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1. INTRODUCTION

The idea of NCG (non-commutative geometry) is to extend the domain of
classical concepts. The classical concept of a space is extended to the concept
of an algebra or a C*-algebra and the classical concept of a vector bundle
over a space is extended to a finitely generated projective module over an
algebra or idempotent matrices over this algebra. Then the classical topological
K-theory is extended to algebraic and operator K-theory. Also, classical de
Rham cohomology is extended to cyclic cohomology and classical index formula
is extended as a pairing between operator K-theory and cyclic cohomology [2].

In this article, we extend the concept of a matrix over an algebra and
therefore, we extend K-theory and cyclic cohomology. This work is based on
the following simple idea. Let A be a complex associative algebra. Every matrix

X = (ai;) of size m x n over A can be regarded as a linear map C™ EiN AxC",
Te; = Zj a;; ® e;j. The crucial point is that the later has meaning in any
monoidal category C if we replace spaces C'™ and C" with objects V, W of the
category and take A an algebra in C. Thus, we may extend the concept of
a matrix instead of being a rectangle table of elements of an algebra to be a
morphism V' — A® W and call it a matrix over A of size V x W. Notice that
since Homa_prod(A @ C™ A ® C") = Home—_vyec(C™, A ® C™) thus, one can
define similarly a matrix over an algebra A € C as a morphism AQV — AQW.
This later viewpoint is used in [4] and [5].
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from IPM, Iran, Math. Department.
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2. GENERALIZED MATRICES

Let O be the class of objects of a category C. We denote the set of
morphisms with initial object u and terminal object v, by H, , and the set of
loops, i.e. morphisms whose initial and terminal objects are the same object u,
by E,. We denote the composition of a morphism f € H, , with a morphism
g€ Hv,w by fog € Hu,w'

We define two maps s and r called source and range maps as follows.
For any morphism f € H,,, we set s(f) := u and r(f) := v. We have
s(fog)=s(f),r(fog)=r(g)

We regard any object u as a loop by identifying it with the loop id,.
Thus with this agreement we have s(u) = u,r(u) = u for all object u and
s(flof=Fffor(f)=1.

We suppose that H,, is a complex vector space and the composition is
bilinear.

We assume that O is equipped with an addition law ¢ which makes it to
an Abelian associative semigroup with a null object denoted by 0 and for any
morphism f; € Hy, v;,7 = 1,2, there exists an addition law

fl 2] f? € Hul@'U«?ﬂ)lEBUQ

such that it is commutative and associative and there exists a null morphism
0 € Eg such that 0@ f = f,Vf € H,,. Moreover, we assume that for any
uy,ug € O there are morphisms 7, = mp({ui,u2}) € Hy gusu, and 1 =
1 ({u1,u2}) € Hyp uious, k = 1,2 such that

2

(2.1) 1T = 5kliduk7 Zﬁklk = idul@ug-
k=1

We recall [3], that C is called a monoidal category if there exists a tensor
product in a category C, i.e. a covariant functor ® : C xC — C which associates
to each pair of objects u,v € O an object u ® v € O and to each pair of
morphisms f € Hy,,9 € Hy v a morphism f®g € Hygy vg and there exists
an object 1 such that the following conditions hold

u®l=1Qu=u, (URV)AW=u® (vOw)

and
feidi=idiof=f (fogeh=fe(@eh).

To say that ® is a covariant functor means that we have the following
identities

(ffHed)=(29(f@d), id,®id, = iduge.
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Moreover, we assume that ® of objects is distributive with respect to
@ of objects and ® of morphisms is bilinear. We require that the following
compatibility conditions hold
(2.2) 1 =1id, @ 1, 7 = idg ® 7,

for all up,a € O,k = 1,2, where 1, = 1,({u1,u2}), 7 = mp({u1,u2}),2f =
1({o ® u,a ® us}), 7t = m({a ® u1,a ® uz}). Note that we immediately
conclude

(2.3)

T = id, @np, 199 = id, @92, 1§ (id, @ f) = idy @i f, (id, @A) TE = id, @ by

for all ui,uz,a,b,u € O, f € Hy,gupus M € Hyuriouss k =1, 2.
We define a product

(2.4) Hy % Hfiw — H®Y  fog:=f(id,®g), abuveO.

u,Ww

This product is associative in the sense that we have
(25) (fO9)Oh=[O(gOh), abeuv,weeO,feH], gcH, H;

vawtw, T

Note that we recover the composition law of the category via this product, i.e.
we have

(26> fg = f ©g, f € Hu,vag € Hv,un

since we have g = id; ® g, we conclude that fg = f(idy ®g) = f © g.
Now let ¢ be a morphism from a to b. We define

(2'7) 30* : Hg,v - Hg,v’ (P*(f) = f((P ® idv)’ u,v € 0.
The proof of the following lemma is straightforward.

