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1. INTRODUCTION

The idea of NCG (non-commutative geometry) is to extend the domain of
classical concepts. The classical concept of a space is extended to the concept
of an algebra or a C∗-algebra and the classical concept of a vector bundle
over a space is extended to a finitely generated projective module over an
algebra or idempotent matrices over this algebra. Then the classical topological
K-theory is extended to algebraic and operator K-theory. Also, classical de
Rham cohomology is extended to cyclic cohomology and classical index formula
is extended as a pairing between operator K-theory and cyclic cohomology [2].

In this article, we extend the concept of a matrix over an algebra and
therefore, we extend K-theory and cyclic cohomology. This work is based on
the following simple idea. LetA be a complex associative algebra. Every matrix

X = (aij) of size m×n over A can be regarded as a linear map Cm T−→ A⊗Cn,
Tei =

∑
j aij ⊗ ej . The crucial point is that the later has meaning in any

monoidal category C if we replace spaces Cm and Cn with objects V,W of the
category and take A an algebra in C. Thus, we may extend the concept of
a matrix instead of being a rectangle table of elements of an algebra to be a
morphism V → A⊗W and call it a matrix over A of size V ×W . Notice that
since HomA−Mod(A ⊗ Cm, A ⊗ Cn) ∼= HomC−V ec(Cm, A ⊗ Cn) thus, one can
define similarly a matrix over an algebra A ∈ C as a morphism A⊗V → A⊗W .
This later viewpoint is used in [4] and [5].
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2. GENERALIZED MATRICES

Let O be the class of objects of a category C. We denote the set of
morphisms with initial object u and terminal object v, by Hu,v and the set of
loops, i.e. morphisms whose initial and terminal objects are the same object u,
by Eu. We denote the composition of a morphism f ∈ Hu,v with a morphism
g ∈ Hv,w by f ◦ g ∈ Hu,w.

We define two maps s and r called source and range maps as follows.
For any morphism f ∈ Hu,v, we set s(f) := u and r(f) := v. We have
s(f ◦ g) = s(f), r(f ◦ g) = r(g).

We regard any object u as a loop by identifying it with the loop idu.
Thus with this agreement we have s(u) = u, r(u) = u for all object u and
s(f) ◦ f = f, f ◦ r(f) = f .

We suppose that Hu,u is a complex vector space and the composition is
bilinear.

We assume that O is equipped with an addition law ⊕ which makes it to
an Abelian associative semigroup with a null object denoted by 0 and for any
morphism fi ∈ Hui,vi , i = 1, 2, there exists an addition law

f1 ⊕ f2 ∈ Hu1⊕u2,v1⊕v2

such that it is commutative and associative and there exists a null morphism
0 ∈ E0 such that 0 ⊕ f = f, ∀f ∈ Hu,v. Moreover, we assume that for any
u1, u2 ∈ O there are morphisms πk = πk({u1, u2}) ∈ Hu1⊕u2,uk and ık =
ık({u1, u2}) ∈ Huk,u1⊕u2 , k = 1, 2 such that

(2.1) ıkπl = δkliduk ,

2∑
k=1

πkık = idu1⊕u2 .

We recall [3], that C is called a monoidal category if there exists a tensor
product in a category C, i.e. a covariant functor ⊗ : C×C → C which associates
to each pair of objects u, v ∈ O an object u ⊗ v ∈ O and to each pair of
morphisms f ∈ Hu,v, g ∈ Hu′,v′ a morphism f⊗g ∈ Hu⊗u′,v⊗v′ and there exists
an object 1 such that the following conditions hold

u⊗ 1 = 1⊗ u = u, (u⊗ v)⊗ w = u⊗ (v ⊗ w)

and

f ⊗ id1 = id1 ⊗ f = f, (f ⊗ g)⊗ h = f ⊗ (g ⊗ h).

To say that ⊗ is a covariant functor means that we have the following
identities

(ff ′)⊗ (gg′) = (f ⊗ g)(f ′ ⊗ g′), idu ⊗ idv = idu⊗v.
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Moreover, we assume that ⊗ of objects is distributive with respect to
⊕ of objects and ⊗ of morphisms is bilinear. We require that the following
compatibility conditions hold

(2.2) ıak = ida ⊗ ık, πak = ida ⊗ πk,

for all uk, a ∈ O, k = 1, 2, where ık = ık({u1, u2}), πk = πk({u1, u2}), ıak =
ık({a ⊗ u1, a ⊗ u2}), πak = πk({a ⊗ u1, a ⊗ u2}). Note that we immediately
conclude
(2.3)
πa⊗bk = ida⊗πbk, ıa⊗bk = ida⊗ıbk, ıak(ida⊗f) = ida⊗ıkf, (ida⊗h)πak = ida⊗hπk
for all u1, u2, a, b, u ∈ O, f ∈ Hu1⊕u2,u, h ∈ Hu,u1⊕u2 , k = 1, 2.

We define a product

(2.4) Ha
u,v ×Hb

v,w → Ha⊗b
u,w , f � g := f(ida ⊗ g), a, b, u, v ∈ O.

This product is associative in the sense that we have

(2.5) (f�g)�h = f� (g�h), a, b, c, u, v, w, x ∈ O, f ∈ Ha
u,v, g ∈ Hb

v,wH
c
w,x.

Note that we recover the composition law of the category via this product, i.e.
we have

(2.6) fg = f � g, f ∈ Hu,v, g ∈ Hv,w,

since we have g = id1 ⊗ g, we conclude that fg = f(id1 ⊗ g) = f � g.
Now let ϕ be a morphism from a to b. We define

(2.7) ϕ∗ : Ha
u,v → Hb

u,v, ϕ∗(f) := f(ϕ⊗ idv), u, v ∈ O.

