=r(g)$.

We regard any object u as a loop by identifying it with the loop id_{u}. Thus with this agreement we have $s(u)=u, r(u)=u$ for all object u and $s(f) \circ f=f, f \circ r(f)=f$.

We suppose that $H_{u, u}$ is a complex vector space and the composition is bilinear.

We assume that \mathcal{O} is equipped with an addition law \oplus which makes it to an Abelian associative semigroup with a null object denoted by 0 and for any morphism $f_{i} \in H_{u_{i}, v_{i}}, i=1,2$, there exists an addition law

$$
f_{1} \oplus f_{2} \in H_{u_{1} \oplus u_{2}, v_{1} \oplus v_{2}}
$$

such that it is commutative and associative and there exists a null morphism $0 \in E_{0}$ such that $0 \oplus f=f, \forall f \in H_{u, v}$. Moreover, we assume that for any $u_{1}, u_{2} \in \mathcal{O}$ there are morphisms $\pi_{k}=\pi_{k}\left(\left\{u_{1}, u_{2}\right\}\right) \in H_{u_{1} \oplus u_{2}, u_{k}}$ and $\imath_{k}=$ $\imath_{k}\left(\left\{u_{1}, u_{2}\right\}\right) \in H_{u_{k}, u_{1} \oplus u_{2}}, k=1,2$ such that

$$
\begin{equation*}
\imath_{k} \pi_{l}=\delta_{k l} \mathrm{id}_{u_{k}}, \quad \sum_{k=1}^{2} \pi_{k} \imath_{k}=\mathrm{id}_{u_{1} \oplus u_{2}} \tag{2.1}
\end{equation*}
$$

We recall [3], that \mathcal{C} is called a monoidal category if there exists a tensor product in a category \mathcal{C}, i.e. a covariant functor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ which associates to each pair of objects $u, v \in \mathcal{O}$ an object $u \otimes v \in \mathcal{O}$ and to each pair of morphisms $f \in H_{u, v}, g \in H_{u^{\prime}, v^{\prime}}$ a morphism $f \otimes g \in H_{u \otimes u^{\prime}, v \otimes v^{\prime}}$ and there exists an object 1 such that the following conditions hold

$$
u \otimes \mathbf{1}=\mathbf{1} \otimes u=u, \quad(u \otimes v) \otimes w=u \otimes(v \otimes w)
$$

and

$$
f \otimes \mathrm{id}_{\mathbf{1}}=\mathrm{id}_{\mathbf{1}} \otimes f=f, \quad(f \otimes g) \otimes h=f \otimes(g \otimes h)
$$

To say that \otimes is a covariant functor means that we have the following identities

$$
\left(f f^{\prime}\right) \otimes\left(g g^{\prime}\right)=(f \otimes g)\left(f^{\prime} \otimes g^{\prime}\right), \quad \mathrm{id}_{u} \otimes \mathrm{id}_{v}=\mathrm{id}_{u \otimes v}
$$

Moreover, we assume that \otimes of objects is distributive with respect to \oplus of objects and \otimes of morphisms is bilinear. We require that the following compatibility conditions hold

$$
\begin{equation*}
\imath_{k}^{a}=\operatorname{id}_{a} \otimes \imath_{k}, \pi_{k}^{a}=\operatorname{id}_{a} \otimes \pi_{k} \tag{2.2}
\end{equation*}
$$

for all $u_{k}, a \in \mathcal{O}, k=1,2$, where $\imath_{k}=\imath_{k}\left(\left\{u_{1}, u_{2}\right\}\right), \pi_{k}=\pi_{k}\left(\left\{u_{1}, u_{2}\right\}\right), \imath_{k}^{a}=$ $\imath_{k}\left(\left\{a \otimes u_{1}, a \otimes u_{2}\right\}\right), \pi_{k}^{a}=\pi_{k}\left(\left\{a \otimes u_{1}, a \otimes u_{2}\right\}\right)$. Note that we immediately conclude
$\pi_{k}^{a \otimes b}=\operatorname{id}_{a} \otimes \pi_{k}^{b}, \imath_{k}^{a \otimes b}=\operatorname{id}_{a} \otimes \imath_{k}^{b}, \imath_{k}^{a}\left(\operatorname{id}_{a} \otimes f\right)=\operatorname{id}_{a} \otimes \imath_{k} f,\left(\operatorname{id}_{a} \otimes h\right) \pi_{k}^{a}=\operatorname{id}_{a} \otimes h \pi_{k}$ for all $u_{1}, u_{2}, a, b, u \in \mathcal{O}, f \in H_{u_{1} \oplus u_{2}, u}, h \in H_{u, u_{1} \oplus u_{2}}, k=1,2$.

We define a product

$$
\begin{equation*}
H_{u, v}^{a} \times H_{v, w}^{b} \rightarrow H_{u, w}^{a \otimes b}, \quad f \odot g:=f\left(\mathrm{id}_{a} \otimes g\right), \quad a, b, u, v \in \mathcal{O} \tag{2.4}
\end{equation*}
$$

This product is associative in the sense that we have
(2.5) $(f \odot g) \odot h=f \odot(g \odot h), \quad a, b, c, u, v, w, x \in \mathcal{O}, f \in H_{u, v}^{a}, g \in H_{v, w}^{b} H_{w, x}^{c}$.

Note that we recover the composition law of the category via this product, i.e. we have

$$
\begin{equation*}
f g=f \odot g, \quad f \in H_{u, v}, g \in H_{v, w}, \tag{2.6}
\end{equation*}
$$

since we have $g=\mathrm{id}_{\mathbf{1}} \otimes g$, we conclude that $f g=f\left(\mathrm{id}_{\mathbf{1}} \otimes g\right)=f \odot g$.
Now let φ be a morphism from a to b. We define

$$
\begin{equation*}
\varphi^{*}: H_{u, v}^{a} \rightarrow H_{u, v}^{b}, \quad \varphi^{*}(f):=f\left(\varphi \otimes \operatorname{id}_{v}\right), \quad u, v \in \mathcal{O} \tag{2.7}
\end{equation*}
$$

The proof of the following lemma is straightforward.
Lemma 2.1. (i) For all $f \in H_{u, v}^{a}, g \in H_{v, w}^{b}, \varphi \in H_{a, a^{\prime}}, \psi \in H_{b, b^{\prime}}, u, v, w, a$, $a^{\prime}, b, b^{\prime} \in \mathcal{O}$, we have

$$
(\varphi \otimes \psi)^{*}(f \odot g)=\varphi^{*}(f) \odot \psi^{*}(g), \quad \varphi^{*}(f \odot g)=\varphi^{*}(f) \odot g
$$

(ii) For all $f \in H_{u, v}^{a}, \varphi \in H_{a, b}, \psi \in H_{b, c}, u, v, a, b, c \in \mathcal{O}$, we have

$$
(\varphi \psi)^{*}(f)=\psi^{*}\left(\varphi^{*}(f)\right)
$$

(iii) $\varphi^{*}(f g)=f \varphi^{*}(g)$,
(iv)

$$
\varphi^{*}\left(\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\right)=\left[\begin{array}{ll}
\varphi^{*}\left(f_{11}\right) & \varphi^{*}\left(f_{12}\right) \\
\varphi^{*}\left(f_{21}\right) & \varphi^{*}\left(f_{22}\right)
\end{array}\right]
$$

(v)

$$
\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right] \odot\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right]=\left[\begin{array}{ll}
f_{11} \odot g_{11}+f_{12} \odot g_{21} & f_{11} \odot g_{12}+f_{12} \odot g_{22} \\
f_{21} \odot g_{11}+f_{22} \odot g_{21} & f_{21} \odot g_{12}+f_{22} \odot g_{22}
\end{array}\right]
$$

A triple (a, m, μ) is called an associative unital algebra in the monoidal category \mathcal{C}, if $a \in \mathcal{O}$ and $m \in H_{a \otimes a, a}, \mu \in H_{1, a}$ and the following axioms hold (2.8)

$$
\left(m \otimes \operatorname{id}_{a}\right) m=\left(\operatorname{id}_{a} \otimes m\right) m, \quad\left(\mu \otimes \operatorname{id}_{a}\right) m=\operatorname{id}_{a}=\left(\mathrm{id}_{a} \otimes \mu\right) m
$$

Definition 2.2. Let (a, m, μ) be an associative unital algebra in the monoidal category \mathcal{C}. Any element of the space $H_{u, v}^{a}:=H_{u, a \otimes v}$ is called a matrix of size $u \times v$ over algebra a, where $u, v \in \mathcal{O}$.