LeEmMA 2.1. (i) Forall f € Hy} g € Hff’w,cp € Hyw,¥ € Hyy,u,v,w,a,
a, bt € O, we have

(@) (fog) = (f)oviy), ¢ (fog)=¢(f)og,
(ii) For all f € H,, € Hap, v € Hy,u,v,a,b,c € O, we have
()" (f) = ¥™(¥™(f)),
(i) ¢*(f9) = F¢"(a).

(iv)
o e

B [ ©*(fa1) ¢ (f22)
(v)

[ fir fi2 } o [ g11 912] _ [ fi1 © g1+ fiz2 ©® g21 f11 © g12 + fi2 © g2
for fa2 921 922 f21 © g1 + f22 © g21 fa1 © g12 + fa2 © ga2
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A triple (a, m, u) is called an associative unital algebra in the monoidal
category C, if a € O and m € Hygqaa, b € H1,, and the following axioms hold

(2.8) (m®idg)m = (idg @ m)m, (p®idy)m =id, = (idg ® p)m

Definition 2.2. Let (a,m,p) be an associative unital algebra in the mo-
noidal category C. Any element of the space Hy , := Hy ago is called a matrix
of size u x v over algebra a, where u,v € O.

PROPOSITION 2.3. For any u,v,w € O the following defines a bilinear

(2.9) oq t Hyy x Hyy — Hyl oy foag:= f(ida ® g)(m ®idy).

We have (f o4 g) ca h = f o4 (g oq h) for f € Hy,,g € HJ,,h €
Hy wou,v,w,x € O. In particular, By = Hy ,, is an associative unital com-

plex algebra under the above product. The unit is p ® id,,. Moreover for any
elements uy,ug € O, we have the following identification as algebras

HY  H?
= [ Fen o | (1

u2,u1 u2,u2

(2.10) E°

. 2
where fij = fr}. The inverse is given by (fij)ijzl = f = Zmzl ™3 fij5 -

Proof. Associativity:

(foag)oah = [f(idy® g)(m@idy)] o4 h
= f(id, ® g9)(m ®idy)(ide ® h)(m ® id,)
= f(ide ® g)(mid, ® idwh)(m @ id,)
= f(ida & g) (lda®am ® hida®z)(m ® idx)
= f(idy ® 9)(idagae ® h) (M @ idags) (M @ id,)
= f(ide ® g)[ide ® (idg ® h)][(m ® id,) @ id,](m @ id,)
= f(idg ® g)[id, ® (id, ® h)][(m ® idy)m & id,id,]
= f(ids ® g)[ide ® (idq ® h)][(idq ® m)m ® id,]
= f(ide ® 9)[ide @ (idy ® h)][ide ® (M ® id,)](m @ id,)
= flide ® (g(idg @ h)(m ® id,)](m @ idy)
= flida ® (g 04 h)](m ®id,)
[ oa (goa h)[—1.25pt]

The unit:
foa(p®idy) = flide®p®@idy)(m®idy)]
= flide ® p)m @ idyidy]
= f(id, ®idy)
=/



5 Generalized matrices, K-theory and cyclic cohomology 355

and

1 ®idy)(ide ® f)(m ®idy)

p® f)(m@idy)

id1p ® fidagu)(m ® idy)

= (id1 ® f)(p®id, ®@idy)(m @ idy)
= flp®ids)m @ id,id,]

f(ide ®idy,)

= f.

(,U & idu) Oq f =

I
~ o~~~

We denote the map (2.10) by ®. It is clear that ® is linear. Let f,g €

E¢ we have

u1bug?

(@®(foug)y = ulfoug)rs
= 4 f(id, ® g)(m® idu1€9u2)7r?