The proof of the following lemma is straightforward.

Lemma 2.1. (i) For all f ∈ Ha
u,v, g ∈ Hb

v,w, ϕ ∈ Ha,a′ , ψ ∈ Hb,b′ , u, v, w, a,
a′, b, b′ ∈ O, we have

(ϕ⊗ ψ)∗(f � g) = ϕ∗(f)� ψ∗(g), ϕ∗(f � g) = ϕ∗(f)� g,

(ii) For all f ∈ Ha
u,v, ϕ ∈ Ha,b, ψ ∈ Hb,c, u, v, a, b, c ∈ O, we have

(ϕψ)∗(f) = ψ∗(ϕ∗(f)),

(iii) ϕ∗(fg) = fϕ∗(g),
(iv)

ϕ∗(

[
f11 f12
f21 f22

]
) =

[
ϕ∗(f11) ϕ∗(f12)
ϕ∗(f21) ϕ∗(f22)

]
.

(v)[
f11 f12
f21 f22

]
�
[
g11 g12
g21 g22

]
=

[
f11 � g11 + f12 � g21 f11 � g12 + f12 � g22
f21 � g11 + f22 � g21 f21 � g12 + f22 � g22

]
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A triple (a,m, µ) is called an associative unital algebra in the monoidal
category C, if a ∈ O and m ∈ Ha⊗a,a, µ ∈ H1,a and the following axioms hold

(2.8) (m⊗ ida)m = (ida ⊗m)m, (µ⊗ ida)m = ida = (ida ⊗ µ)m.

Definition 2.2. Let (a,m, µ) be an associative unital algebra in the mo-
noidal category C. Any element of the space Ha

u,v := Hu,a⊗v is called a matrix
of size u× v over algebra a, where u, v ∈ O.

Proposition 2.3. For any u, v, w ∈ O the following defines a bilinear
map

(2.9) ◦a : Ha
u,v ×Ha

v,w → Ha
u,w, f ◦a g := f(ida ⊗ g)(m⊗ idw).

We have (f ◦a g) ◦a h = f ◦a (g ◦a h) for f ∈ Ha
u,v, g ∈ Ha

v,w, h ∈
Ha
w,x, u, v, w, x ∈ O. In particular, Eau := Ha

u,u is an associative unital com-
plex algebra under the above product. The unit is µ ⊗ idu. Moreover for any
elements u1, u2 ∈ O, we have the following identification as algebras

(2.10) Eau1⊕u2 =

[
Ha
u1,u1 H

a
u1,u2

Ha
u2,u1 H

a
u2,u2

]
, f 7→ (fij)

2
i,j=1

where fij = ıifπ
a
j . The inverse is given by (fij)

2
i,j=1 7→ f :=

∑2
i,j=1 πifijı

a
j .

Proof. Associativity:

(f ◦a g) ◦a h = [f(ida ⊗ g)(m⊗ idw)] ◦a h
= f(ida ⊗ g)(m⊗ idw)(ida ⊗ h)(m⊗ idx)

= f(ida ⊗ g)(mida ⊗ idwh)(m⊗ idx)

= f(ida ⊗ g)(ida⊗am⊗ hida⊗x)(m⊗ idx)

= f(ida ⊗ g)(ida⊗a ⊗ h)(m⊗ ida⊗x)(m⊗ idx)

= f(ida ⊗ g)[ida ⊗ (ida ⊗ h)][(m⊗ ida)⊗ idx](m⊗ idx)

= f(ida ⊗ g)[ida ⊗ (ida ⊗ h)][(m⊗ ida)m⊗ idxidx]

= f(ida ⊗ g)[ida ⊗ (ida ⊗ h)][(ida ⊗m)m⊗ idx]

= f(ida ⊗ g)[ida ⊗ (ida ⊗ h)][ida ⊗ (m⊗ idx)](m⊗ idx)

= f [ida ⊗ (g(ida ⊗ h)(m⊗ idx)](m⊗ idx)

= f [ida ⊗ (g ◦a h)](m⊗ idx)

= f ◦a (g ◦a h)[−1.25pt]

The unit:

f ◦a (µ⊗ idu) = f(ida ⊗ µ⊗ idu)(m⊗ idu)]

= f [(ida ⊗ µ)m⊗ iduidu]

= f(ida ⊗ idu)

= f,
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and

(µ⊗ idu) ◦a f = (µ⊗ idu)(ida ⊗ f)(m⊗ idu)

= (µ⊗ f)(m⊗ idu)

= (id1µ⊗ f ida⊗u)(m⊗ idu)

= (id1 ⊗ f)(µ⊗ ida ⊗ idu)(m⊗ idu)

= f [(µ⊗ ida)m⊗ iduidu]

= f(ida ⊗ idu)

= f.

We denote the map (2.10) by Φ. It is clear that Φ is linear. Let f, g ∈
Eau1⊕u2 , we have

(Φ(f ◦a g))ij = ıi(f ◦a g)πaj

= ıif(ida ⊗ g)(m⊗ idu1⊕u2)πaj

=
∑
k

ıifπ
a
kı
a
k(ida ⊗ g)(m⊗ idu1⊕u2)πaj

=
∑
k

fik(ida ⊗ ıkg)πa⊗aj (m⊗ iduj )

=
∑
k

fik(ida ⊗ ıkg)(ida ⊗ πaj )(m⊗ iduj )

=
∑
k

fik(ida ⊗ ıkgπaj )(m⊗ iduj )

=
∑
k

fik ◦a gkj

= (Φ(f)Φ(g))ij .

