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INTRODUCTION

The calculus without limits is known as the q-calculus (or quantum cal-
culus). The concept of q-calculus was initiated by Jackson [11] in the first
quarter of 19th century. Since then, the q-difference operators have been stu-
died extensively. Hence, the q-calculus has a rich literature (see [7]). Moreover,
the q-calculus has important applications in several mathematical areas such as
the theory of relativity, orthogonal polynomials, combinatorics, number theory,
quantum groups [5, 7].

On the other hand, spectral expansion theorems are important for solving
various problems in mathematics. Specially, we lead to the problem of expan-
ding an arbitrary function as a series of eigenfunctions when we seek a solution
of a partial differential equation by separation of variables. The eigenfunction
expansion is obtained by several methods. For instance, by the methods of
integral equations, contour integration and the finite difference [3,4,8,9,14,16].

In [2], the authors investigated the eigenfunction expansions for singular
q-Dirac systems on [0,∞). In this work, we extend the results of [2] to obtain a
Parseval equality and an expansion theorem for such operators on the whole
line.

PRELIMINARIES

In this section, we recall some necessary fundamental concepts of q-
analysis. Following the standard notations in [12] and [5], let q be a positive
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number with 0 < q < 1, A ⊂ R := (−∞,∞) and a ∈ A. A q-difference equation
is an equation that contains q-derivatives of a function defined on A. Let y be
a complex-valued function on A. The q-difference operator Dq, the Jackson
q-derivative is defined by

Dqy (x) =
y (qx)− y (x)

(q − 1)x
for all x ∈ A.

We know that there is a connection between the q-deformed Heisenberg
uncertainty relation and the Jackson derivative on the q-basic numbers (see
[15]). In the q-derivative, as q → 1, the q-derivative is reduced to the classical
derivative. The q-derivative at zero is defined by

Dqy (0) = lim
n→∞

y (qnx)− y (0)

qnx
(x ∈ A),

if the limit exists and does not depend on x. A right-inverse to Dq, the Jackson
q-integration is given by∫ x

0
f (t) dqt = x (1− q)

∞∑
n=0

qnf (qnx) (x ∈ A),

provided that the series converges, and∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt−

∫ a

0
f (t) dqt (a, b ∈ A).

The q-integration for a function defined in [10] is given by the formulas∫ ∞
0

f (t) dqt = (1− q)
∞∑

n=−∞
qnf (qn) ,

∫ 0

−∞
f (t) dqt = (1− q)

∞∑
n=−∞

qnf (−qn) ,

∫ ∞
−∞

f (t) dqt = (1− q)
∞∑

n=−∞
qn [f (qn) + f (−qn)] .

A function f which is defined on A, 0 ∈ A, is said to be q-regular at zero
if

lim
n→∞

f (xqn) = f (0)

for every x ∈ A. Throughout the rest of the paper, we deal only with the
functions which are q-regular at zero.

If f and g are q-regular at zero, then we have∫ a

0
g (t)Dqf (t) dqt+

∫ a

0
f (qt)Dqg (t) dqt = f (a) g (a)− f (0) g (0) .
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Let L2
q(−∞,∞) be the space of all complex-valued functions defined on

(−∞,∞) such that

‖f‖ :=

(∫ ∞
−∞
|f (x)|2 dqx

)1/2

<∞.

The space L2
q(−∞,∞) is a separable Hilbert space with the inner product

(f, g) :=

∫ ∞
−∞

f (x) g (x)dqx, f, g ∈ L2
q(0,∞)

(see [6]).

Let y (x) =

(
y1 (x)
y2 (x)

)
, z (x) =

(
z1 (x)
z2 (x)

)
. Then, we define the q-

Wronskian of y (x) and z (x) by

(1) Wq (y, z) (x) = y1 (x) z2
(
q−1x

)
− z1 (x) y2

(
q−1x

)
.

Now, we introduce the convenient Hilbert space H = L2
q ((−∞,∞) ;E)

(E := R2) of vector-valued functions by using the inner product

(f, g) :=

∫ ∞
−∞

(f(x), g(x))Edqx.