Proposition 2.3. For any $u, v, w \in \mathcal{O}$ the following defines a bilinear map

$$
\begin{equation*}
\circ_{a}: H_{u, v}^{a} \times H_{v, w}^{a} \rightarrow H_{u, w}^{a}, \quad f \circ_{a} g:=f\left(\mathrm{id}_{a} \otimes g\right)\left(m \otimes \mathrm{id}_{w}\right) \tag{2.9}
\end{equation*}
$$

We have $\left(f \circ_{a} g\right) \circ_{a} h=f \circ_{a}\left(g \circ_{a} h\right)$ for $f \in H_{u, v}^{a}, g \in H_{v, w}^{a}, h \in$ $H_{w, x}^{a}, u, v, w, x \in \mathcal{O}$. In particular, $E_{u}^{a}:=H_{u, u}^{a}$ is an associative unital complex algebra under the above product. The unit is $\mu \otimes \mathrm{id}_{u}$. Moreover for any elements $u_{1}, u_{2} \in \mathcal{O}$, we have the following identification as algebras

$$
E_{u_{1} \oplus u_{2}}^{a}=\left[\begin{array}{cc}
H_{u_{1}, u_{1}}^{a} & H_{u_{1}, u_{2}}^{a} \tag{2.10}\\
H_{u_{2}, u_{1}}^{a} & H_{u_{2}, u_{2}}^{a}
\end{array}\right], \quad f \mapsto\left(f_{i j}\right)_{i, j=1}^{2}
$$

where $f_{i j}=\imath_{i} f \pi_{j}^{a}$. The inverse is given by $\left(f_{i j}\right)_{i, j=1}^{2} \mapsto f:=\sum_{i, j=1}^{2} \pi_{i} f_{i j} \imath_{j}^{a}$.
Proof. Associativity:

$$
\begin{aligned}
& \left(f \circ_{a} g\right) \circ_{a} h=\left[f\left(\mathrm{id}_{a} \otimes g\right)\left(m \otimes \mathrm{id}_{w}\right)\right] \circ_{a} h \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left(m \otimes \mathrm{id}_{w}\right)\left(\mathrm{id}_{a} \otimes h\right)\left(m \otimes \mathrm{id}_{x}\right) \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left(m \mathrm{id}_{a} \otimes \mathrm{id}_{w} h\right)\left(m \otimes \mathrm{id}_{x}\right) \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left(\mathrm{id}_{a \otimes a} m \otimes h \mathrm{id}_{a \otimes x}\right)\left(m \otimes \mathrm{id}_{x}\right) \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left(\mathrm{id}_{a \otimes a} \otimes h\right)\left(m \otimes \mathrm{id}_{a \otimes x}\right)\left(m \otimes \mathrm{id}_{x}\right) \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left[\mathrm{id}_{a} \otimes\left(\mathrm{id}_{a} \otimes h\right)\right]\left[\left(m \otimes \mathrm{id}_{a}\right) \otimes \mathrm{id}_{x}\right]\left(m \otimes \mathrm{id}_{x}\right) \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left[\mathrm{id}_{a} \otimes\left(\mathrm{id}_{a} \otimes h\right)\right]\left[\left(m \otimes \mathrm{id}_{a}\right) m \otimes \mathrm{id}_{x} \mathrm{id}_{x}\right] \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left[\mathrm{id}_{a} \otimes\left(\mathrm{id}_{a} \otimes h\right)\right]\left[\left(\mathrm{id}_{a} \otimes m\right) m \otimes \mathrm{id}_{x}\right] \\
& =f\left(\mathrm{id}_{a} \otimes g\right)\left[\mathrm{id}_{a} \otimes\left(\mathrm{id}_{a} \otimes h\right)\right]\left[\mathrm{id}_{a} \otimes\left(m \otimes \mathrm{id}_{x}\right)\right]\left(m \otimes \mathrm{id}_{x}\right) \\
& =f\left[\mathrm{id}_{a} \otimes\left(g\left(\mathrm{id}_{a} \otimes h\right)\left(m \otimes \mathrm{id}_{x}\right)\right]\left(m \otimes \mathrm{id}_{x}\right)\right. \\
& =f\left[\mathrm{id}_{a} \otimes\left(g \circ_{a} h\right)\right]\left(m \otimes \mathrm{id}_{x}\right) \\
& =f \circ_{a}\left(g \circ_{a} h\right)[-1.25 p t]
\end{aligned}
$$

The unit:

$$
\begin{aligned}
f \circ_{a}\left(\mu \otimes \mathrm{id}_{u}\right) & \left.=f\left(\mathrm{id}_{a} \otimes \mu \otimes \mathrm{id}_{u}\right)\left(m \otimes \mathrm{id}_{u}\right)\right] \\
& =f\left[\left(\operatorname{id}_{a} \otimes \mu\right) m \otimes \mathrm{id}_{u} \mathrm{id}_{u}\right] \\
& =f\left(\mathrm{id}_{a} \otimes \mathrm{id}_{u}\right) \\
& =f,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\mu \otimes \mathrm{id}_{u}\right) \circ_{a} f & =\left(\mu \otimes \mathrm{id}_{u}\right)\left(\mathrm{id}_{a} \otimes f\right)\left(m \otimes \mathrm{id}_{u}\right) \\
& =(\mu \otimes f)\left(m \otimes \mathrm{id}_{u}\right) \\
& =\left(\mathrm{id}_{\mathbf{1}} \mu \otimes f \mathrm{id}_{a \otimes u}\right)\left(m \otimes \mathrm{id}_{u}\right) \\
& =\left(\mathrm{id}_{\mathbf{1}} \otimes f\right)\left(\mu \otimes \mathrm{id}_{a} \otimes \mathrm{id}_{u}\right)\left(m \otimes \mathrm{id}_{u}\right) \\
& =f\left[\left(\mu \otimes \mathrm{id}_{a}\right) m \otimes \mathrm{id}_{u} \mathrm{id}_{u}\right] \\
& =f\left(\mathrm{id}_{a} \otimes \mathrm{id}_{u}\right) \\
& =f
\end{aligned}
$$

We denote the map (2.10) by Φ. It is clear that Φ is linear. Let $f, g \in$ $E_{u_{1} \oplus u_{2}}^{a}$, we have

$$
\begin{aligned}
\left(\Phi\left(f \circ_{a} g\right)\right)_{i j} & =\imath_{i}\left(f \circ_{a} g\right) \pi_{j}^{a} \\
& =\imath_{i} f\left(\mathrm{id}_{a} \otimes g\right)\left(m \otimes \mathrm{id}_{u_{1} \oplus u_{2}}\right) \pi_{j}^{a} \\
& =\sum_{k} \imath_{i} f \pi_{k}^{a} \imath_{k}^{a}\left(\mathrm{id}_{a} \otimes g\right)\left(m \otimes \mathrm{id}_{u_{1} \oplus u_{2}}\right) \pi_{j}^{a} \\
& =\sum_{k} f_{i k}\left(i d_{a} \otimes \imath_{k} g\right) \pi_{j}^{a \otimes a}\left(m \otimes \mathrm{id}_{u_{j}}\right) \\
& =\sum_{k} f_{i k}\left(i d_{a} \otimes \imath_{k} g\right)\left(\mathrm{id}_{a} \otimes \pi_{j}^{a}\right)\left(m \otimes \mathrm{id}_{u_{j}}\right) \\
& =\sum_{k} f_{i k}\left(\mathrm{id}_{a} \otimes \imath_{k} g \pi_{j}^{a}\right)\left(m \otimes \mathrm{id}_{u_{j}}\right) \\
& =\sum_{k} f_{i k} \circ_{a} g_{k j} \\
& =(\Phi(f) \Phi(g))_{i j}
\end{aligned}
$$

Invertibility of Φ :

$$
\begin{aligned}
\Phi^{-1}(\Phi(f)) & =\sum_{i, j=1}^{2} \pi_{i}(\Phi(f))_{i j} \imath_{j}^{a} \\
& =\sum_{i, j=1}^{2} \pi_{i} \imath_{i} f \pi_{j}^{a} \imath_{j}^{a} \\
& =\operatorname{id}_{u_{1} \oplus u_{2}} f \mathrm{id}_{a \otimes u_{1} \oplus a \otimes u_{2}} \\
& =\operatorname{id}_{u_{1} \oplus u_{2}} f \mathrm{id}_{a \otimes\left(u_{1} \oplus u_{2}\right)} \\
& =f
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\Phi\left(\Phi^{-1}\left((f)_{i j}\right)\right)\right)_{k l} & =\sum_{i, j=1}^{2}\left(\Phi\left(\pi_{i} f_{i j} \imath_{j}^{a}\right)\right)_{k l} \\
& =\sum_{i, j=1}^{2} \imath_{k} \pi_{i} f_{i j} \imath_{j}^{a} \pi_{l}^{a} \\
& =\mathrm{id}_{u_{i}} f_{i j} \mathrm{id}_{a \otimes u_{j}} \\
& =f . \square
\end{aligned}
$$

Example 2.4. Let Vec denote the category whose objects are complex vector spaces and morphisms are linear maps. The sum \oplus is just the direct sum of vector spaces. The morphisms π_{k} and \imath_{k} are the canonical projection and embedding, respectively. The product \otimes is just the tensor product of vector spaces and $\mathbf{1}=\mathbb{C}$. An associative unital algebra in this category is just an ordinary associative unital algebra, where $m(x \otimes y):=x y, \mu(\lambda):=$ $\lambda 1_{a}, x, y \in a, \lambda \in \mathbb{C}$. As we explained in Introduction, a matrix in Vec of size $\mathbb{C}^{m} \times \mathbb{C}^{n}$ over a, is just an ordinary $m \times n$ matrix over ordinary algebra a.