= Z v frpg(ide ® g)(m ® idm@m)ﬂ'}l
k

= Z fir(ida @ 1:9) 7§ (m @ id,,)
%

= > finlide @ 19)(ide @ 7) (m @ idy; )
k

= Z fir(idg ® 2kg7r§?)(m ®idy,)

k
= Z fik ©a Gk;j
k
= (2(f)®(9))ij-
Invertibility of ®:

2

OHR() = Y m(P()ie

1,7=1

2
a,a
= E 7rizif7rj v

,j=1
iduy; @us fidawu saous
= idul Dus fida(g)(ul Dua)

=/
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and
2
@@ (P = D (®(mifie))w

ij=1
]2

= szmfiﬂ?m“
ij=1
1dul fij ida®uj

= f. O

Example 2.4. Let Vec denote the category whose objects are complex
vector spaces and morphisms are linear maps. The sum & is just the direct
sum of vector spaces. The morphisms 7, and 12, are the canonical projection
and embedding, respectively. The product ® is just the tensor product of
vector spaces and 1 = C. An associative unital algebra in this category is
just an ordinary associative unital algebra, where m(z ® y) = zy, u(A) =
A, z,y € a, A € C. As we explained in Introduction, a matrix in Vec of size
C™ x C™ over a, is just an ordinary m X n matrix over ordinary algebra a.

Ezample 2.5. Let (h, A, S,€) be a complex Hopf algebra and h-Com be
the category of left h-comodules, [6,10]. That is, an object is a vector space u
equipped with a linear map « : u — h ® u, called coaction, satisfying a(id, ®
a) =a(A®id,), a(e®id,) =id,. Sometimes we denote this object by (u, a).
In Sweedler’s notation, we write o(z) = Y 21y ® T (), & € u. The morphisms
are h-comodule intertwiners, i.e. linear maps f : (u,a) — (v, ) satisfying
fB = a(idy, ® f). The direct sum of two left h-comodules (u, @), (v, 3) is the
ordinary direct sum of vector spaces u @ v equipped with the coaction aa® S :
udv = h@(udv) = (heu)®(h@v), (a®pf)(z,y) := (a(x), B(y)). In Sweedler’s
notation, it means (a @ 8)(z,y) = > zu) ® (2),0) + > ya) ® (0,y)). Thus
(@@ B)(idr @ (@ B))(2,y) = 2o w0 @ L@ @ (L), 0) + 2 ya) @Yy ® (0,y) =
(a @ B)(A @ idagp)(z,y) and (a @ B)(e ® idagp)(@,y) = Do e(z0)) (%), 0) +
2 €Wm)(0,y0) = 3 o(e(m0) T2, 0) + 32(0, €(y))yzy) = (2,0)+ (0, y) = (z,y).
Thus (u ® v, @ B) is a left h-comodule. It is easy to see that the canonical
projection and embedding 7 and #; are morphisms in this category. It is well-
known that this category is monoidal category where the tensor product of two
left h-comodules (u, a), (v, B) is the ordinary tensor product of vector spaces
u ® v equipped with the coaction a® f:u®@v > h@uv, (a®p)(z®y) =
Y TmYa) @ T (e @Y. It is easy that we have u® (vBw) = (L) B (L@ w) not
only as vector spaces but also as left h-comodules. Thus ® is distributive. An
associative algebra a in this category is just a left h-comodule algebra, i.e. an
ordinary algebra a which is also a left h-comodule with coaction « satisfying
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a(zy) = xYa) @ T, T,y € a. Now let us see how a matrix over a in this
category can be presented by ordinary matrices.

PROPOSITION 2.6. Let u and v be two left h-comodules of dimension m
and n, respectively. We fix a basis for each of them; {e; | 1 < i < m} and
{fi | 1 <4 < n}. To any matriz T € Hy, we assign a triple (X,U,V) of
ordinary matrices X € My, n(a),U € My, (h),V € M,(h) satisfying
(2.11)

A(Usj) = Z Ui @ Ugj,  A(Vy5) = ZVm @ Vi,  €(Uij) =035, €(Vij) = 0
p e

and

(2.12) 'Y(Xij) = Z UlkSVl] ® Xk
ol

This assignment is given as follows: The matrices U,V and X are defined
by the equations a(e;) =2, Uiy ®ej, B(fi) =32 Vi ® fj, T(ei) =32, Xy ®
fj, where o, 3 and v are h-comodule structures of u,v and a. Conversely
let (X,U,V) be a triple of matrices X € My, n(a),U € My (h),V € My(h)
satisfying the above relations and u and v be m and n-dimensional vector spaces
with a fived bases {e; | 1 < i < m} and {f; | 1 < i < n}. Now we define a
matriz T € Hy , as follows: The h-comodule structure of w and v are given
by a(e) == >, Uij ®@ej, B(fi) = 3_;Vij ® fj, and T is given by T'(e;) =
> Xij ® fj-

The vector space structure of H®  corresponds to

(2.13) XU, V) + (X', U, V) = (X + XU, V),

ze€C X, X G My n(a),U € Mp(h),V € My(h), and the multiplication of

elements of Hy , with elements Hy ,,, where w is another h-comodule with a

fized basis, corresponds to
(2.14) (X, U, V)(Y, VW) = (XY, U W),
where X € My, n(a),Y € My p(a),U € Mp(h),V € My, (h), W € My(h).