MAIN RESULTS

Let us consider the q-Dirac system

−1

q
Dq−1y2 + p (x) y1 = λy1,(2)

Dqy1 + r (x) y2 = λy2,(3)

where λ is a complex eigenvalue parameter, p and r are real-valued functions
defined on (−∞,∞) and continuous at zero, and p, r ∈ L1

q,loc (−∞,∞). This
system, as q → 1, is reduced to the classical one dimensional Dirac system

−y′2 + p (x) y1 = λy1,

y′1 + r (x) y2 = λy2.

We will denote by φ1 (x, λ)=

(
φ11 (x, λ)
φ12 (x, λ)

)
and φ2 (x, λ)=

(
φ21 (x, λ)
φ22 (x, λ)

)
,

the solution of the system (2)-(3) which satisfy the initial conditions

(4) φ11 (0, λ) = 1, φ12 (0, λ) = 0, φ21 (0, λ) = 0, φ22 (0, λ) = 1.

Let [−q−m, q−m] be an arbitrary finite interval, where m ∈ N := {1, 2, ...}.
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Now we will consider the boundary value problem (2)-(3) with the boun-
dary conditions

(5)
y2 (−q−m) cosα+ y1 (−q−m) sinα = 0,

y2 (q−m) cosβ + y1 (q−m) sinβ = 0, α, β ∈ R, m ∈ N.

In [1], the authors prove that the boundary value problem (2)–(3) with
the boundary conditions (5) has a compact resolvent operator, thus it has a
purely discrete spectrum.

Let λ0 , λ±1 , λ±2 , ... be the eigenvalues and y0 , y±1 , y±2 , ... be the
corresponding eigenfunctions of the problem (2), (3), (5), where y±n (x)=(
y±n1 (x)
y±n2 (x)

)
. Since the solutions of this problem are linearly independent,

we get

yn (x) = cnφ1 (x, λn) + dnφ2 (x, λn) .

There is no loss of generality in assuming that |cn| ≤ 1 and |dn| ≤ 1. Now
let us set

z2n =

∫ q−m

−q−m
‖yn (x)‖2E dqx.

Let f (.) =

(
f1 (.)
f2 (.)

)
∈ L2

q ((−q−m, q−m) ;E) . If we apply the Parseval

equality (see [2]) to f (x) , then we obtain∫ q−m

−q−m
‖f (x)‖2E dqx

=

∞∑
n=−∞

1

z2n

{∫ q−m

−q−m
(f (x) , yn (x))E dqx

}2

=

∞∑
n=−∞

1

z2n

{∫ q−m

−q−m
(f (x) , cnφ1 (x, λn) + dnφ2 (x, λn))E dqx

}2

(6)

=

∞∑
n=−∞

c2n
z2n

{∫ q−m

−q−m
(f (x) , φ1 (x, λn))E dqx

}2

+ 2
∞∑

n=−∞

cndn
z2n

2∏
j=1

{∫ q−m

−q−m
(f (x) , φj (x, λn))E dqx

}

+
∞∑

n=−∞

d2n
z2n

{∫ q−m

−q−m
(f (x) , φ2 (x, λn))E dqx

}2

.
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Now, we will define the nondecreasing step function µij,q−m (i, j = 1, 2)
on (−q−m, q−m) by

µ11,q−m (λ) =

{
−
∑

λ<λn<0
c2n
z2n
, for λ ≤ 0∑

0≤λn<λ
c2n
z2n

for λ > 0,

µ12,q−m (λ) =

{
−
∑

λ<λn<0
cndn
z2n

, for λ ≤ 0∑
0≤λn<λ

cndn
z2n

for λ > 0,

µ12,q−m (λ) = µ21,q−m (λ) ,

µ22,q−m (λ) =

{
−
∑

λ<λn<0
d2n
z2n
, for λ ≤ 0∑

0≤λn<λ
d2n
z2n

for λ > 0.

From (6), we obtain

(7)

∫ q−m

−q−m
‖f (x)‖2E dqx =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)Fj (λ) dµij,q−m (λ) ,

where

Fi (λ) =

∫ q−m

−q−m
(f (x) , φi)E dqx (i = 1, 2) .

Now we will prove a lemma, but first we recall some definitions.