Example 2.5. Let (h, Δ, S, ϵ) be a complex Hopf algebra and h-Com be the category of left h-comodules, $[6,10]$. That is, an object is a vector space u equipped with a linear map $\alpha: u \rightarrow h \otimes u$, called coaction, satisfying $\alpha\left(\mathrm{id}_{h} \otimes\right.$ $\alpha)=\alpha\left(\Delta \otimes \operatorname{id}_{u}\right), \alpha\left(\epsilon \otimes \mathrm{id}_{u}\right)=\mathrm{id}_{u}$. Sometimes we denote this object by (u, α). In Sweedler's notation, we write $\alpha(x)=\sum x_{(1)} \otimes x_{(2)}, x \in u$. The morphisms are h-comodule intertwiners, i.e. linear maps $f:(u, \alpha) \rightarrow(v, \beta)$ satisfying $f \beta=\alpha\left(\mathrm{id}_{h} \otimes f\right)$. The direct sum of two left h-comodules $(u, \alpha),(v, \beta)$ is the ordinary direct sum of vector spaces $u \oplus v$ equipped with the coaction $\alpha \oplus \beta$: $u \oplus v \rightarrow h \otimes(u \oplus v)=(h \otimes u) \oplus(h \otimes v),(\alpha \oplus \beta)(x, y):=(\alpha(x), \beta(y))$. In Sweedler's notation, it means $(\alpha \oplus \beta)(x, y)=\sum x_{(1)} \otimes\left(x_{(2)}, 0\right)+\sum y_{(1)} \otimes\left(0, y_{(2)}\right)$. Thus $(\alpha \oplus \beta)\left(\mathrm{id}_{h} \otimes(\alpha \oplus \beta)\right)(x, y)=\sum x_{(1)} \otimes x_{(2)} \otimes\left(x_{(3)}, 0\right)+\sum y_{(1)} \otimes y_{(2)} \otimes\left(0, y_{(3)}\right)=$ $(\alpha \oplus \beta)\left(\Delta \otimes \mathrm{id}_{\alpha \oplus \beta}\right)(x, y)$ and $(\alpha \oplus \beta)\left(\epsilon \otimes \mathrm{id}_{\alpha \oplus \beta}\right)(x, y)=\sum \epsilon\left(x_{(1)}\right)\left(x_{(2)}, 0\right)+$ $\sum \epsilon\left(y_{(1)}\right)\left(0, y_{(2)}\right)=\sum\left(\epsilon\left(x_{(1)}\right) x_{(2)}, 0\right)+\sum\left(0, \epsilon\left(y_{(1)}\right) y_{(2)}\right)=(x, 0)+(0, y)=(x, y)$. Thus $(u \oplus v, \alpha \oplus \beta)$ is a left h-comodule. It is easy to see that the canonical projection and embedding π_{k} and \imath_{k} are morphisms in this category. It is wellknown that this category is monoidal category where the tensor product of two left h-comodules $(u, \alpha),(v, \beta)$ is the ordinary tensor product of vector spaces $u \otimes v$ equipped with the coaction $\alpha \otimes \beta: u \otimes v \rightarrow h \otimes u \otimes v,(\alpha \otimes \beta)(x \otimes y)=$ $\sum x_{(1)} y_{(1)} \otimes x_{(2)} \otimes y_{(2)}$. It is easy that we have $u \otimes(v \oplus w)=(u \otimes v) \oplus(u \otimes w)$ not only as vector spaces but also as left h-comodules. Thus \otimes is distributive. An associative algebra a in this category is just a left h-comodule algebra, i.e. an ordinary algebra a which is also a left h-comodule with coaction α satisfying
$\alpha(x y)=x_{(1)} y_{(1)} \otimes x_{(2)} y_{(2)}, x, y \in a$. Now let us see how a matrix over a in this category can be presented by ordinary matrices.

Proposition 2.6. Let u and v be two left h-comodules of dimension m and n, respectively. We fix a basis for each of them; $\left\{e_{i} \mid 1 \leq i \leq m\right\}$ and $\left\{f_{i} \mid 1 \leq i \leq n\right\}$. To any matrix $T \in H_{u, v}^{a}$ we assign a triple (X, U, V) of ordinary matrices $X \in M_{m, n}(a), U \in M_{m}(h), V \in M_{n}(h)$ satisfying (2.11)
$\Delta\left(U_{i j}\right)=\sum_{k} U_{i k} \otimes U_{k j}, \quad \Delta\left(V_{i j}\right)=\sum_{k} V_{i k} \otimes V_{k j}, \quad \epsilon\left(U_{i j}\right)=\delta_{i j}, \quad \epsilon\left(V_{i j}\right)=\delta_{i j}$ and

$$
\begin{equation*}
\gamma\left(X_{i j}\right)=\sum_{k, l} U_{i k} S V_{l j} \otimes X_{k l} . \tag{2.12}
\end{equation*}
$$

This assignment is given as follows: The matrices U, V and X are defined by the equations $\alpha\left(e_{i}\right):=\sum_{j} U_{i j} \otimes e_{j}, \beta\left(f_{i}\right):=\sum_{j} V_{i j} \otimes f_{j}, T\left(e_{i}\right):=\sum_{j} X_{i j} \otimes$ f_{j}, where α, β and γ are h-comodule structures of u, v and a. Conversely let (X, U, V) be a triple of matrices $X \in M_{m, n}(a), U \in M_{m}(h), V \in M_{n}(h)$ satisfying the above relations and u and v be m and n-dimensional vector spaces with a fixed bases $\left\{e_{i} \mid 1 \leq i \leq m\right\}$ and $\left\{f_{i} \mid 1 \leq i \leq n\right\}$. Now we define a matrix $T \in H_{u, v}^{a}$ as follows: The h-comodule structure of u and v are given by $\alpha\left(e_{i}\right):=\sum_{j} U_{i j} \otimes e_{j}, \beta\left(f_{i}\right):=\sum_{j} V_{i j} \otimes f_{j}$, and T is given by $T\left(e_{i}\right):=$ $\sum_{j} X_{i j} \otimes f_{j}$.

The vector space structure of $H_{u, v}^{a}$ corresponds to

$$
\begin{equation*}
z(X, U, V)+\left(X^{\prime}, U, V\right)=\left(z X+X^{\prime}, U, V\right) \tag{2.13}
\end{equation*}
$$