Invertibility of Φ:

Φ−1(Φ(f)) =

2∑
i,j=1

πi(Φ(f))ijı
a
j

=
2∑

i,j=1

πiıifπ
a
j ı
a
j

= idu1⊕u2f ida⊗u1⊕a⊗u2

= idu1⊕u2f ida⊗(u1⊕u2)

= f,
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and

(Φ(Φ−1((f)ij)))kl =

2∑
i,j=1

(Φ(πifijı
a
j ))kl

=
2∑

i,j=1

ıkπifijı
a
jπ

a
l

= iduifij ida⊗uj

= f. �

Example 2.4. Let Vec denote the category whose objects are complex
vector spaces and morphisms are linear maps. The sum ⊕ is just the direct
sum of vector spaces. The morphisms πk and ık are the canonical projection
and embedding, respectively. The product ⊗ is just the tensor product of
vector spaces and 1 = C. An associative unital algebra in this category is
just an ordinary associative unital algebra, where m(x ⊗ y) := xy, µ(λ) :=
λ1a, x, y ∈ a, λ ∈ C. As we explained in Introduction, a matrix in Vec of size
Cm × Cn over a, is just an ordinary m× n matrix over ordinary algebra a.

Example 2.5. Let (h,∆, S, ε) be a complex Hopf algebra and h-Com be
the category of left h-comodules, [6,10]. That is, an object is a vector space u
equipped with a linear map α : u→ h⊗ u, called coaction, satisfying α(idh ⊗
α) = α(∆⊗ idu), α(ε⊗ idu) = idu. Sometimes we denote this object by (u, α).
In Sweedler’s notation, we write α(x) =

∑
x(1) ⊗ x(2), x ∈ u. The morphisms

are h-comodule intertwiners, i.e. linear maps f : (u, α) → (v, β) satisfying
fβ = α(idh ⊗ f). The direct sum of two left h-comodules (u, α), (v, β) is the
ordinary direct sum of vector spaces u⊕ v equipped with the coaction α⊕ β :
u⊕v → h⊗(u⊕v) = (h⊗u)⊕(h⊗v), (α⊕β)(x, y) := (α(x), β(y)). In Sweedler’s
notation, it means (α ⊕ β)(x, y) =

∑
x(1) ⊗ (x(2), 0) +

∑
y(1) ⊗ (0, y(2)). Thus

(α⊕β)(idh⊗ (α⊕β))(x, y) =
∑
x(1)⊗x(2)⊗ (x(3), 0) +

∑
y(1)⊗y(2)⊗ (0, y(3)) =

(α ⊕ β)(∆ ⊗ idα⊕β)(x, y) and (α ⊕ β)(ε ⊗ idα⊕β)(x, y) =
∑
ε(x(1))(x(2), 0) +∑

ε(y(1))(0, y(2)) =
∑

(ε(x(1))x(2), 0) +
∑

(0, ε(y(1))y(2)) = (x, 0) + (0, y) = (x, y).
Thus (u ⊕ v, α ⊕ β) is a left h-comodule. It is easy to see that the canonical
projection and embedding πk and ık are morphisms in this category. It is well-
known that this category is monoidal category where the tensor product of two
left h-comodules (u, α), (v, β) is the ordinary tensor product of vector spaces
u⊗ v equipped with the coaction α⊗ β : u⊗ v → h⊗ u⊗ v, (α⊗ β)(x⊗ y) =∑
x(1)y(1)⊗x(2)⊗y(2). It is easy that we have u⊗(v⊕w) = (u⊗v)⊕(u⊗w) not

only as vector spaces but also as left h-comodules. Thus ⊗ is distributive. An
associative algebra a in this category is just a left h-comodule algebra, i.e. an
ordinary algebra a which is also a left h-comodule with coaction α satisfying
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α(xy) = x(1)y(1) ⊗ x(2)y(2), x, y ∈ a. Now let us see how a matrix over a in this
category can be presented by ordinary matrices.

Proposition 2.6. Let u and v be two left h-comodules of dimension m
and n, respectively. We fix a basis for each of them; {ei | 1 ≤ i ≤ m} and
{fi | 1 ≤ i ≤ n}. To any matrix T ∈ Ha

u,v we assign a triple (X,U, V ) of
ordinary matrices X ∈Mm,n(a), U ∈Mm(h), V ∈Mn(h) satisfying
(2.11)

∆(Uij) =
∑
k

Uik ⊗Ukj , ∆(Vij) =
∑
k

Vik ⊗ Vkj , ε(Uij) = δij , ε(Vij) = δij

and

(2.12) γ(Xij) =
∑
k,l

UikSVlj ⊗Xkl.

This assignment is given as follows: The matrices U, V and X are defined
by the equations α(ei) :=

∑
j Uij⊗ ej , β(fi) :=

∑
j Vij⊗fj , T (ei) :=

∑
j Xij⊗

fj, where α, β and γ are h-comodule structures of u, v and a. Conversely
let (X,U, V ) be a triple of matrices X ∈ Mm,n(a), U ∈ Mm(h), V ∈ Mn(h)
satisfying the above relations and u and v be m and n-dimensional vector spaces
with a fixed bases {ei | 1 ≤ i ≤ m} and {fi | 1 ≤ i ≤ n}. Now we define a
matrix T ∈ Ha

u,v as follows: The h-comodule structure of u and v are given
by α(ei) :=

∑
j Uij ⊗ ej , β(fi) :=

∑
j Vij ⊗ fj , and T is given by T (ei) :=∑

j Xij ⊗ fj.
The vector space structure of Ha

u,v corresponds to

(2.13) z(X,U, V ) + (X ′, U, V ) = (zX +X ′, U, V ),

z ∈ C, X,X ′ ∈ Mm,n(a), U ∈ Mm(h), V ∈ Mn(h), and the multiplication of
elements of Ha

u,v with elements Ha
v,w, where w is another h-comodule with a

fixed basis, corresponds to

(2.14) (X,U, V )(Y, V,W ) = (XY,U,W ),

where X ∈Mm,n(a), Y ∈Mn,p(a), U ∈Mm(h), V ∈Mn(h),W ∈Mp(h).