A function f defined on an interval [a, b] is said to be of bounded variation
if there is a constant C > 0 such that

n∑
k=1

|f (xk)− f (xk−1)| ≤ C

for every partition

(8) a = x0 < x1 < ... < xn = b

of [a, b] by points of subdivision x0, x1, ..., xn.

Let f be a function of bounded variation. Then, by the total variation of

f on [a, b], denoted by
b
V
a

(f), we mean the quantity

b
V
a

(f) := sup

n∑
k=1

|f (xk)− f (xk−1)| ,

where the least upper bound is taken over all (finite) partitions (8) of the
interval [a, b] (see [13]).
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Lemma 1. There exists a positive constant Λ = Λ (ξ) , ξ > 0 such that

(9)
ξ

V
−ξ

{
µij,q−m (λ)

}
< Λ (i, j = 1, 2) ,

where Λ does not depend on q−m.

Proof. From (4), we have

φij (0, λ) = δij ,

where δij (i, j = 1, 2) is the Kronecker delta. So there exists a k > 0 such that

(10) |φij (x, λ)− δij | < ε, ε > 0, |λ| < ξ, x ∈ [0, k] .

Let fk (x) =

(
fk1 (x)
fk2 (x)

)
be a nonnegative vector-valued function such

that fk1 (x) vanishes outside the interval [0, k] with

(11)

∫ k

0
fk1 (x) dqx = 1,

and fk2 (x) = 0. Set

Fik (λ) =

∫ k

0
(fk (x) , φi)E dqx

=

∫ k

0
fk1 (x)φi1 (x, λ) dqx (i = 1, 2) .

Using (10) and (11), we obtain

(12) |F1k (λ)− 1| < ε, |F2k (λ)| < ε, |λ| < ξ.

Now, by applying the Parseval equality (7) to fk (x) , we get∫ k

0
f2k1 (x) dqx ≥

∫ ξ

−ξ
F 2
1k (λ) dµ11,q−m (λ) + 2

∫ ξ

−ξ
F1k (λ)F2k (λ) dµ12,q−m (λ)

+

∫ ξ

−ξ
F 2
2k (λ) dµ22,q−m (λ) ≥

∫ ξ

−ξ
F 2
1k (λ) dµ11,q−m (λ)

−2

∫ ξ

−ξ
|F1k (λ)| |F2k (λ)|

∣∣dµ12,q−m (λ)
∣∣ .

From (12), we have∫ k

0
f2k1 (x) dqx >

∫ ξ

−ξ
(1− ε)2 dµ11,q−m (λ)− 2

∫ ξ

−ξ
ε (1 + ε)

∣∣dµ12,q−m (λ)
∣∣

= (1− ε)2
(
µ11,q−m (ξ)− µ11,q−m (−ξ)

)
− 2ε (1 + ε)

ξ

V
−ξ

{
µ12,q−m (λ)

}
.
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Since
(13)
ξ

V
−ξ

{
µ12,q−m (λ)

}
≤ 1

2

[
µ11,q−m (ξ)− µ11,q−m (−ξ) + µ22,q−m (ξ)− µ22,q−m (−ξ)

]
,

we get ∫ k

0
f2k1 (x) dqx > (1− 3ε)

{
µ11,q−m (ξ)− µ11,q−m (−ξ)

}
− ε (1 + ε)

{
µ22,q−m (ξ)− µ22,q−m (−ξ)

}
.(14)

Let gk (x) =

(
gk1 (x)
gk2 (x)

)
be a nonnegative vector-valued function such

that gk2 (x) vanishes outside the interval [0, k] with
∫ k
0 gk2 (x) dqx = 1, and

gk1 (x) = 0. Similar arguments apply to the function gk (x), and we obtain∫ k

0
g2k2 (x) dqx > (1− 3ε)

{
µ22,q−m (ξ)− µ22,q−m (−ξ)

}
− ε (1 + ε)

{
µ11,q−m (ξ)− µ11,q−m (−ξ)

}
.(15)

If we add the inequalities (14) and (15), then we get∫ k

0

{
f2k1 (x) + g2k2 (x)

}
dqx >

(
1− 4ε− ε2

){ µ11,q−m (ξ)− µ11,q−m (−ξ)
+µ22,q−m (ξ)− µ22,q−m (−ξ)

}
.