$z \in \mathbb{C}, X, X^{\prime} \in M_{m, n}(a), U \in M_{m}(h), V \in M_{n}(h)$, and the multiplication of elements of $H_{u, v}^{a}$ with elements $H_{v, w}^{a}$, where w is another h-comodule with a fixed basis, corresponds to

$$
\begin{equation*}
(X, U, V)(Y, V, W)=(X Y, U, W) \tag{2.14}
\end{equation*}
$$

where $X \in M_{m, n}(a), Y \in M_{n, p}(a), U \in M_{m}(h), V \in M_{n}(h), W \in M_{p}(h)$.
Proof. Relations (2.11) are the consequences of the assumption that u and v are comodules over h. As a consequence of these relations as well as the Hopf algebra axioms, we get $\sum_{k} V_{i k} S V_{k j}=\epsilon\left(V_{i j}\right)=\delta_{i j}$. Next, let us write $\gamma\left(X_{i j}\right)=\sum_{l} Y_{i j}^{l} \otimes Z_{i j}^{l}$. So since T is a h-comdule intertwiner, we get $\sum_{j, k, l} Y_{i j}^{l} V_{j k} \otimes Z_{i j}^{l} \otimes f_{k}=\sum_{j, k} U_{i j} \otimes X_{j k} \otimes f_{k}$. Thus $\sum_{j, l} Y_{i j}^{l} V_{j k} \otimes Z_{i j}^{l}=\sum_{j} U_{i j} \otimes$ $X_{j k}$. Hence for each p we have $\sum_{j, k, l} Y_{i j}^{l} V_{j k} S V_{k p} \otimes Z_{i j}^{l}=\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. So $\sum_{j, l} Y_{i j}^{l}\left(\sum_{k} V_{j k} S V_{k p}\right) \otimes Z_{i j}^{l}=\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. Thus $\sum_{j, l} Y_{i j}^{l} \delta_{j p} \otimes Z_{i j}^{l}=$ $\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. Hence $\sum_{l} Y_{i p}^{l} \otimes Z_{i p}^{l}=\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. So $\gamma\left(X_{i p}\right)=$
$\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. Therefore, we proved the relation (2.12). To get the converse assertion, we need to prove that the linear map T given by $T\left(e_{i}\right):=$ $\sum_{j} X_{i j} \otimes f_{j}$, is a h-comodules intertwiner. To show this we start from the relation $\gamma\left(X_{i p}\right)=\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. Thus $\sum_{l} Y_{i p}^{l} \otimes Z_{i p}^{l}=\sum_{j, k} U_{i j} S V_{k p} \otimes X_{j k}$. Hence for each q we get $\sum_{l, p} Y_{i p}^{l} V_{p q} \otimes Z_{i p}^{l}=\sum_{j, k, p} U_{i j} S V_{k p} V_{p q} \otimes X_{j k}$. Thus $\sum_{l, p} Y_{i p}^{l} V_{p q} \otimes Z_{i p}^{l}=\sum_{j} U_{i j} \otimes X_{j q}$. So $\sum_{l, p, q} Y_{i p}^{l} V_{p q} \otimes Z_{i p}^{l} \otimes f_{q}=\sum_{j, q} U_{i j} \otimes X_{j q} \otimes f_{q}$. This means exactly that T is a h-comodules intertwiner.

Relation (2.13) is the consequence of the definition $\left(z T+T^{\prime}\right)\left(e_{i}\right)=$ $\sum_{j} X_{i j} \otimes f_{j}+\sum_{j} X_{i j}^{\prime} \otimes f_{j}=\sum_{j}\left(X_{i j}+X_{i j}^{\prime}\right) \otimes f_{j}$, where $T, T^{\prime} \in H_{u, v}^{a}$ and $(X, U, V),\left(X^{\prime}, U, V\right)$ are their corresponding ordinary matrices. Similarly, the relation (2.14) is the consequence of the definition $\left(T \circ_{a} T^{\prime}\right)\left(e_{i}\right)=(m \otimes$ $\left.\mathrm{id}_{w}\right)\left(\left(\operatorname{id}_{a} \otimes T^{\prime}\right)\left(\sum_{j} X_{i j} \otimes f_{j}\right)\right)=\left(m \otimes \mathrm{id}_{w}\right)\left(\sum_{j, k} X_{i j} \otimes X_{j k}^{\prime} \otimes g_{k}\right)=\sum_{j, k} X_{i j} X_{j k}^{\prime} \otimes$ $g_{k}=\sum_{k}\left(X X^{\prime}\right)_{i k} \otimes g_{k}$, where $T \in H_{u, v}^{a}, T^{\prime} \in H_{v, w}^{a}$ and $(X, U, V),\left(X^{\prime}, V, W\right)$ are their corresponding ordinary matrices.

Example 2.7. We consider a special case of example 2 that is $h=\mathbb{C}[G]$ group Hopf algebra for a finite group G. It is well-known that the objects of this category are exactly the G-graded vector spaces. We choose $a=h=\mathbb{C}[G]$, with the coaction $\gamma=\Delta$, which is an algebra in the category $\mathbb{C}[G]$-Com, since an algebra in this category is nothing other than a G-graded algebra, see [8].

Proposition 2.8. Matrices over algebra $\mathbb{C}[G]$ in the category $\mathbb{C}[G]$-Com of size $u \times v$, where u and v are finite dimensional G-graded vector spaces, correspond to triples $\left(\left\{X^{g}\right\}_{g \in G},\left\{U^{g}\right\}_{g \in G},\left\{V^{g}\right\}_{g \in G}\right)$ of matrices $X^{g} \in M_{m, n}(\mathbb{C})$, $U^{g} \in M_{m}(\mathbb{C}), V^{g} \in M_{n}(\mathbb{C})$ such that each family $\left\{U^{g}\right\}_{g},\left\{V^{g}\right\}_{g}$ is a family of orthogonal idempotents and $\sum_{g} U^{g}=I_{m}, \sum_{g} V^{g}=I_{n}$ and

$$
\begin{equation*}
\sum_{g_{1} g_{2}^{-1}=g} U^{g_{1}} X^{g^{\prime}} V^{g_{2}}=\delta_{g, g^{\prime}} X^{g} \tag{2.15}
\end{equation*}
$$

Proof. A matrix $X \in M_{m, n}(\mathbb{C}[G])$ is nothing other than a family of matrices $\left\{X^{g} \in M_{m, n}(\mathbb{C})\right\}_{g \in G}$. The relations mentioned in this proposition are just rewriting of the relations (2.11) and (2.12): We have $\Delta\left(U_{i j}\right)=\Delta\left(\sum_{g} U_{i j}^{g} g\right)=$ $\sum_{g} U_{i j}^{g} g \otimes g$. On the other hand, $\sum_{k} U_{i k} \otimes U_{k j}=\sum_{k, g, g^{\prime}} U_{i k}^{g} U_{k j}^{g} g \otimes g^{\prime}$. Thus $\sum_{k} U_{i k}^{g} U_{k j}^{g}=\delta_{g, g^{\prime}} U_{i j}^{g}$. That is $U^{g} U^{g^{\prime}}=\delta_{g, g^{\prime}} U^{g}$. Next $\epsilon\left(U_{i j}\right)=\epsilon\left(\sum_{g} U_{i j}^{g} g\right)=$ $\sum_{g} U_{i j}^{g}=\left(\sum_{g} U^{g}\right)_{i j}$. On the other hand, $\delta_{i j}=\left(I_{m}\right)_{i j}$ where I_{m} is the identity matrix of size $m \times m$. Thus $\sum_{g} U^{g}=I_{m}$.

Finally, $\Delta\left(X_{i j}\right)=\Delta\left(\sum_{g} X_{i j}^{g} g\right)=\sum_{g} X_{i j}^{g} g \otimes g$. On the other hand,

$$
\sum_{k, l} U_{i k} S V_{l j} \otimes X_{k l}=\sum_{k, l, g_{1}, g_{2}, g} U_{i k}^{g_{1}} V_{l j}^{g_{2}} X_{k l}^{g} g_{1} g_{2}^{-1} \otimes g
$$

Thus

$$
\delta_{g, g^{\prime}} X_{i j}^{g}=\sum_{k, l} \sum_{g_{1} g_{2}^{-1}=g} U_{i k}^{g_{1}} X_{k l}^{g^{\prime}} V_{l j}^{g_{2}} .
$$

That is $\delta_{g, g^{\prime}} X^{g}=\sum_{g_{1} g_{2}^{-1}=g} U^{g_{1}} X^{g^{\prime}} V^{g_{2}}$.
Example 2.9. We denote the space of all matrices of size $m \times n$ over an ordinary algebra A by $M_{m, n}(A)$ and the invertible matrices of size $m \times m$ over a field k by $G L_{m}(k)$. Let G be a group. The category $\mathcal{C}=\operatorname{Rep} p_{k}(G)$ of all representations of G over k is a monoidal category, with \otimes being the tensor product of representations: if for a representation V one denotes by ρ_{V} the corresponding map $G \rightarrow G L(v)$, then

$$
\rho_{V \otimes W}(g):=\rho_{V}(g) \otimes \rho_{W}(g)
$$

The unit object in this category is the trivial representation $1=k$, see [3]. The direct sum of two objects $\left(V, \rho_{V}\right),\left(W, \rho_{W}\right)$ is given by $\left(V, \rho_{V}\right) \oplus\left(W, \rho_{W}\right)=$ $\left(V \oplus W, \rho_{V \oplus W}\right)$ where

$$
\begin{gathered}
\rho_{V \oplus W}(g): V \oplus W \longrightarrow V \oplus W \\
\left(\rho_{V \oplus W}(g)\right)(v, w)=\left(\rho_{V}(g) v, \rho_{W}(g) w\right) .
\end{gathered}
$$