Proof. Relations (2.11) are the consequences of the assumption that u
and v are comodules over h. As a consequence of these relations as well as
the Hopf algebra axioms, we get >, VixSVi; = €(Vi;) = di5. Next, let us
write ’y( i) = > Yl ® Zl So since T' is a h- comdule intertwiner we get
> ik Y Vir® 'j®fk = Z],k Uij® X, ® fi. Thus Z;z LVik®Zl; =3, Uw®
Xi- Hence for each p we have Zﬁk ! Y VikSVip ® Z Zj,k UZJSVkp X
So> .Y (Zk VikSVip) @ l =ik UzJSVkp®XJk~ Thus Py Yz‘ljfsjp(g’zfj =
>k Uwsvkp ® Xji. Hence 2, Vi@ Zl, =3, UijSVip ® Xji. So 7(Xip) =



358 Seyed Ebrahim Akrami and Reza Mohammadi 8

>-ik UijSVip ® Xji. Therefore, we proved the relation (2.12). To get the
converse assertion, we need to prove that the linear map T' given by T'(e;) :=
Z Xij ® fj, is a h-comodules intertwiner. To show this we start from the
relation v(Xip) = >, UijSVip®@ X k. Thus 3, Yilp®pr =2 i1 UijSVip®X
Hence for each q we get leYl Vpg ® Zl =2 i kp Ui SVipVpg @ X Thus
le pq® Z Uij®Xjq. So leq ip pq®Zl ®fq = Zj,q Uij®Xq® fq-
This means exactly that T is a h-comodules intertwiner.

Relation (2.13) is the consequence of the definition (27 + T")(e;) =
Xy @ fj + 22 X5 @ fp = 22Xy + XI;) ® fj, where T,T" € Hjj, and
(X,U, V), (X',U,V) are their corresponding ordinary matrices. Similarly,
the relation (2.14) is the consequence of the definition (T o, T7)(e;) = (m ®
id,)) (i ®T') (X, Xy @ £,)) = (Mid) (X Xij © X, @g0) = 35 Xig X1y &
gk = > (XX")ix ® g, where T € Hy ,,T" € Hy,, and (X,U,V), (X', V, W)
are their corresponding ordinary matrices. [J

Ezample 2.7. We consider a special case of example 2 that is h = C[G]
group Hopf algebra for a finite group G. It is well-known that the objects of
this category are exactly the G-graded vector spaces. We choose a = h = C[G],
with the coaction v = A, which is an algebra in the category C[G]-Com, since
an algebra in this category is nothing other than a G-graded algebra, see [§].

PROPOSITION 2.8. Matrices over algebra C[G| in the category C[G]-Com
of size u X v, where u and v are finite dimensional G-graded vector spaces, cor-
respond to triples ({X9}geq, {U9%}gec, {V}geq) of matrices X9 € My, »(C),
U9 € M, (C),V9 € M,(C) such that each family {U9},4,{V9}, is a family of
orthogonal idempotents and Zg U9 =1, Zg V9 =1, and

(2.15) Z U x9ve — 8.9 X7,
9195 '=g

Proof. A matrix X € M, ,,(C[G]) is nothing other than a family of matri-
ces {XY9 € My, n(C)}gec. The relations mentioned in this proposition are just
rewriting of the relations (2.11) and (2.12): We have A(Us;) = A(3_, U, )
>, U ]g ® g. On the other hand, Zk ik @ Ukj =3 g0 Ukugjg ®4g. Thus
>k UlgkUkj = 5g7g/UZgj. That is UIUY = = 04 9UY9. Next €(Uyj) = e(zg g g) =
Zg Ul-g]- = (Eg U9)i;. On the other hand, 6;; = (Ip,)ij where Ip, is the identity
matrix of size m x m. Thus } U9 = L.