If we choose ε > 0 such that 1− 4ε− ε2 > 0, then we obtain the assertion
of the lemma for the functions µ11,q−m (λ) and µ22,q−m (λ) relying on their
monotonicity. From (13), we have the assertion of the lemma for the function
µ12,q−m (λ) . �

Now we recall Helly’s theorems.

Theorem 2 ([13]). Let (wn)n∈N be a uniformly bounded sequence of real
nondecreasing functions on a finite interval a ≤ λ ≤ b. Then there exists a
subsequence (wnk)k∈N and a nondecreasing function w such that

lim
k→∞

wnk (λ) = w (λ) , a ≤ λ ≤ b.

Theorem 3 ([13]). Assume that (wn)n∈N is a real, uniformly bounded
sequence of nondecreasing functions on a finite interval a ≤ λ ≤ b, and suppose
that

lim
n→∞

wn (λ) = w (λ) , a ≤ λ ≤ b.

If f is any continuous function on a ≤ λ ≤ b, then

lim
n→∞

∫ b

a
f (λ) dwn (λ) =

∫ b

a
f (λ) dw (λ) .
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Now let % be any nondecreasing function on −∞ < λ < ∞. Denote by
L2
% (−∞,∞) the Hilbert space of all functions f : (−∞,∞) → R which are

measurable with respect to the Lebesque-Stieltjes measure defined by % and
such that ∫ ∞

−∞
f2 (λ) d% (λ) <∞,

with the inner product

(f, g)% :=

∫ ∞
−∞

f (λ) g (λ) d% (λ) .

The main results of this paper are the following three theorems.

Theorem 4. Let f (.) =

(
f1 (.)
f2 (.)

)
∈ H. Then, there exist monotonic

functions µ11 (λ) and µ22 (λ) which are bounded over every finite interval, and
a function µ12 (λ) which is of bounded variation over every finite interval with
the property

(16)

∫ ∞
−∞
‖f (x)‖2E dqx =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)Fj (λ) dµij (λ) ,

where

Fi (λ) = lim
n→∞

∫ q−n

−q−n
(f (x) , φi (x, λ))E dqx.

We note that the matrix-valued function µ = (µij)
2
i,j=1 (µ12 = µ21) is

called a spectral function for the system (2)-(3).

Proof. Assume that the function fn (x) =

(
f1n (x)
f2n (x)

)
satisfies the follo-

wing conditions:
1) fn (x) vanishes outside the interval [−q−n, q−n] , where q−n < q−m.
2) The functions fn (x) and Dqfn (x) are q-regular at zero.
If we apply the Parseval equality to fn (x), then we get

(17)

∫ q−n

−q−n
‖fn (x)‖2E dqx =

∞∑
k=−∞

1

z2k

{∫ q−m

−q−m
(fn (x) , yk (x))E dqx

}2

.

Then, via integrating by parts, we obtain∫ q−m

−q−m
(fn (x) , yk (x))E dqx

=
1

λk

∫ q−m

−q−m
f1n (x)

[
−1

q
Dq−1yk2 (x) + p (x) yk1 (x)

]
dqx
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+
1

λk

∫ q−m

−q−m
f2n (x) [Dqyk1 (x) + r (x) yk2 (x)] dqx

=
1

λk

∫ q−m

−q−m

[
−1

q
Dq−1f2n (x) + p (x) f1n (x)

]
yk1 (x) dqx

+
1

λk

∫ q−m

−q−m
[Dqf1n (x) + r (x) f2n (x)] yk2 (x) dqx.

Thus we have ∑
|λk|≥s

1

z2k

{∫ q−m

−q−m
(fn (x) , yk (x))E dqx

}2

≤ 1

s2

∑
|λk|≥s

1

z2k

{∫ q−m

−q−m

{ [
−1
qDq−1f2n (x) + p (x) f1n (x)

]
yk1 (x)

+ [Dqf1n (x) + r (x) f2n (x)] yk2 (x)

}
dqx

}2

≤ 1

s2

∞∑
k=−∞

1

z2k

{∫ q−m

−q−m

{ [
−1
qDq−1f2n (x) + p (x) f1n (x)

]
yk1 (x)

+ [Dqf1n (x) + r (x) f2n (x)] yk2 (x)

}
dqx

}2

=
1

s2

∫ q−n

−q−n

{ [
−1
qDq−1f2n (x) + p (x) f1n (x)

]2
+ [Dqf1n (x) + r (x) f2n (x)]2

}
dqx.