We define a morphism between two objects $\left(V, \rho_{V}\right),\left(W, \rho_{W}\right)$ to be a linear map $f: V \longrightarrow W$ such that the diagram

commutes, i.e.

$$
\forall g \in G \quad f \rho_{W}(g)=\rho_{V}(g) f
$$

The class \mathcal{O} of objects is an Abelian associative semigroup with a null object denoted by $\left(0, \rho_{0}\right)$. It is easy to see that the projection and injection π_{k} and ι_{k} are morphisms in this category and satisfy in conditions (2.1). On the other hand, clearly \otimes of objects is distributive with respect to \oplus of objects, i.e.

$$
\left(V, \rho_{V}\right) \otimes\left(\left(W, \rho_{W}\right) \oplus\left(U, \rho_{U}\right)\right)=\left(\left(V, \rho_{V}\right) \otimes\left(W, \rho_{W}\right)\right) \oplus\left(\left(V, \rho_{V}\right) \otimes\left(U, \rho_{U}\right)\right)
$$

Since U, V and W are vector spaces we have $V \otimes(W \oplus U)=(V \otimes W) \oplus$ $(V \otimes U)$ and thus

$$
\rho_{V} \otimes\left(\rho_{W} \oplus \rho_{U}\right)=\left(\rho_{V} \otimes \rho_{W}\right) \oplus\left(\rho_{V} \otimes \rho_{U}\right)
$$

$$
f \otimes(g \oplus h)=(f \otimes g) \oplus(f \otimes h)
$$

and therefore compatibility conditions hold.
Consider an algebra $\left(\left(A, \rho_{A}\right), m, \mu\right)$ in this category. Thus $\left(A, \rho_{A}\right) \in \mathcal{C}$, $m \in H_{\left(A \otimes A, \rho_{A \otimes A}\right),\left(A, \rho_{A}\right)}, \mu \in H_{1,\left(A, \rho_{A}\right)}$ and the following diagram commutes

Therefore an algebra A in this category, is a unital associative ordinary algebra A with a representation of group G on A

$$
\begin{gathered}
G \times A \longrightarrow A \\
(g, a) \longmapsto g a:=\rho_{A}(g)(a)
\end{gathered}
$$

which satisfies in the following properties

$$
\begin{array}{cr}
g(a b)=(g a)(g b), & g(a+b)=g a+g b \\
g(h a)=(g h) a, & g 1=1 .
\end{array}
$$

We call such an algebra a G-algebra. In the following proposition, we study the structure of a matrix in this category.

Proposition 2.10. Let U and V be two m and n-dimensional representations of G and A be a G-algebra. We fix a basis for each of U and V; $\left\{e_{i} \mid 1 \leq i \leq m\right\}$ and $\left\{f_{i} \mid 1 \leq i \leq n\right\}$. To any matrix $T \in H_{U, V}^{A}$ we assign a triple $(X, \lambda, \eta), X \in M_{n, m}(A), X=\left(a_{i j}\right), \lambda: G \rightarrow G L_{m}(k), \lambda(g)=\left(\lambda_{i j}(g)\right), \eta:$ $G \rightarrow G L_{n}(k), \eta(g)=\left(\eta_{i j}(g)\right)$, by $T e_{j}=\sum_{i} a_{i j} \otimes f_{i}, g e_{j}=\sum_{i} \lambda_{i j}(g) e_{i}, g f_{j}=$ $\sum_{i} \eta_{i j}(g) f_{i}$. The maps λ and η are group homomorphisms and

$$
\begin{equation*}
X \lambda(g)=\eta(g) X, \quad \forall g \in G \tag{2.16}
\end{equation*}
$$

Conversely let (X, λ, η) be a triple, $X \in M_{n, m}(A), \lambda: G \rightarrow G L_{m}(k)$, $\eta: G \rightarrow G L_{n}(k)$ group homomorphisms and satisfy the relation (2.16). Let U and V be m and n-dimensional vector spaces with some fixed bases $\left\{e_{i} \mid 1 \leq\right.$ $i \leq m\}$ and $\left\{f_{i} \mid 1 \leq i \leq n\right\}$. Now we define a matrix $T \in H_{U, V}^{A}$ as follows: the representation structures of U and V are given by $g e_{j}=\sum_{i} \lambda_{i j}(g) e_{i}, g f_{j}=$ $\sum_{i} \eta_{i j}(g) f_{i}$, and T is given by $T e_{j}=\sum_{i} a_{i j} \otimes f_{i}$. Each triple (X, λ, η) is called a G-matrix over algebra A.

Proof. We have

$$
U=\left\langle e_{1}, \ldots, e_{m}\right\rangle, \quad V=\left\langle f_{1}, \ldots, f_{n}\right\rangle
$$

We know that the following diagram is commutative:

Therefore, since

$$
e_{j} \xrightarrow{T} T e_{j}=\sum_{i=1}^{n} a_{i j} \otimes f_{i} \xrightarrow{\rho_{A}(g) \otimes \rho_{V}(g)} \sum_{i} g a_{i j} \otimes g f_{i},
$$

and

$$
e_{j} \xrightarrow{\rho_{U}(g)} g e_{j} \xrightarrow{T} T\left(g e_{j}\right),
$$

we get

$$
\sum_{i} g a_{i j} \otimes g f_{i}=T\left(g e_{j}\right)
$$

Now we have

$$
T\left(g e_{j}\right)=\sum_{l} \lambda_{l j}(g) T e_{l}=\sum_{i} \sum_{l} \lambda_{l j}(g) a_{i l} \otimes f_{i}
$$

and

$$
\sum_{i} g a_{i j} \otimes g f_{i}=\sum_{i} \sum_{l} g a_{i j} \otimes \eta_{l i}(g) f_{l}=\sum_{i l} \eta_{i l}(g) a_{l j} \otimes f_{i},
$$

therefore

$$
\sum_{l} a_{i l} \lambda_{l j}(g)=\sum_{l} \eta_{i l}(g) a_{l j} .
$$

Thus

$$
X \lambda(g)=\eta(g) X, \quad \forall g
$$

Now we show that λ and η are group homomorphisms. We have

$$
\left(g_{2} g_{1}\right)\left(e_{i}\right)=g_{2}\left(g_{1} e_{i}\right)
$$

Therefore

$$
\sum_{r} \lambda_{r i}\left(g_{2} g_{1}\right) e_{r}=\sum_{l r} \lambda_{l i}\left(g_{1}\right) \lambda_{r l}\left(g_{2}\right) e_{r},
$$

hence

$$
\lambda_{r i}\left(g_{2} g_{1}\right)=\sum_{l} \lambda_{r l}\left(g_{2}\right) \lambda_{l i}\left(g_{1}\right)
$$

So $\lambda\left(g_{2} g_{1}\right)=\lambda\left(g_{2}\right) \lambda\left(g_{1}\right)$, i.e. λ is a group homomorphism. Similarly, it can be shown that η is a group homomorphism. The converse is easily proved.

3. K-THEORY

In this section, we extend K-theory of an ordinary algebra for an algebra inside a monoidal category, see [9].

Now let S be a subsemigroup of semigroup (\mathcal{O}, \oplus). Using identification (2.10), we embed E_{u}^{a} in $E_{u \oplus v}^{a}$ via $f \mapsto\left[\begin{array}{cc}f & 0 \\ 0 & 0\end{array}\right]$ and let $M_{\infty}(a ; S)$ be the union $\bigcup_{u \in S} E_{u}^{a}$ up to this identification. We define two equivalence relations on the set of idempotents living in $M_{\infty}(a ; S)$, as follows: for any $u \in S$ and any two idempotents e, e^{\prime} of the algebra $\in E_{u}^{a}$, we write $e \sim e^{\prime}$ iff there exist $f, g \in E_{u}^{a}$ such that $e=f g$ and $e^{\prime}=g f$ and we write $e \sim_{s} e^{\prime}$ iff there exists an invertible $z \in E_{u}^{a}$ such that $e^{\prime}=z e z^{-1}$. As in algebraic K-theory for ordinary matrices, one can show that these are equivalence relations and the relation $e \sim_{s} e^{\prime}$ implies $e \sim e^{\prime}$. Also if $e \sim e^{\prime}$ then $\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right] \sim_{s}\left[\begin{array}{cc}e^{\prime} & 0 \\ 0 & 0\end{array}\right]$, where the later matrices are regarded as idempotents of the algebra $E_{u \oplus u}^{a}$. So using the above mentioned embedding of E_{u}^{a} into $E_{2 u}^{a}$, we conclude that the equivalence relations \sim and \sim_{s} over the idempotents of $M_{\infty}(a ; S)$ are the same.