Finally, A(X3;) =AY, Xwg) >4 X719 ®g. On the other hand,

Z UirSVi; @ Xy = Z U Vi Xihog' ©g.
k,l k,l,91,92,9
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Thus
9 _ 91 v 9 1,92
5g,g’Xz'j = E , E : Uik Xkl‘/}j :
kl g1gy'=g

That is 0,y X9 = Y, 0 UPXVE, O

Ezample 2.9. We denote the space of all matrices of size m x n over an
ordinary algebra A by M,, »(A) and the invertible matrices of size m x m over
a field k by GL,,(k). Let G be a group. The category C = Repi(G) of all
representations of G over k is a monoidal category, with ® being the tensor
product of representations: if for a representation V' one denotes by py the
corresponding map G — GL(v), then

pvew(9) = pv(9) ® pw(g).

The unit object in this category is the trivial representation 1 = k, see [3].
The direct sum of two objects (V, py), (W, pw) is given by (V, pv) @ (W, pw) =
(V& W, pyew) where

pv@w(g)2V@W—>V@W

(pvew (9))(v,w) = (pv(g)v, pw(g)w).

We define a morphism between two objects (V, py ), (W, pw) to be a linear
map f:V — W such that the diagram

v pv(g) v
1| |1
w w

pw(9)

commutes, i.e.

Voe G fpwl(g) =pv(g)f

The class O of objects is an Abelian associative semigroup with a null
object denoted by (0, pg). It is easy to see that the projection and injection 7y,
and ¢ are morphisms in this category and satisfy in conditions (2.1). On the
other hand, clearly ® of objects is distributive with respect to @ of objects,
i.e.

V,ov) @ (W, pw) @ (U, pv)) = (Vs pv) @ (W, pw)) & (V. pv) @ (U, pr))-

Since U, V and W are vector spaces we have V@ (WaU) = (Vo W)®
(V ®U) and thus

pv @ (pw ® pu) = (pv @ pw) ® (pv ® pu),
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fogoh)=(fog) o (feh)
and therefore compatibility conditions hold.
Consider an algebra ((A,pA),m,u) in this category. Thus (A,p4) € C,
m € HagApaga)(Apa) I € Hia,p,) and the following diagram commutes

Ao A pAgA(g) A A
A A.
pa(g)

Therefore an algebra A in this category, is a unital associative ordinary
algebra A with a representation of group G on A

GxA—A

(9,a) — ga = pa(g)(a)
which satisfies in the following properties

g(ab) = (ga)(gb),  gla+0b) =ga+ gb
g(ha) = (gh)a, gl =1.

We call such an algebra a G-algebra. In the following proposition, we
study the structure of a matrix in this category.

ProproSITION 2.10. Let U and V' be two m and n-dimensional represen-
tations of G and A be a G-algebra. We fiz a basis for each of U and V;
{e; |1 <i<m}and {fi | 1<i<n}. Toany matrizT € H{}"V we assign a
triple (X, \,n), X € Mypm(A), X = (aij),\: G = GLy(k),\(g) = ()\ij(g)),n :
G — GLn(k),n(9) = (nij(9)), by Tej = 2, a5 @ fi,ge5 = 32, Nij(9)ei, 9f; =
> i mij(g) fi. The maps X and n are group homomorphisms and
(2.16) X\g)=n(g9)X, Vgeaq.

Conversely let (X,\,n) be a triple, X € My m(A), X\ : G = GLy(k),
n: G — GLy(k) group homomorphisms and satisfy the relation (2.16). Let U
and V' be m and n-dimensional vector spaces with some fized bases {e; | 1 <
i <m} and {f; | 1 <i<n}. Now we define a matriz T € H&V as follows:
the representation structures of U and V' are given by gej = > . Nij(9)ei, gf; =
> i mii(g) fi, and T is given by Te; =, a;; @ f;. Each triple (X, A\, n) is called
a G-matriz over algebra A.

Proof. We have
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We know that the following diagram is commutative:

pu(g)

U U
Ti lT
AQV ———~ V.
®© pa(9)®pv(g) @

Therefore, since

T ®P
e; — Tej Z(I@] & f@ ia Zgaw ®gfu

and
€j Lol ge; 5 T'(ge;),
we get
> gai; @ gfi = T(ge;).
i
Now we have
T(ge;) Z Nj(9)Ter =Y " Nj(9)aa @ fi,
il
and
D gai;@gfi=>Y ga @mi(g)fi =Y nalg)ay ® fi,
i i1 il
therefore
Z au)\lj Z 7711 al]
Thus
XAg) =n(g9)X, Vg
Now we show that A and n are group homomorphisms. We have
(9291)(€:) = g2(g1€:)-
Therefore
Z)\M(QQQI Er = Z)\lz gl Tl(g2)era
r lr
hence

Arilgagr) = > Alg2) Nii(g1)-
l
So A(g291) = A(g2)A(g1), i.e. A is a group homomorphism. Similarly,
it can be shown that n is a group homomorphism. The converse is easily

proved. [
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3. K-THEORY

In this section, we extend K-theory of an ordinary algebra for an algebra
inside a monoidal category, see [9].