By using (17), we obtain∣∣∣∣∣∣
∫ q−n

−q−n
(fn (x) , yk (x))E dqx−

∑
−s≤λk≤s

1

z2k

{∫ q−m

−q−m
(fn (x) , yk (x))E dqx

}2
∣∣∣∣∣∣

≤ 1

s2

∫ q−n

−q−n

{ [
−1
qDq−1f2n (x) + p (x) f1n (x)

]2
+ [Dqf1n (x) + r (x) f2n (x)]2

}
dqx

and ∑
−s≤λk≤s

1

z2k

{∫ q−m

−q−m
(fn (x) , yk (x))E dqx

}2

=
∑

−s≤λk≤s

1

z2k

{∫ q−m

−q−m
(fn (x) , ckφ1 (x, λk) + dkφ2 (x, λk))E dqx

}2

=

∫ s

−s

2∑
i,j=1

Fin (λ)Fjn (λ) dµij,q−m (λ) ,

where

Fin (λ) =

∫ q−m

−q−m
(fn (x) , φi (x, λ))E dqx (i = 1, 2) .
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Consequently, we get

(18)

∣∣∣∫ q−n−q−n (fn (x) , fn (x))E dqx−
∫ s
−s
∑2

i,j=1 Fin (λ)Fjn (λ) dµij,q−m (λ)
∣∣∣

≤ 1
s2

∫ q−n
−q−n

[
−1
qDq−1f2n (x) + p (x) f1n (x)

]2
dqx

+ 1
s2

∫ q−n
−q−n [Dqf1n (x) + r (x) f2n (x)]2 dqx.

By Lemma 1 and Theorems 2 and 3, we can find sequences {−q−mk} and
{q−mk} such that the functions µij,q−mk (λ) (mk →∞) converge to a monotone
function µij (λ) . Passing to the limit with respect to {−q−mk} and {q−mk} in
(18), we have∣∣∣∣∣∣

∫ q−n

−q−n
(fn (x) , fn (x))E dqx−

∫ s

−s

2∑
i,j=1

Fin (λ)Fjn (λ) dµij (λ)

∣∣∣∣∣∣
≤ 1

s2

∫ q−n

−q−n

[
−1

q
Dq−1f2n (x) + p (x) f1n (x)

]2
dqx

+
1

s2

∫ q−n

−q−n
[Dqf1n (x) + r (x) f2n (x)]2 dqx.

As s→∞, we get∫ q−n

−q−n
(fn (x) , fn (x))E dqx =

∫ ∞
−∞

2∑
i,j=1

Fin (λ)Fjn (λ) dµij (λ) .

Now let f (.) ∈ H. Choose functions {fη (x)} satisfying the conditions 1-2
and such that

lim
η→∞

∫ ∞
−∞
‖f (x)− fη (x)‖2E dqx = 0.

Let

Fiη (λ) =

∫ ∞
−∞

(fη (x) , φi (x, λ))E dqx (i = 1, 2) .

Then, we have∫ ∞
−∞
‖fη (x)‖2E dqx =

∫ ∞
−∞

2∑
i,j=1

Fiη (λ)Fjη (λ) dµij (λ) .

Since ∫ ∞
−∞
‖fη1 (x)− fη2 (x)‖2E dqx→ 0 as η1, η2 →∞,

we have ∫ ∞
−∞

2∑
i=1

(Fiη1 (λ)Fjη1 (λ)− Fiη2 (λ)Fjη2 (λ)) dµij (λ)
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=

∫ ∞
−∞
‖fη1 (x)− fη2 (x)‖2E dqx→ 0

as η1, η2 →∞. Therefore, there is a limit function F which satisfies∫ ∞
−∞
‖f (x)‖2E dqx =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)Fj (λ) dµij (λ) ,

by the completeness of the space L2
µ (−∞,∞) .