Now let $I(a ; S)$ be the set of all equivalence classes of idempotents. There is a binary operation on $I(a ; S)$: if $[e],\left[e^{\prime}\right] \in I(a ; S)$, where $e \in E_{u}^{a}, e^{\prime} \in$ $E_{v}^{a}, u, v \in S$, then $[e]+\left[e^{\prime}\right]:=\left[\operatorname{dia}\left(e, e^{\prime}\right)\right]$ where $\operatorname{dia}\left(e, e^{\prime}\right)$ is an idempotent in $E_{u \oplus v}^{a}$, regarding the identification (2.10).

Definition 3.1. $K_{0}(a ; S)$ is the enveloping group of the semigroup $I(a ; S)$.

Now we put some topological structures on the algebra E_{u}^{a}. Let for any $u \in S$, each algebra E_{u}^{a} is a local Banach algebra. For any two idempotents $e, e^{\prime} \in E_{u}^{a}$ we write $e \sim_{h} e^{\prime}$ iff there exists a norm-continuous path of idempotents in E_{u}^{a} from e to e^{\prime}. Again like in algebraic K-theory for ordinary matrices, one can show that the relation $e \sim_{h} e^{\prime}$ implies $e \sim_{s} e^{\prime}$. Conversely, the relation $e \sim_{s} e^{\prime}$ implies $\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right] \sim_{h}\left[\begin{array}{cc}e^{\prime} & 0 \\ 0 & 0\end{array}\right]$. So the three equivalence relations \sim, \sim_{s}, \sim_{h} on the set of idempotents of $M_{\infty}(a ; S)$ coincide. So no matter which equivalence relation we choose on the semigroup of idempotents, we get the same enveloping group.

Next we define K_{1}-theory. Let $G L_{u}^{a}$ be the invertible elements of the algebra E_{u}^{a}. We embed $G L_{u}^{a}$ in $G L_{u \oplus v}^{a}$ by $f \mapsto \operatorname{dia}\left(f, \mathrm{id}_{v}\right)$ and we set $K_{1}(a ; S)$ to be the disjoint union of quotient groups $\bigsqcup_{u \in S} G L_{u}^{a} /\left[G L_{u}^{a}, G L_{u}^{a}\right]$ up to this identification.

4. CYCLIC COHOMOLOGY

In this section, we extend cyclic cohomology of an ordinary algebra for an algebra inside a monoidal category, see [7].

Let \mathcal{C} be a monoidal category which admits braiding. That is, there exists a family of invertible morphisms $\psi_{u, v} \in H_{u \otimes v, v \otimes u}$ satisfying (4.1) $\psi_{u \otimes v, w}=\left(\mathrm{id}_{u} \otimes \psi_{v, w}\right)\left(\psi_{u, w} \otimes \mathrm{id}_{v}\right), \psi_{u, v \otimes w}=\left(\psi_{u, v} \otimes \mathrm{id}_{w}\right)\left(\mathrm{id}_{v} \otimes \psi_{u, w}\right)$, and

$$
\begin{equation*}
(f \otimes g) \psi_{u^{\prime}, v^{\prime}}=\psi_{u, v}(g \otimes f) \tag{4.2}
\end{equation*}
$$

for all $u, v, w, u^{\prime}, v^{\prime} \in \mathcal{O}$ and $f \in H_{u, u^{\prime}}, g \in H_{v, v^{\prime}}$. Let (a, m, μ) be an associative unital algebra in the category \mathcal{C}. We say that a is a ribbon algebra if there exists an invertible morphism $\sigma \in E_{a}$ satisfying

$$
\begin{equation*}
\psi_{a, a}^{2}(\sigma \otimes \sigma) m=m \sigma \tag{4.3}
\end{equation*}
$$

In the category Vec where the braiding is flip operator, the above condition just means σ is algebra automorphism. Also, in general, this condition is a combination of the algebra automorphism condition and the fundamental condition between braiding and twist in a ribbon category.

For arbitrary objects $b, c \in \mathcal{O}$ we define a linear operator

$$
\begin{equation*}
\lambda_{b, c}: H_{a \otimes b, c} \rightarrow H_{b \otimes a, c}, \quad \lambda_{b, c}(\varphi):=\psi_{b, a}\left(\sigma \otimes \operatorname{id}_{b}\right) \varphi . \tag{4.4}
\end{equation*}
$$

We recall the notion of braided cyclic cohomology introduced in [1]. First of all, for simplicity we use the notations $\psi_{i, j}:=\psi_{a^{\otimes i}, a^{\otimes j}}$ and $\mathrm{id}_{i}:=\mathrm{id}_{a^{\otimes i}}$. We set $\lambda_{(n)}:=(-1)^{n} \lambda_{a^{\otimes n, 1}}$. Explicitly $\lambda_{(n)}$ is the operator sending a morphism φ in the space $H_{a^{\otimes(n+1), 1}}$ to the following morphism in the same space

$$
\begin{equation*}
\lambda_{(n)}(\varphi):=(-1)^{n} \psi_{n, 1}\left(\sigma \otimes \operatorname{id}_{n}\right) \varphi \tag{4.5}
\end{equation*}
$$

For simplicity, we will write λ instead of $\lambda_{(n)}$.
Let $C^{n}=C^{n}(a ; \sigma):=\left\{\varphi \in H_{a^{\otimes(n+1), \mathbf{1}}} \mid \lambda^{n+1}(\varphi)=\varphi\right\}$. For $\varphi \in C^{n}$, we define

$$
d_{i}^{(n)}(\varphi)=\left\{\begin{array}{l}
\left(\operatorname{id}_{i} \otimes m \otimes \operatorname{id}_{n-i-1}\right) \varphi, \quad 0 \leq i \leq n-1 \tag{4.6}\\
\psi_{n, 1}\left(\sigma \otimes \operatorname{id}_{n}\right)\left(m \otimes \operatorname{id}_{n-1}\right) \varphi, \quad i=n
\end{array}\right.
$$

and

$$
\begin{equation*}
s_{i}^{(n)}(\varphi)=\left(\operatorname{id}_{i+1} \otimes \mu \otimes \operatorname{id}_{n-i}\right) \varphi, \quad 0 \leq i \leq n \tag{4.7}
\end{equation*}
$$

Proposition 4.1. We have $d_{i}^{(n)}\left(C^{n}\right) \subseteq C^{n+1}, s_{i}^{(n)}\left(C^{n}\right) \subseteq C^{n-1}$, $\lambda_{(n)}\left(C^{n}\right) \subseteq C^{n}$ and $\left\{C^{n}\right\}_{n \geq 0}$ with the linear maps $d_{i}^{(n)}, s_{i}^{(n)}$, and $\lambda_{(n)}$ as face, degeneracy and cyclic operators respectively, form a cocyclic module.

Proof. The proof based on the very powerful graphical calculus is given in [1].

We denote the Hochschild cohomology of this cocyclic module by $H H(\mathcal{C} ; a, \sigma)$ and the cohomology of the subcomplex

$$
C_{\lambda}^{n}(\mathcal{C} ; a, \sigma)=\left\{\varphi \in H_{a^{\otimes(n+1), \mathbf{1}}} \mid \lambda(\varphi)=\varphi\right\}
$$

by $H C(\mathcal{C} ; a, \sigma)$ and call them Hochschild and cyclic cohomology of ribbon algebra (a, m, μ, σ).

5. PAIRING K-THEORY WITH CYCLIC COHOMOLOGY

In this section, we extend the pairing between K-theory and cyclic cohomology of an ordinary algebra for an algebra inside a monoidal category, see [2].