Now let S be a subsemigroup of semigroup (O, ®). Using identification
(2.10), we embed Ef in Ef,, via f +— [ ‘é 8] and let My (a;S) be the
union | J,cg Ey up to this identification. We define two equivalence relations
on the set of idempotents living in My (a;S), as follows: for any v € S and
any two idempotents e, €’ of the algebra € E?, we write e ~ €’ iff there exist
f,g9 € E% such that e = fg and € = ¢gf and we write e ~; ¢’ iff there exists an
invertible z € E2 such that ¢’ = zez~'. As in algebraic K-theory for ordinary
matrices, one can show that these are equivalence relations and the relation
e 0 e 0
00] ™00
later matrices are regarded as idempotents of the algebra Ef,,. So using the
above mentioned embedding of Ff, into Ff,, we conclude that the equivalence
relations ~ and ~; over the idempotents of M (a;S) are the same.

e ~s € implies e ~ €’. Also if e ~ €’ then , where the

Now let I(a;S) be the set of all equivalence classes of idempotents. There
is a binary operation on I(a;S): if [e],[¢/] € I(a;S), where e € E% ¢ €
E% u,v € S, then [e] + [¢/] := [dia(e,€’)] where dia(e,e’) is an idempotent
in Ef,,, regarding the identification (2.10).

Definition 3.1. Ky(a; S) is the enveloping group of the semigroup I(a;.5).

Now we put some topological structures on the algebra Ef. Let for any
u € S, each algebra E? is a local Banach algebra. For any two idempotents
e, €/ € E% we write e ~j, € iff there exists a norm-continuous path of idempo-
tents in E2 from e to /. Again like in algebraic K-theory for ordinary matrices,

one can show that the relation e ~ €’ implies e ~4 ¢/. Conversely, the rela-
: o 0 "0 : :
tion e ~, €' implies [ 8 O} ~n [ 60 0 ] So the three equivalence relations
~, ~g, ~p, on the set of idempotents of My, (a;S) coincide. So no matter which
equivalence relation we choose on the semigroup of idempotents, we get the
same enveloping group.

Next we define Ki-theory. Let GL{ be the invertible elements of the
algebra E. We embed GL{ in GL§,, by f — dia(f,id,) and we set Ki(a;S)
to be the disjoint union of quotient groups | |, g GL;/[GL, GLY] up to this
identification.
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4. CYCLIC COHOMOLOGY

In this section, we extend cyclic cohomology of an ordinary algebra for
an algebra inside a monoidal category, see [7].

Let C be a monoidal category which admits braiding. That is, there exists
a family of invertible morphisms vy, € Hygu,vou satisfying

(41) ¢u®v,w = (ldu & wv,w)(¢u,w & idv)v ¢u,v®w - (wu,v ® 1dw)(1dv & lpu,w)’

and
(4'2) (f X g)wu’,v’ = wu,v(g & f)7

for all u, v, w,v/,v' € O and f € H, ,9 € Hy . Let (a,m, 1) be an associative
unital algebra in the category C. We say that a is a ribbon algebra if there
exists an invertible morphism o € E, satisfying

(4.3) ¢2,a(‘7 ® o)m = mo.

In the category Vec where the braiding is flip operator, the above con-
dition just means o is algebra automorphism. Also, in general, this condition
is a combination of the algebra automorphism condition and the fundamental
condition between braiding and twist in a ribbon category.