Proof. Relations (2.11) are the consequences of the assumption that u
and v are comodules over h. As a consequence of these relations as well as
the Hopf algebra axioms, we get

∑
k VikSVkj = ε(Vij) = δij . Next, let us

write γ(Xij) =
∑

l Y
l
ij ⊗ Z lij . So since T is a h-comdule intertwiner, we get∑

j,k,l Y
l
ijVjk⊗Z lij⊗fk =

∑
j,k Uij⊗Xjk⊗fk. Thus

∑
j,l Y

l
ijVjk⊗Z lij =

∑
j Uij⊗

Xjk. Hence for each p we have
∑

j,k,l Y
l
ijVjkSVkp ⊗ Z lij =

∑
j,k UijSVkp ⊗Xjk.

So
∑

j,l Y
l
ij(
∑

k VjkSVkp)⊗Z lij =
∑

j,k UijSVkp⊗Xjk. Thus
∑

j,l Y
l
ijδjp⊗Z lij =∑

j,k UijSVkp ⊗Xjk. Hence
∑

l Y
l
ip ⊗ Z lip =

∑
j,k UijSVkp ⊗Xjk. So γ(Xip) =



358 Seyed Ebrahim Akrami and Reza Mohammadi 8∑
j,k UijSVkp ⊗ Xjk. Therefore, we proved the relation (2.12). To get the

converse assertion, we need to prove that the linear map T given by T (ei) :=∑
j Xij ⊗ fj , is a h-comodules intertwiner. To show this we start from the

relation γ(Xip) =
∑

j,k UijSVkp⊗Xjk. Thus
∑

l Y
l
ip⊗Z lip =

∑
j,k UijSVkp⊗Xjk.

Hence for each q we get
∑

l,p Y
l
ipVpq ⊗ Z lip =

∑
j,k,p UijSVkpVpq ⊗ Xjk. Thus∑

l,p Y
l
ipVpq⊗Z lip =

∑
j Uij⊗Xjq. So

∑
l,p,q Y

l
ipVpq⊗Z lip⊗fq =

∑
j,q Uij⊗Xjq⊗fq.

This means exactly that T is a h-comodules intertwiner.

Relation (2.13) is the consequence of the definition (zT + T ′)(ei) =∑
j Xij ⊗ fj +

∑
j X
′
ij ⊗ fj =

∑
j(Xij + X ′ij) ⊗ fj , where T, T ′ ∈ Ha

u,v and
(X,U, V ), (X ′, U, V ) are their corresponding ordinary matrices. Similarly,
the relation (2.14) is the consequence of the definition (T ◦a T ′)(ei) = (m ⊗
idw)((ida⊗T ′)(

∑
j Xij⊗fj)) = (m⊗idw)(

∑
j,kXij⊗X ′jk⊗gk) =

∑
j,kXijX

′
jk⊗

gk =
∑

k(XX
′)ik ⊗ gk, where T ∈ Ha

u,v, T
′ ∈ Ha

v,w and (X,U, V ), (X ′, V,W )
are their corresponding ordinary matrices. �

Example 2.7. We consider a special case of example 2 that is h = C[G]
group Hopf algebra for a finite group G. It is well-known that the objects of
this category are exactly the G-graded vector spaces. We choose a = h = C[G],
with the coaction γ = ∆, which is an algebra in the category C[G]-Com, since
an algebra in this category is nothing other than a G-graded algebra, see [8].

Proposition 2.8. Matrices over algebra C[G] in the category C[G]-Com
of size u×v, where u and v are finite dimensional G-graded vector spaces, cor-
respond to triples ({Xg}g∈G, {Ug}g∈G, {V g}g∈G) of matrices Xg ∈ Mm,n(C),
Ug ∈ Mm(C), V g ∈ Mn(C) such that each family {Ug}g, {V g}g is a family of
orthogonal idempotents and

∑
g U

g = Im,
∑

g V
g = In and

(2.15)
∑

g1g
−1
2 =g

Ug1Xg′V g2 = δg,g′X
g.

Proof. A matrix X ∈Mm,n(C[G]) is nothing other than a family of matri-
ces {Xg ∈Mm,n(C)}g∈G. The relations mentioned in this proposition are just
rewriting of the relations (2.11) and (2.12): We have ∆(Uij) = ∆(

∑
g U

g
ijg) =∑

g U
g
ijg ⊗ g. On the other hand,

∑
k Uik ⊗ Ukj =

∑
k,g,g′ U

g
ikU

g
kjg ⊗ g

′. Thus∑
k U

g
ikU

g
kj = δg,g′U

g
ij . That is UgUg

′
= δg,g′U

g. Next ε(Uij) = ε(
∑

g U
g
ijg) =∑

g U
g
ij = (

∑
g U

g)ij . On the other hand, δij = (Im)ij where Im is the identity
matrix of size m×m. Thus

∑
g U

g = Im.

Finally, ∆(Xij) = ∆(
∑

gX
g
ijg) =

∑
gX

g
ijg ⊗ g. On the other hand,∑

k,l

UikSVlj ⊗Xkl =
∑

k,l,g1,g2,g

Ug1ik V
g2
lj X

g
klg1g

−1

2 ⊗ g.
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Thus

δg,g′X
g
ij =

∑
k,l

∑
g1g
−1
2 =g

Ug1ikX
g′

klV
g2
lj .