In this section, we assume that S is a subsemigroup of the semigroup (\mathcal{O}, \oplus) and there exists an additive family $T_{u}: E_{u} \rightarrow \mathbb{C}, u \in S$ of linear maps satisfying a trace property which we now explain. By additivity we mean

$$
T_{u \oplus v}\left(\left[\begin{array}{cc}
f & 0 \tag{5.1}\\
0 & g
\end{array}\right]\right)=T_{u}(f)+T_{v}(g), \quad u, v \in S, f \in E_{u}, g \in E_{v}
$$

Next we extend the family T_{u} to a family $T_{u, \varphi}: E_{u}^{a} \rightarrow \mathbb{C}, u \in S, \varphi \in H_{a, \mathbf{1}}$ by

$$
\begin{equation*}
T_{u, \varphi}(f):=T_{u}\left(\varphi^{*}(f)\right), \quad u \in S, a \in \mathcal{O}, \varphi \in H_{a, \mathbf{1}}, f \in E_{u}^{a} \tag{5.2}
\end{equation*}
$$

Now we express the promised axiom of trace property. We assume that

$$
\begin{equation*}
T_{u, \varphi}(f \odot g)=T_{v, \varphi}(g \odot f), \quad u, v \in S, b \in \mathcal{O}, f \in H_{u, v}, g \in H_{v, u}^{b}, \varphi \in H_{b, \mathbf{1}} \tag{5.3}
\end{equation*}
$$

and
(5.4)
$T_{u, \varphi}(f \odot g)=T_{v, \lambda(\varphi)}(g \odot f), \quad u, v \in S, a, b \in \mathcal{O}, f \in H_{u, v}^{a}, g \in H_{v, u}^{b}, \varphi \in H_{a \otimes b, \mathbf{1}}$,
where $\lambda=\lambda_{b, 1}$ was defined by (4.4). Using Lemma 2.1 one can easily see that this family is also additive.

For the trivial algebra $a=\mathbf{1}$ with $m=\mathrm{id}_{\mathbf{1}}, \mu=\mathrm{id}_{\mathbf{1}}, \sigma=\mathrm{id}_{\mathbf{1}}$ and for $b=\mathbf{1}$, the product \odot is just the composition law of the category and the axioms (5.3) and (5.4) become the ordinary trace property.

In particular, we can use the following traces: if $E_{\mathbf{1}}=\mathbb{C}$ and S is also closed under tensor product and admits twist, i.e. there exists a natural family of invertible morphisms $\theta_{u} \in E_{u}, u \in S$ satisfying (5.1), and admits duality, i.e. there is an operation on $S, u \mapsto u^{*}$ and there are morphisms $b_{u} \in H_{\mathbf{1}, u \otimes u^{*}}, d_{u} \in$ $H_{u^{*} \otimes u, 1}$ satisfying (5.2), then we get the following family of traces.

Proposition 5.1. Under the conditions mentioned in the above last paragraph, the following linear maps

$$
\begin{equation*}
T_{u}: E_{u} \rightarrow \mathbb{C}, \quad T_{u}(f):=b_{u}\left(\left(f \theta_{u}\right) \otimes \operatorname{id}_{u^{*}}\right) \psi_{u, u^{*}} d_{u} \tag{5.5}
\end{equation*}
$$

satisfy the axiom (5.4) for any ribbon algebra a and any object b.
Remark. We can use also any ribbon knot to produce a nontrivial family T_{u}.

Now we come back to the general situation at the beginning of this section where we had just braiding morphisms and the family $T_{u}, u \in S$.

Proposition 5.2. For any $u \in S$, the map $C^{*}(\mathcal{C} ; a, \sigma) \rightarrow C^{*}\left(E_{u}^{a}\right), \varphi \mapsto$ φ_{u} defined by

$$
\begin{equation*}
\varphi_{u}\left(x_{0}, \ldots, x_{n}\right):=T_{u, \varphi}\left(x_{0} \odot \cdots \odot x_{n}\right) \tag{5.6}
\end{equation*}
$$

is a map of cocyclic modules.
Proof. For $\varphi \in C^{n-1}(\mathcal{C} ; a, \sigma)$ and $u \in S$ we must show $\left(d_{i}(\varphi)\right)_{u}=d_{i}\left(\varphi_{u}\right)$, $\left(s_{i}(\varphi)\right)_{u}=s_{i}\left(\varphi_{u}\right),(\lambda(\varphi))_{u}=\lambda\left(\varphi_{u}\right)$, for all $0 \leq i \leq n$. We have

$$
\begin{aligned}
(\lambda(\varphi))_{u}\left(x_{0}, \ldots, x_{n}\right) & =T_{u, \lambda(\varphi)}\left(x_{0} \odot \cdots \odot x_{n}\right) \\
& =(-1)^{n} T_{u, \varphi}\left(x_{n} \odot x_{0} \odot \cdots \odot x_{n-1}\right) \\
& =(-1)^{n} \varphi_{u}\left(x_{n}, x_{0}, \ldots, x_{n-1}\right) \\
& =\left(\lambda\left(\varphi_{u}\right)\right)\left(x_{0}, \ldots, x_{n}\right) .
\end{aligned}
$$

Let $0 \leq i<n$. We have

$$
\begin{aligned}
\left(d_{i}(\varphi)\right)_{u}\left(x_{0}, \ldots, x_{n}\right) & =T_{u}\left(\left(d_{i}(\varphi)\right)^{*}\left(x_{0} \odot \cdots \odot x_{n}\right)\right) \\
& =T_{u}\left(\varphi^{*}\left(\left(\operatorname{id}_{i} \otimes m \otimes \operatorname{id}_{n-i-1}\right)^{*}\left(x_{0} \odot \cdots \odot x_{n}\right)\right)\right) \\
& =T_{u}\left(\varphi ^ { * } \left(\operatorname{id}_{i}^{*}\left(x_{0} \odot \cdots \odot x_{i-1}\right) \odot m^{*}\left(x_{i} \odot x_{i+1}\right)\right.\right. \\
& \left.\left.\odot \mathrm{id}_{n-i-1}^{*}\left(x_{i+2} \odot \cdots \odot x_{n}\right)\right)\right) \\
& =T_{u}\left(\varphi ^ { * } \left(x_{0} \odot \cdots \odot x_{i-1} \odot\left(x_{i} \circ_{a} x_{i+1}\right)\right.\right. \\
& \left.\left.\odot x_{i+2} \odot \cdots \odot x_{n}\right)\right) \\
& =\varphi_{u}\left(x_{0}, \ldots, x_{i-1},\left(x_{i} \circ_{a} x_{i+1}\right), x_{i+2}, \ldots, x_{n}\right) \\
& =d_{i}\left(\varphi_{u}\right)\left(x_{0}, \ldots, x_{n}\right)
\end{aligned}
$$

The case $i=n$, now is the consequence of the relation $d_{n}(\varphi)=(-1)^{n}$ $\lambda\left(d_{0} \varphi\right)$), which holds for any cocyclic module, and the relations $\left(d_{0}(\varphi)\right)_{u}=$ $d_{0}\left(\varphi_{u}\right),(\lambda(\varphi))_{u}=\lambda\left(\varphi_{u}\right)$.

Next, by setting $S_{i}=\left(s_{i}(\varphi)\right)_{u}\left(x_{0}, \ldots, x_{n}\right)$ we have

$$
\begin{aligned}
S_{i} & =T_{u}\left(\left(s_{i}(\varphi)\right)^{*}\left(x_{0} \odot \cdots \odot x_{n}\right)\right) \\
& =T_{u}\left(\varphi^{*}\left(\operatorname{id}_{i+1} \otimes \mu \otimes \operatorname{id}_{n-i}\right)^{*}\left(x_{0} \odot \cdots \odot x_{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =T_{u}\left(\varphi^{*}\left(\mathrm{id}_{i+1} \otimes \mu \otimes \mathrm{id}_{n-i}\right)^{*}\left(x_{0} \odot \cdots \odot x_{i} \odot \mathrm{id}_{u} \odot x_{i+1} \odot \cdots \odot x_{n}\right)\right) \\
& =T_{u}\left(\varphi^{*}\left(\mathrm{id}_{i+1}\right)^{*}\left(x_{0} \odot \cdots \odot x_{i}\right) \odot \mu^{*}\left(\operatorname{id}_{u}\right) \odot \mathrm{id}_{n-i}^{*}\left(x_{i+1} \odot \cdots \odot x_{n}\right)\right) \\
& =T_{u}\left(\varphi^{*}\left(x_{0} \odot \cdots \odot x_{i} \odot 1_{u}^{a} \odot x_{i+1} \odot \cdots \odot x_{n}\right)\right) \\
& =\varphi_{u}\left(x_{0}, \ldots, x_{i}, 1_{u}^{a}, x_{i+1}, \ldots, x_{n}\right) \\
& =s_{i}\left(\varphi_{u}\right)\left(x_{0}, \ldots, x_{n}\right) .
\end{aligned}
$$

Proposition 5.3. The following is a bilinear pairing between $K_{0}(a ; S)$ and $H C^{\text {even }}(\mathcal{C}, a ; \sigma)$,

$$
\begin{equation*}
<[e],[\varphi]>:=\varphi_{u}(e, \ldots, e), \quad e \in E_{u}^{a}, u \in S \tag{5.7}
\end{equation*}
$$