For arbitrary objects b,c € O we define a linear operator

(44) )\b,c : Ha®b,c — Hb®a,ca )\b,c(@) = ¢b,a(a & ldb)SO

We recall the notion of braided cyclic cohomology introduced in [1]. First
of all, for simplicity we use the notations 1; j := V,ei 40; and id; := id,e:. We
set A(n) := (=1)"Aqen 1. Explicitly A(,) is the operator sending a morphism ¢
in the space H,o(n+1) 1 to the following morphism in the same space

(4'5> A(n)(()O> = (_1)nwn,1(0 X idn)‘ﬂ
For simplicity, we will write A instead of A(,).
Let C" = C™(a;0) = {¢ € Hyam+nq | N"TH(p) = ¢} For ¢ € C", we
define
n dz .dnfif y 0<i<n-1
@8 = UEEmE il Osisn
Yp,1(0 ®id,)(m ®@idy—1)e, i=mn,
and

(4.7) si(9) = (idis1 @ p @ idn—i)p, 0<i<n.

PROPOSITION 4.1. We have dEn)(C”) C C”H,SZ(-”)(C") c ol
Ay (C™) € C™ and {C"}n>0 with the linear maps dgn),sgn), and Ay as face,
degeneracy and cyclic operators respectively, form a cocyclic module.
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Proof. The proof based on the very powerful graphical calculus is given
in[1]. O

We denote the Hochschild cohomology of this cocyclic module by
HH(C;a,o) and the cohomology of the subcomplex

CX(Cia,0) ={p € Hyomin 1 | Ap) = ¢}

by HC(C;a, o) and call them Hochschild and cyclic cohomology of ribbon
algebra (a,m, p, o).

5. PAIRING K-THEORY WITH CYCLIC COHOMOLOGY

In this section, we extend the pairing between K-theory and cyclic co-
homology of an ordinary algebra for an algebra inside a monoidal category,
see [2].

In this section, we assume that S is a subsemigroup of the semigroup
(O, ®) and there exists an additive family 7, : E, — C,u € S of linear maps
satisfying a trace property which we now explain. By additivity we mean

(5.1) Tum[f 0]>=Tu<f>+n<g>, 4,0 €S, f € Furg € Bo.

09
Next we extend the family 7T}, to a family T, , : £ — C,u € S, € H,1 by
(5.2) Tuo(f) :=Tu(e*(f)), uweSacO,pe€Hy1,fe€Ey

Now we express the promised axiom of trace property. We assume that
(5.3) Tup(f@9) =Tow(90f), w,veESbEO,fE Hyp,g€ HS,\ 0 € Hy,

and
(5.4)
Tu,tp(fQ.g) = T’U,/\(L,O)(Q®f)7 U, v S S7a7b € O?f S Hg,uag € Hzliu?@ € H(l@b,la

where A = X\ 1 was defined by (4.4). Using Lemma 2.1 one can easily see that
this family is also additive.

For the trivial algebra a = 1 with m = idy, u = idy,0 = idy and for b = 1,
the product ® is just the composition law of the category and the axioms (5.3)
and (5.4) become the ordinary trace property.

In particular, we can use the following traces: if 4 = C and S is also
closed under tensor product and admits twist, i.e. there exists a natural family
of invertible morphisms 0,, € E,,u € S satisfying (5.1), and admits duality, i.e.
there is an operation on S, u — u* and there are morphisms b,, € H1 ygu*, dy €
H\=gu1 satisfying (5.2), then we get the following family of traces.
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PROPOSITION 5.1. Under the conditions mentioned in the above last pa-
ragraph, the following linear maps
satisfy the axiom (5.4) for any ribbon algebra a and any object b.

Remark. We can use also any ribbon knot to produce a nontrivial family
Ty-

Now we come back to the general situation at the beginning of this section
where we had just braiding morphisms and the family T;,u € S.

PROPOSITION 5.2. For any u € S, the map C*(C;a,0) — C*(ES), ¢ —
Yy defined by
(56) @u($0,--.7$n) = Tu,gp($0® @xn)
is a map of cocyclic modules.
Proof. For ¢ € C"1(C;a,0) and u € S we must show (d;(¢))u = di(¢u),
(8i(©)u = si(Yn), A@))u = A(pw), for all 0 < i < n. We have
O‘(@)u(wo,aﬂﬁn) = Tu,)\( )($0® @l‘n)
(=1)"Typ(n @20 @ -+ © Tp_1)
= (=1)"0u(Tn, Toy -, Tn-1)
(Mepw)) (o, -y xn).

Let 0 < i < n. We have

(di(@))u(o, - wn) = Ty (( (@) (20 © - Oy )
= Tu(p*((id; @m @idp—i—1)" (0 © - © 2,)))
= Tu(¢*({dj(z0 @ @ mim1) ©m*(z; © it1)
O idf (@i © - O ayp)))
= Tu(¢*(@0® - Ozim1 O (w00 Tit1)
® $i+2®"'®l’n))
= pu(To, ., Tim1, (T; 0q Tit1), Tit2, -+, Tp)
= di(pu)(To,y ...\ xn).