Now, we will show that the sequence (Kη) given by

Kη (λ) =

∫ q−η

−q−η
f1 (x)φ1 (x, λ) + f2 (x)φ2 (x, λ) dqx

converges as η → ∞ to F in the metric of the space L2
µ (−∞,∞) . Let g be

another function in H. By similar arguments, G (λ) can be defined by g.

It is obvious that ∫ ∞
0
‖f (x)− g (x)‖2E dqx

=

∫ ∞
−∞

2∑
i,j=1

{(Fi (λ)−Gi (λ)) (Fj (λ)−Gj (λ))} dµij (λ) .

Let

g (x) =

{
f (x) , x ∈ [−q−η, q−η]

0, otherwise.

Then, we have∫ ∞
−∞

2∑
i,j=1

{(Fi (λ)−Kηi (λ)) (Fj (λ)−Kηj (λ))} dµij (λ)

=

∫ −q−η
−∞

‖f (x)‖2E dqx+

∫ ∞
q−η
‖f (x)‖2E dqx→ 0 (η →∞) ,

which proves that (Kη) converges to F in L2
µ (−∞,∞) as η →∞. �

Theorem 5. Suppose that the functions f (.)=

(
f1 (.)
f2 (.)

)
, g (.)=

(
g1 (.)
g2 (.)

)
∈ H, and F (λ) , G (λ) are their Fourier transforms. Then, we have∫ ∞

−∞
(f (x) , g (x))E dqx =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) ,

which is called the generalized Parseval equality.
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Proof. It is clear that F ∓G are transforms of f ∓ g. Therefore, we have∫ ∞
−∞
‖f (x) + g (x)‖2E dqx

=

∫ ∞
−∞

2∑
i,j=1

(Fi (λ) +Gi (λ)) (Fj (λ) +Gj (λ)) dµij (λ)

and ∫ ∞
−∞
‖f (x)− g (x)‖2E dqx

=

∫ ∞
−∞

2∑
i,j=1

(Fi (λ)−Gi (λ)) (Fj (λ)−Gj (λ)) dµij (λ) .

By subtracting one of these equalities from the other one, we get the
desired result. �

Theorem 6. Let f (.) =

(
f1 (.)
f2 (.)

)
∈ H. Then, the integrals∫ ∞

−∞
Fi (λ)φj (x, λ) dµij (λ) (i, j = 1, 2)

converge in L2
µ (−∞,∞) . Consequently, we have

f (x) =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)φj (x, λ) dµij (λ) ,

which is called the expansion theorem.

Proof. Take any function fs ∈ H and any positive number s, and set

fs (x) =

∫ s

−s

2∑
i,j=1

Fi (λ)φj (x, λ) dµij (λ) .

Let g (.) =

(
g1 (.)
g2 (.)

)
∈ H be a vector function which is equal to zero

outside the finite interval [−q−τ , q−τ ] , where q−τ < q−m. Thus we obtain∫ q−τ

−q−τ
(fs (x) , g (x))E dqx

=

∫ q−τ

−q−τ

∫ s

−s

2∑
i,j=1

Fi (λ)φj (x, λ) dµij (λ) , g1 (x)


E

dqx
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=

∫ s

−s

2∑
i,j=1

Fi (λ)

{∫ q−τ

−q−τ
(g (x) , φj (x, λ))E dqx

}
dµij (λ)

=

∫ s

−s

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) .(19)

From Theorem 5, we get

(20)

∫ ∞
−∞

(f (x) , g (x))E dqx =

∫ ∞
−∞

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) .

By (19) and (20), we have

(f − fs, g)H =

∫
|λ|>s

2∑
i,j=1

Fi (λ)Gj (λ) dµij (λ) .

Apply this equality to the function

g (x) =

{
f (x)− fs (x) , x ∈ [−q−s, q−s]

0, otherwise,

we get

‖f − fs‖2H ≤
2∑

i,j=1

∫
|λ|>s

Fi (λ)Fj (λ) dµij (λ) .

Letting s→∞ yields the expansion result. �
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