Proof. We first show that if we replace $e \in E_{u}^{a}$ with $\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right]=\pi_{1} e l_{1}^{a} \in$ $E_{u \oplus u}^{a}$, where $\pi_{1}=\pi_{1}(\{u, u\})$ and $\imath_{1}^{a}=\imath_{1}(\{a \otimes u, a \otimes u\})$, the result of the pairing does not change. For morphisms $x_{i} \in E_{u}^{a}, 0 \leq i \leq n$ and for any morphism $\varphi \in H_{a^{\otimes(n+1), 1}}$ and by setting $\Phi_{u \oplus u}=\varphi_{u \oplus u}\left(\pi_{1} x_{0} \imath_{1}^{a}, \ldots, \pi_{1} x_{n} \imath_{1}^{a}\right)$ we have

$$
\begin{aligned}
\Phi_{u \oplus u} & =T_{u \oplus u, \varphi}\left(\pi_{1} x_{0} \imath_{1}^{a} \odot \cdots \odot \pi_{1} x_{n} \imath_{1}^{a}\right) \\
& =T_{u \oplus u, \varphi}\left(\pi_{1} x_{0}\left(\mathrm{id}_{a} \otimes \iota_{1}\right) \odot \cdots \odot \pi_{1} x_{n}\left(\mathrm{id}_{a} \otimes \imath_{1}\right)\right) \\
& =T_{u \oplus u, \varphi}\left(\pi_{1} \odot x_{0} \odot \imath_{1} \odot \cdots \odot \pi_{1} \odot x_{n} \odot \iota_{1}\right) \\
& =T_{u \oplus u, \varphi}\left(\pi_{1} \odot x_{0} \odot \imath_{1} \odot \pi_{1} \odot x_{1} \odot \imath_{1} \cdots \odot \pi_{1} \odot x_{n} \odot \iota_{1}\right) \\
& =T_{u \oplus u, \varphi}\left(\pi_{1} \odot x_{0} \odot \imath_{1} \pi_{1} \odot x_{1} \odot \imath_{1} \cdots \odot \pi_{1} \odot x_{n} \odot \iota_{1}\right) \\
& =T_{u \oplus u, \varphi}\left(\pi_{1} \odot x_{0} \odot \mathrm{id}_{u} \odot x_{1} \odot \imath_{1} \cdots \odot \pi_{1} \odot x_{n} \odot \imath_{1}\right) \\
& =T_{u \oplus u, \varphi}\left(\pi_{1} \odot x_{0} \odot \cdots \odot x_{n} \odot \iota_{1}\right) \\
& =T_{u, \varphi}\left(\imath_{1} \odot \pi_{1} \odot x_{0} \odot \cdots \odot x_{n}\right) \\
& =T_{u, \varphi}\left(\imath_{1} \pi_{1} \odot x_{0} \odot \cdots \odot x_{n}\right) \\
& =T_{u, \varphi}\left(x_{0} \odot \cdots \odot x_{n}\right) \\
& =\varphi_{u}\left(x_{0}, \ldots, x_{n}\right) .
\end{aligned}
$$

Next we must show that if φ is a coboundary then the value of the pairing vanishes. So let $d=\sum_{i=0}^{2 m}(-1)^{i} d_{i}$ be the Hochschild coboundary then by Proposition 5.2 we have

$$
\begin{aligned}
(d(\varphi))_{u}(e, \ldots, e) & =d\left(\varphi_{u}\right)(e, \ldots, e) \\
& =\sum_{i=0}^{2 m}(-1)^{i} \varphi_{u}(e, \ldots, e) \\
& =\varphi_{u}(e, \ldots, e)
\end{aligned}
$$

But from $\lambda\left(\varphi_{u}\right)=\varphi_{u}$ we conclude that $\varphi_{u}(e, \ldots, e)=0$. Therefore $(d(\varphi))_{u}(e, \ldots, e)=0$.

Now let e and f be two idempotents in the algebra E_{u}^{a} such that $e \sim f$. Since we proved that the value of the pairing does not change if we replace $e \in E_{u}^{a}$ with $\left[\begin{array}{cc}e & 0 \\ 0 & 0\end{array}\right] \in E_{u \oplus u}^{a}$ we conclude that we may assume $e \sim_{s} f$ within E_{u}^{a}, that there exists an invertible element $z \in E_{u}^{a}$ such that $f=z^{-1} e z$. But using Proposition 1.8 in chapter 3 of [2], and the above fact that the pairing for coboundaries vanishes, we conclude that the value of the pairing will not change if one replaces e with f. Thus the pairing only depends on the equivalence class of e and the cohomology class of φ. To show that this pairing over the semigroup $I(a ; S)$ of the equivalence classes of idempotents extend to the group $K_{0}(a ; S)$, we need to show that this pairing is additive:

$$
\begin{aligned}
\varphi_{u \oplus v}\left(\left[\begin{array}{cc}
e & 0 \\
0 & f
\end{array}\right], \ldots,\left[\begin{array}{cc}
e & 0 \\
0 & f
\end{array}\right]\right) & =T_{u \oplus v, \varphi}\left(\left[\begin{array}{cc}
e & 0 \\
0 & f
\end{array}\right] \odot \cdots \odot\left[\begin{array}{cc}
e & 0 \\
0 & f
\end{array}\right]\right) \\
& =T_{u, \varphi}\left(\left[\begin{array}{cc}
e^{\odot(n+1)} & 0 \\
0 & f \odot(n+1)
\end{array}\right]\right) \\
& =T_{u, \varphi}\left(e^{\odot(n+1)}\right)+T_{v, \varphi}\left(f^{\odot(n+1)}\right) \\
& =\varphi_{u}(e, \ldots, e)+\varphi_{v}(f \ldots, f) .
\end{aligned}
$$

Proposition 5.4. The following is a bilinear pairing between $K_{1}(a ; S)$ and $H C^{\text {odd }}(\mathcal{C} ; a, S)$,

$$
\begin{equation*}
<[g],[\varphi]>:=\varphi_{u}\left(g^{-1}-1, g-1, \ldots, g^{-1}-1, g-1\right), \quad g \in G L_{u}^{a}, u \in S \tag{5.8}
\end{equation*}
$$

Proof. Since for fixed u, this pairing is nothing other than the pairing of the cyclic cohomology of the algebra E_{u}^{a} with the quotient of the group of invertible elements of this algebra by the commutator subgroup, it is enough to apply the proof of Proposition 3.3, chapter 3 of [2] for the algebra $\mathcal{A}=E_{u}^{a}$ and for the cyclic cocycle φ_{u} for the case $k=1$.

Also we need to show that the pairing is compatible with the inclusion $G L_{u}^{a} \subseteq G L_{u \oplus v}^{a}, f \mapsto \operatorname{dia}\left(f, \mathrm{id}_{v}\right)$ which is easy to show.

REFERENCES

[1] S.E. Akrami and S. Majid, Braided cyclic cocycles and non-associative geometry. J. Math. Phys. 45 (2004), 3883-3911.
[2] A. Connes, Noncommutative Geometry. Academic Press, 1994.
[3] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories. Math. Surveys Monogr. 205, American Mathematical Society, Providence, RI, 2015.
[4] C. Jones and D. Penneys, Operator algebras in rigid C^{*}-tensor categories. Comm. Math. Phys. 355 (2017), 1121-1188.
[5] J.R. Kirillov and V. Ostrik, On a q-Analog of the Mckay Correspondence and the ADE Classification of \hat{s}_{2} Conformal Field Theories. INSPIRE math/0101219 (2001), 27 pages. Preprint.
[6] A. Klimik and K. Schmuedgen, Quantum Groups and Their Representations. Texts and Monographs in Physics, Springer-Verlag, 2012.
[7] J.L. Loday, Cyclic Homology. Springer-Verlag, 2013.
[8] S. Majid, Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge, 2000.
[9] N.E. Wegge-Olsen, K-theory and C^{*}-algebras: a Friendly Approach. Oxford Univ. Press, Oxford, 1993.
[10] D.N. Yetter, Quantum groups and representations of monoidal categories. Math. Proc. Cambridge Philos. Soc. 108 (1990), 261-290.

Semnan University, Faculty of Mathematics, Statistics and Computer Science, Iran, P.O. Box 35131-19111
akramisa@semnan.ac.ir
r.mohammadi@semnan.ac.ir

[^0]: * The corresponding author. This research was in part supported by a grant No. 83810319 from IPM, Iran, Math. Department.