The case i = n, now is the consequence of the relation d,(¢) =
A(doy)), which holds for any cocyclic module, and the relations (do(¢))s =

do(u);(A(#))u = Mpu)-
Next, by setting S; = (si(¢))u(z0, - .., %) we have

Si = Tu((s:())" (w0 © - © z1))
= Tu(¢"(idip1 ® p®idy—i) (20 © - © zy))
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= Tu(¢"(iditr ®M®1dn Z) (20O O Oidy O Ti41 @+ O Ty))
= Tu(¢*(idis1)" (20 @+ O ;) © p*(idy) © id}_; (i1 © -+ O xp))
= T(¢"(20® Ozl O Oxy))

= oulToy. . @i, 1, g1, ..., X))
= si(eu)(xoy. . yzy). O
PROPOSITION 5.3. The following is a bilinear pairing between Ky(a;S)
and HC®*"(C,a;0),
(5.7) < [e],[¢] >:=pule,...,e), e€ Ejucs.

e 0 a
0 0] = mel €
Eg.,, where m = m({u,u}) and 1§ = 1 ({a ® u,a ® u}), the result of the
pairing does not change. For morphisms z; € E?, 0 < ¢ < n and for any
morphism ¢ € H,em+1) 1 and by setting ®yq, = Cugu(mizotf, ..., mrni]) we
have

Proof. We first show that if we replace e € EZ with

Pugy = Tugup(mizer] © -+ © T1XR2Y)
= Tugup(mao(ide ®21) © - © map(ide ®21))
= Tugup(mM Oz O Om O ay ©11)
= Tuguep(M OO OmM Ox1 O O O Ty O1q)
= Tugup(M OO um Oz Ot Om O Ty @)
= Tuoue(Mm Oz 0idy, Oz O -+ O m Oy O 1)
= Tuoup(m Oz O Oy On)

= Ty OmM OzoO - O xp)

= Tup(im Ozo® -+ O xy)

Tup(xo @ -+ © xp)

= ou(To,...,Tn).

Next we must show that if ¢ is a coboundary then the value of the pairing
vanishes. So let d = Z?Z)(—l)idi be the Hochschild coboundary then by
Proposition 5.2 we have

(d((p))u(ew"?e) = d(@u)(ev'”?e)

2m

= > (Digule,....e)
=0

= pule, ... e).

But from A(¢,) = ¢, we conclude that ¢,(e,...,e) = 0. Therefore
(d(gp))u(e, te 76) = 0.
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Now let e and f be two idempotents in the algebra EZ such that e ~ f.
Since we proved that the value of the pairing does not change if we replace
e 0
00
E¢, that there exists an invertible element z € E? such that f = z7'ez. But
using Proposition 1.8 in chapter 3 of [2], and the above fact that the pairing for
coboundaries vanishes, we conclude that the value of the pairing will not change
if one replaces e with f. Thus the pairing only depends on the equivalence
class of e and the cohomology class of ¢. To show that this pairing over the
semigroup I(a; S) of the equivalence classes of idempotents extend to the group
Ko(a; S), we need to show that this pairing is additive:

@u@v([é ]Oc],...,[g L(f)}) = Tu@v,w([g ?]9‘”@[5 ?])

e@(n+1) 0
= Tu,so([ 0 f@(n—H) ])

= Tup(e?" V) + Ty o (fO0HY)

= pule,..ie)+ou(f. ., f). O
PROPOSITION 5.4. The following is a bilinear pairing between Ki(a;S)
and HC®¥(C;a, S),

(5.8) <gl,lp] >=pul¢g' —1,9—1,...,97"' —1,9g—1), g€ GL:ueS.

e € E2 with € Ejg, we conclude that we may assume e ~g f within

Proof. Since for fixed u, this pairing is nothing other than the pairing
of the cyclic cohomology of the algebra EZ with the quotient of the group of
invertible elements of this algebra by the commutator subgroup, it is enough
to apply the proof of Proposition 3.3, chapter 3 of [2] for the algebra A = E¢
and for the cyclic cocycle ¢, for the case k = 1.

Also we need to show that the pairing is compatible with the inclusion
GL: C GLY,, [ — dia(f,id,) which is easy to show. [

udv?
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