That is δg,g′X
g =

∑
g1g
−1
2 =g U

g1Xg′V g2 . �

Example 2.9. We denote the space of all matrices of size m × n over an
ordinary algebra A by Mm,n(A) and the invertible matrices of size m×m over
a field k by GLm(k). Let G be a group. The category C = Repk(G) of all
representations of G over k is a monoidal category, with ⊗ being the tensor
product of representations: if for a representation V one denotes by ρV the
corresponding map G→ GL(v), then

ρV⊗W (g) := ρV (g)⊗ ρW (g).

The unit object in this category is the trivial representation 1 = k, see [3].
The direct sum of two objects (V, ρV ), (W,ρW ) is given by (V, ρV )⊕(W,ρW ) =
(V ⊕W,ρV⊕W ) where

ρV⊕W (g) : V ⊕W −→ V ⊕W

(ρV⊕W (g))(v, w) = (ρV (g)v, ρW (g)w).

We define a morphism between two objects (V, ρV ), (W,ρW ) to be a linear
map f : V −→W such that the diagram

V
ρV (g) //

f
��

V

f
��

W
ρW (g)

//W

commutes, i.e.

∀g ∈ G fρW (g) = ρV (g)f.

The class O of objects is an Abelian associative semigroup with a null
object denoted by (0, ρ0). It is easy to see that the projection and injection πk
and ιk are morphisms in this category and satisfy in conditions (2.1). On the
other hand, clearly ⊗ of objects is distributive with respect to ⊕ of objects,
i.e.

(V, ρV )⊗
(
(W,ρW )⊕ (U, ρU )

)
=
(
(V, ρV )⊗ (W,ρW )

)
⊕
(
(V, ρV )⊗ (U, ρU )

)
.

Since U, V and W are vector spaces we have V ⊗ (W ⊕U) = (V ⊗W )⊕
(V ⊗ U) and thus

ρV ⊗ (ρW ⊕ ρU ) = (ρV ⊗ ρW )⊕ (ρV ⊗ ρU ),
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f ⊗ (g ⊕ h) = (f ⊗ g)⊕ (f ⊗ h)

and therefore compatibility conditions hold.

Consider an algebra
(
(A, ρA),m, µ

)
in this category. Thus (A, ρA) ∈ C,

m ∈ H(A⊗A,ρA⊗A),(A,ρA), µ ∈ H1,(A,ρA) and the following diagram commutes

A⊗A
ρA⊗A(g) //

m
��

A⊗A
m
��

A
ρA(g)

// A.

Therefore an algebra A in this category, is a unital associative ordinary
algebra A with a representation of group G on A

G×A −→ A

(g, a) 7−→ ga := ρA(g)(a)

which satisfies in the following properties

g(ab) = (ga)(gb), g(a+ b) = ga+ gb

g(ha) = (gh)a, g1 = 1.

We call such an algebra a G-algebra. In the following proposition, we
study the structure of a matrix in this category.

Proposition 2.10. Let U and V be two m and n-dimensional represen-
tations of G and A be a G-algebra. We fix a basis for each of U and V ;
{ei | 1 ≤ i ≤ m} and {fi | 1 ≤ i ≤ n}. To any matrix T ∈ HA

U,V we assign a

triple (X,λ, η), X ∈Mn,m(A), X = (aij), λ : G→ GLm(k), λ(g) =
(
λij(g)

)
, η :

G → GLn(k), η(g) =
(
ηij(g)

)
, by Tej =

∑
i aij ⊗ fi, gej =

∑
i λij(g)ei, gfj =∑

i ηij(g)fi. The maps λ and η are group homomorphisms and

Xλ(g) = η(g)X, ∀g ∈ G.(2.16)

Conversely let (X,λ, η) be a triple, X ∈ Mn,m(A), λ : G → GLm(k),
η : G→ GLn(k) group homomorphisms and satisfy the relation (2.16). Let U
and V be m and n-dimensional vector spaces with some fixed bases {ei | 1 ≤
i ≤ m} and {fi | 1 ≤ i ≤ n}. Now we define a matrix T ∈ HA

U,V as follows:
the representation structures of U and V are given by gej =

∑
i λij(g)ei, gfj =∑

i ηij(g)fi, and T is given by Tej =
∑

i aij ⊗ fi. Each triple (X,λ, η) is called
a G-matrix over algebra A.

Proof. We have

U = 〈e1, ..., em〉, V = 〈f1, ..., fn〉.
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We know that the following diagram is commutative:

U
ρU (g) //

T
��

U

T
��

A⊗ V
ρA(g)⊗ρV (g)

// A⊗ V.

Therefore, since

ej
T−→ Tej =

n∑
i=1

aij ⊗ fi
ρA(g)⊗ρV (g)−−−−−−−−→

∑
i

gaij ⊗ gfi,

and

ej
ρU (g)−−−→ gej

T−→ T (gej),

we get ∑
i

gaij ⊗ gfi = T (gej).

Now we have

T (gej) =
∑
l

λlj(g)Tel =
∑
i

∑
l

λlj(g)ail ⊗ fi,

and ∑
i

gaij ⊗ gfi =
∑
i

∑
l

gaij ⊗ ηli(g)fl =
∑
il

ηil(g)alj ⊗ fi,

therefore ∑
l

ailλlj(g) =
∑
l

ηil(g)alj .

Thus

Xλ(g) = η(g)X, ∀g.

Now we show that λ and η are group homomorphisms. We have

(g2g1)(ei) = g2(g1ei).

Therefore ∑
r

λri(g2g1)er =
∑
lr

λli(g1)λrl(g2)er,

hence

λri(g2g1) =
∑
l

λrl(g2)λli(g1).

So λ(g2g1) = λ(g2)λ(g1), i.e. λ is a group homomorphism. Similarly,
it can be shown that η is a group homomorphism. The converse is easily
proved. �
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3. K-THEORY

In this section, we extend K-theory of an ordinary algebra for an algebra
inside a monoidal category, see [9].

Now let S be a subsemigroup of semigroup (O,⊕). Using identification

(2.10), we embed Eau in Eau⊕v via f 7→
[
f 0
0 0

]
and let M∞(a;S) be the

union
⋃
u∈S E

a
u up to this identification. We define two equivalence relations

on the set of idempotents living in M∞(a;S), as follows: for any u ∈ S and
any two idempotents e, e′ of the algebra ∈ Eau, we write e ∼ e′ iff there exist
f, g ∈ Eau such that e = fg and e′ = gf and we write e ∼s e′ iff there exists an
invertible z ∈ Eau such that e′ = zez−1. As in algebraic K-theory for ordinary
matrices, one can show that these are equivalence relations and the relation

e ∼s e′ implies e ∼ e′. Also if e ∼ e′ then

[
e 0
0 0

]
∼s

[
e′ 0
0 0

]
, where the

later matrices are regarded as idempotents of the algebra Eau⊕u. So using the
above mentioned embedding of Eau into Ea2u, we conclude that the equivalence
relations ∼ and ∼s over the idempotents of M∞(a;S) are the same.

Now let I(a;S) be the set of all equivalence classes of idempotents. There
is a binary operation on I(a;S): if [e], [e′] ∈ I(a;S), where e ∈ Eau, e

′ ∈
Eav , u, v ∈ S, then [e] + [e′] := [dia(e, e′)] where dia(e, e′) is an idempotent
in Eau⊕v, regarding the identification (2.10).

Definition 3.1. K0(a;S) is the enveloping group of the semigroup I(a;S).

Now we put some topological structures on the algebra Eau. Let for any
u ∈ S, each algebra Eau is a local Banach algebra. For any two idempotents
e, e′ ∈ Eau we write e ∼h e′ iff there exists a norm-continuous path of idempo-
tents in Eau from e to e′. Again like in algebraic K-theory for ordinary matrices,
one can show that the relation e ∼h e′ implies e ∼s e′. Conversely, the rela-

tion e ∼s e′ implies

[
e 0
0 0

]
∼h

[
e′ 0
0 0

]
. So the three equivalence relations

∼,∼s,∼h on the set of idempotents of M∞(a;S) coincide. So no matter which
equivalence relation we choose on the semigroup of idempotents, we get the
same enveloping group.

Next we define K1-theory. Let GLau be the invertible elements of the
algebra Eau. We embed GLau in GLau⊕v by f 7→ dia(f, idv) and we set K1(a;S)
to be the disjoint union of quotient groups

⊔
u∈S GL

a
u/[GL

a
u, GL

a
u] up to this

identification.
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4. CYCLIC COHOMOLOGY

In this section, we extend cyclic cohomology of an ordinary algebra for
an algebra inside a monoidal category, see [7].

Let C be a monoidal category which admits braiding. That is, there exists
a family of invertible morphisms ψu,v ∈ Hu⊗v,v⊗u satisfying

(4.1) ψu⊗v,w = (idu ⊗ ψv,w)(ψu,w ⊗ idv), ψu,v⊗w = (ψu,v ⊗ idw)(idv ⊗ ψu,w),

and

(4.2) (f ⊗ g)ψu′,v′ = ψu,v(g ⊗ f),

for all u, v, w, u′, v′ ∈ O and f ∈ Hu,u′ , g ∈ Hv,v′ . Let (a,m, µ) be an associative
unital algebra in the category C. We say that a is a ribbon algebra if there
exists an invertible morphism σ ∈ Ea satisfying

(4.3) ψ2
a,a(σ ⊗ σ)m = mσ.

In the category Vec where the braiding is flip operator, the above con-
dition just means σ is algebra automorphism. Also, in general, this condition
is a combination of the algebra automorphism condition and the fundamental
condition between braiding and twist in a ribbon category.

For arbitrary objects b, c ∈ O we define a linear operator

(4.4) λb,c : Ha⊗b,c → Hb⊗a,c, λb,c(ϕ) := ψb,a(σ ⊗ idb)ϕ.

We recall the notion of braided cyclic cohomology introduced in [1]. First
of all, for simplicity we use the notations ψi,j := ψa⊗i,a⊗j and idi := ida⊗i . We
set λ(n) := (−1)nλa⊗n,1. Explicitly λ(n) is the operator sending a morphism ϕ
in the space Ha⊗(n+1),1 to the following morphism in the same space

(4.5) λ(n)(ϕ) := (−1)nψn,1(σ ⊗ idn)ϕ.

For simplicity, we will write λ instead of λ(n).
Let Cn = Cn(a;σ) := {ϕ ∈ Ha⊗(n+1),1 | λn+1(ϕ) = ϕ}. For ϕ ∈ Cn, we

define

(4.6) d
(n)
i (ϕ) =

{
(idi ⊗m⊗ idn−i−1)ϕ, 0 ≤ i ≤ n− 1

ψn,1(σ ⊗ idn)(m⊗ idn−1)ϕ, i = n,

and

(4.7) s
(n)
i (ϕ) = (idi+1 ⊗ µ⊗ idn−i)ϕ, 0 ≤ i ≤ n.

Proposition 4.1. We have d
(n)
i (Cn) ⊆ Cn+1, s

(n)
i (Cn) ⊆ Cn−1,

λ(n)(C
n) ⊆ Cn and {Cn}n≥0 with the linear maps d

(n)
i , s

(n)
i , and λ(n) as face,

degeneracy and cyclic operators respectively, form a cocyclic module.



364 Seyed Ebrahim Akrami and Reza Mohammadi 14

Proof. The proof based on the very powerful graphical calculus is given
in [1]. �

We denote the Hochschild cohomology of this cocyclic module by
HH(C; a, σ) and the cohomology of the subcomplex

Cnλ (C; a, σ) = {ϕ ∈ Ha⊗(n+1),1 | λ(ϕ) = ϕ}

by HC(C; a, σ) and call them Hochschild and cyclic cohomology of ribbon
algebra (a,m, µ, σ).

5. PAIRING K-THEORY WITH CYCLIC COHOMOLOGY

In this section, we extend the pairing between K-theory and cyclic co-
homology of an ordinary algebra for an algebra inside a monoidal category,
see [2].

In this section, we assume that S is a subsemigroup of the semigroup
(O,⊕) and there exists an additive family Tu : Eu → C, u ∈ S of linear maps
satisfying a trace property which we now explain. By additivity we mean

(5.1) Tu⊕v(

[
f 0
0 g

]
) = Tu(f) + Tv(g), u, v ∈ S, f ∈ Eu, g ∈ Ev.

Next we extend the family Tu to a family Tu,ϕ : Eau → C, u ∈ S, ϕ ∈ Ha,1 by

(5.2) Tu,ϕ(f) := Tu(ϕ∗(f)), u ∈ S, a ∈ O, ϕ ∈ Ha,1, f ∈ Eau.

Now we express the promised axiom of trace property. We assume that

(5.3) Tu,ϕ(f�g) = Tv,ϕ(g�f), u, v ∈ S, b ∈ O, f ∈ Hu,v, g ∈ Hb
v,u, ϕ ∈ Hb,1,

and
(5.4)
Tu,ϕ(f�g) = Tv,λ(ϕ)(g�f), u, v ∈ S, a, b ∈ O, f ∈ Ha

u,v, g ∈ Hb
v,u, ϕ ∈ Ha⊗b,1,

where λ = λb,1 was defined by (4.4). Using Lemma 2.1 one can easily see that
this family is also additive.

For the trivial algebra a = 1 with m = id1, µ = id1, σ = id1 and for b = 1,
the product � is just the composition law of the category and the axioms (5.3)
and (5.4) become the ordinary trace property.

In particular, we can use the following traces: if E1 = C and S is also
closed under tensor product and admits twist, i.e. there exists a natural family
of invertible morphisms θu ∈ Eu, u ∈ S satisfying (5.1), and admits duality, i.e.
there is an operation on S, u 7→ u∗ and there are morphisms bu ∈ H1,u⊗u∗ , du ∈
Hu∗⊗u,1 satisfying (5.2), then we get the following family of traces.
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Proposition 5.1. Under the conditions mentioned in the above last pa-
ragraph, the following linear maps

(5.5) Tu : Eu → C, Tu(f) := bu((fθu)⊗ idu∗)ψu,u∗du

satisfy the axiom (5.4) for any ribbon algebra a and any object b.

Remark. We can use also any ribbon knot to produce a nontrivial family
Tu.

Now we come back to the general situation at the beginning of this section
where we had just braiding morphisms and the family Tu, u ∈ S.

Proposition 5.2. For any u ∈ S, the map C∗(C; a, σ) → C∗(Eau), ϕ 7→
ϕu defined by

(5.6) ϕu(x0, . . . , xn) := Tu,ϕ(x0 � · · · � xn)

is a map of cocyclic modules.

Proof. For ϕ ∈ Cn−1(C; a, σ) and u ∈ S we must show (di(ϕ))u = di(ϕu),
(si(ϕ))u = si(ϕu), (λ(ϕ))u = λ(ϕu), for all 0 ≤ i ≤ n. We have

(λ(ϕ))u(x0, . . . , xn) = Tu,λ(ϕ)(x0 � · · · � xn)

= (−1)nTu,ϕ(xn � x0 � · · · � xn−1)
= (−1)nϕu(xn, x0, . . . , xn−1)

= (λ(ϕu))(x0, . . . , xn).

Let 0 ≤ i < n. We have

(di(ϕ))u(x0, . . . , xn) = Tu
(
(di(ϕ))∗(x0 � · · · � xn)

)
= Tu

(
ϕ∗((idi ⊗m⊗ idn−i−1)

∗(x0 � · · · � xn))
)

= Tu
(
ϕ∗(id∗i (x0 � · · · � xi−1)�m∗(xi � xi+1)

� id∗n−i−1(xi+2 � · · · � xn))
)

= Tu
(
ϕ∗(x0 � · · · � xi−1 � (xi ◦a xi+1)

� xi+2 � · · · � xn)
)

= ϕu(x0, . . . , xi−1, (xi ◦a xi+1), xi+2, . . . , xn)

= di(ϕu)(x0, . . . , xn).

The case i = n, now is the consequence of the relation dn(ϕ) = (−1)n

λ(d0ϕ)), which holds for any cocyclic module, and the relations (d0(ϕ))u =
d0(ϕu),(λ(ϕ))u = λ(ϕu).

Next, by setting Si = (si(ϕ))u(x0, . . . , xn) we have

Si = Tu
(
(si(ϕ))∗(x0 � · · · � xn)

)
= Tu

(
ϕ∗(idi+1 ⊗ µ⊗ idn−i)

∗(x0 � · · · � xn)
)
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= Tu
(
ϕ∗(idi+1 ⊗ µ⊗ idn−i)

∗(x0 � · · · � xi � idu � xi+1 � · · · � xn)
)

= Tu
(
ϕ∗(idi+1)

∗(x0 � · · · � xi)� µ∗(idu)� id∗n−i(xi+1 � · · · � xn)
)

= Tu
(
ϕ∗(x0 � · · · � xi � 1au � xi+1 � · · · � xn)

)
= ϕu(x0, . . . , xi, 1

a
u, xi+1, . . . , xn)

= si(ϕu)(x0, . . . , xn). �

Proposition 5.3. The following is a bilinear pairing between K0(a;S)
and HCeven(C, a;σ),

(5.7) < [e], [ϕ] >:= ϕu(e, . . . , e), e ∈ Eau, u ∈ S.

Proof. We first show that if we replace e ∈ Eau with

[
e 0
0 0

]
= π1eı

a
1 ∈

Eau⊕u, where π1 = π1({u, u}) and ıa1 = ı1({a ⊗ u, a ⊗ u}), the result of the
pairing does not change. For morphisms xi ∈ Eau, 0 ≤ i ≤ n and for any
morphism ϕ ∈ Ha⊗(n+1),1 and by setting Φu⊕u = ϕu⊕u(π1x0ı

a
1, . . . , π1xnı

a
1) we

have

Φu⊕u = Tu⊕u,ϕ(π1x0ı
a
1 � · · · � π1xnıa1)

= Tu⊕u,ϕ(π1x0(ida ⊗ ı1)� · · · � π1xn(ida ⊗ ı1))
= Tu⊕u,ϕ(π1 � x0 � ı1 � · · · � π1 � xn � ı1)
= Tu⊕u,ϕ(π1 � x0 � ı1 � π1 � x1 � ı1 · · · � π1 � xn � ı1)
= Tu⊕u,ϕ(π1 � x0 � ı1π1 � x1 � ı1 · · · � π1 � xn � ı1)
= Tu⊕u,ϕ(π1 � x0 � idu � x1 � ı1 · · · � π1 � xn � ı1)
= Tu⊕u,ϕ(π1 � x0 � · · · � xn � ı1)
= Tu,ϕ(ı1 � π1 � x0 � · · · � xn)

= Tu,ϕ(ı1π1 � x0 � · · · � xn)

= Tu,ϕ(x0 � · · · � xn)

= ϕu(x0, . . . , xn).

Next we must show that if ϕ is a coboundary then the value of the pairing
vanishes. So let d =

∑2m
i=0(−1)idi be the Hochschild coboundary then by

Proposition 5.2 we have

(d(ϕ))u(e, . . . , e) = d(ϕu)(e, . . . , e)

=
2m∑
i=0

(−1)iϕu(e, . . . , e)

= ϕu(e, . . . , e).

But from λ(ϕu) = ϕu we conclude that ϕu(e, . . . , e) = 0. Therefore
(d(ϕ))u(e, . . . , e) = 0.
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Now let e and f be two idempotents in the algebra Eau such that e ∼ f .
Since we proved that the value of the pairing does not change if we replace

e ∈ Eau with

[
e 0
0 0

]
∈ Eau⊕u we conclude that we may assume e ∼s f within

Eau, that there exists an invertible element z ∈ Eau such that f = z−1ez. But
using Proposition 1.8 in chapter 3 of [2], and the above fact that the pairing for
coboundaries vanishes, we conclude that the value of the pairing will not change
if one replaces e with f . Thus the pairing only depends on the equivalence
class of e and the cohomology class of ϕ. To show that this pairing over the
semigroup I(a;S) of the equivalence classes of idempotents extend to the group
K0(a;S), we need to show that this pairing is additive:

ϕu⊕v(

[
e 0
0 f

]
, . . . ,

[
e 0
0 f

]
) = Tu⊕v,ϕ(

[
e 0
0 f

]
� · · · �

[
e 0
0 f

]
)

= Tu,ϕ(

[
e�(n+1) 0

0 f�(n+1)

]
)

= Tu,ϕ(e�(n+1)) + Tv,ϕ(f�(n+1))

= ϕu(e, . . . , e) + ϕv(f . . . , f). �

Proposition 5.4. The following is a bilinear pairing between K1(a;S)
and HCodd(C; a, S),

(5.8) < [g], [ϕ] >:= ϕu(g−1 − 1, g − 1, . . . , g−1 − 1, g − 1), g ∈ GLau, u ∈ S.
Proof. Since for fixed u, this pairing is nothing other than the pairing

of the cyclic cohomology of the algebra Eau with the quotient of the group of
invertible elements of this algebra by the commutator subgroup, it is enough
to apply the proof of Proposition 3.3, chapter 3 of [2] for the algebra A = Eau
and for the cyclic cocycle ϕu for the case k = 1.

Also we need to show that the pairing is compatible with the inclusion
GLau ⊆ GLau⊕v, f 7→ dia(f, idv) which is easy to show. �

REFERENCES

[1] S.E. Akrami and S. Majid, Braided cyclic cocycles and non-associative geometry. J.
Math. Phys. 45 (2004), 3883–3911.

[2] A. Connes, Noncommutative Geometry. Academic Press, 1994.

[3] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories. Math. Surveys
Monogr. 205, American Mathematical Society, Providence, RI, 2015.

[4] C. Jones and D. Penneys, Operator algebras in rigid C*-tensor categories. Comm. Math.
Phys. 355 (2017), 1121–1188.

[5] J.R. Kirillov and V. Ostrik, On a q-Analog of the Mckay Correspondence and the ADE
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