ON EXPANSION IN EIGENFUNCTION FOR q-DIRAC SYSTEMS ON THE WHOLE LINE

BILENDER P. ALLAHVERDIEV and HÜSEYIN TUNA

Communicated by Horia Cornean

In this work, we establish a Parseval equality and expansion formula in eigenfunctions for the q-Dirac operator on the whole line.

AMS 2010 Subject Classification: 33D15, 34L10, 39A13, 34L40.
Key words: q-Dirac operator, singular point, Parseval equality, spectral function, eigenfunction expansion.

INTRODUCTION

The calculus without limits is known as the q-calculus (or quantum calculus). The concept of q-calculus was initiated by Jackson [11] in the first quarter of 19 th century. Since then, the q-difference operators have been studied extensively. Hence, the q-calculus has a rich literature (see [7]). Moreover, the q-calculus has important applications in several mathematical areas such as the theory of relativity, orthogonal polynomials, combinatorics, number theory, quantum groups $[5,7]$.

On the other hand, spectral expansion theorems are important for solving various problems in mathematics. Specially, we lead to the problem of expanding an arbitrary function as a series of eigenfunctions when we seek a solution of a partial differential equation by separation of variables. The eigenfunction expansion is obtained by several methods. For instance, by the methods of integral equations, contour integration and the finite difference $[3,4,8,9,14,16]$.

In [2], the authors investigated the eigenfunction expansions for singular q-Dirac systems on $[0, \infty)$. In this work, we extend the results of [2] to obtain a Parseval equality and an expansion theorem for such operators on the whole line.

PRELIMINARIES

In this section, we recall some necessary fundamental concepts of q analysis. Following the standard notations in [12] and [5], let q be a positive
number with $0<q<1, A \subset \mathbb{R}:=(-\infty, \infty)$ and $a \in A$. A q-difference equation is an equation that contains q-derivatives of a function defined on A. Let y be a complex-valued function on A. The q-difference operator D_{q}, the Jackson q-derivative is defined by

$$
D_{q} y(x)=\frac{y(q x)-y(x)}{(q-1) x} \text { for all } x \in A
$$

We know that there is a connection between the q-deformed Heisenberg uncertainty relation and the Jackson derivative on the q-basic numbers (see [15]). In the q-derivative, as $q \rightarrow 1$, the q-derivative is reduced to the classical derivative. The q-derivative at zero is defined by

$$
D_{q} y(0)=\lim _{n \rightarrow \infty} \frac{y\left(q^{n} x\right)-y(0)}{q^{n} x} \quad(x \in A),
$$

if the limit exists and does not depend on x. A right-inverse to D_{q}, the Jackson q-integration is given by

$$
\int_{0}^{x} f(t) \mathrm{d}_{q} t=x(1-q) \sum_{n=0}^{\infty} q^{n} f\left(q^{n} x\right) \quad(x \in A)
$$

provided that the series converges, and

$$
\int_{a}^{b} f(t) \mathrm{d}_{q} t=\int_{0}^{b} f(t) \mathrm{d}_{q} t-\int_{0}^{a} f(t) \mathrm{d}_{q} t \quad(a, b \in A)
$$

The q-integration for a function defined in [10] is given by the formulas

$$
\begin{aligned}
& \int_{0}^{\infty} f(t) \mathrm{d}_{q} t=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(q^{n}\right) \\
& \int_{-\infty}^{0} f(t) \mathrm{d}_{q} t=(1-q) \sum_{n=-\infty}^{\infty} q^{n} f\left(-q^{n}\right) \\
& \int_{-\infty}^{\infty} f(t) \mathrm{d}_{q} t=(1-q) \sum_{n=-\infty}^{\infty} q^{n}\left[f\left(q^{n}\right)+f\left(-q^{n}\right)\right]
\end{aligned}
$$

A function f which is defined on $A, 0 \in A$, is said to be q-regular at zero if

$$
\lim _{n \rightarrow \infty} f\left(x q^{n}\right)=f(0)
$$

for every $x \in A$. Throughout the rest of the paper, we deal only with the functions which are q-regular at zero.

If f and g are q-regular at zero, then we have

$$
\int_{0}^{a} g(t) D_{q} f(t) \mathrm{d}_{q} t+\int_{0}^{a} f(q t) D_{q} g(t) \mathrm{d}_{q} t=f(a) g(a)-f(0) g(0) .
$$

Let $L_{q}^{2}(-\infty, \infty)$ be the space of all complex-valued functions defined on $(-\infty, \infty)$ such that

$$
\|f\|:=\left(\int_{-\infty}^{\infty}|f(x)|^{2} \mathrm{~d}_{q} x\right)^{1 / 2}<\infty
$$

The space $L_{q}^{2}(-\infty, \infty)$ is a separable Hilbert space with the inner product

$$
(f, g):=\int_{-\infty}^{\infty} f(x) \overline{g(x)} \mathrm{d}_{q} x, \quad f, g \in L_{q}^{2}(0, \infty)
$$

(see [6]).
Let $y(x)=\binom{y_{1}(x)}{y_{2}(x)}, z(x)=\binom{z_{1}(x)}{z_{2}(x)}$. Then, we define the q Wronskian of $y(x)$ and $z(x)$ by

$$
\begin{equation*}
W_{q}(y, z)(x)=y_{1}(x) z_{2}\left(q^{-1} x\right)-z_{1}(x) y_{2}\left(q^{-1} x\right) \tag{1}
\end{equation*}
$$

Now, we introduce the convenient Hilbert space $\mathcal{H}=L_{q}^{2}((-\infty, \infty) ; E)$ $\left(E:=\mathbb{R}^{2}\right)$ of vector-valued functions by using the inner product

$$
(f, g):=\int_{-\infty}^{\infty}(f(x), g(x))_{E} \mathrm{~d}_{q} x
$$

MAIN RESULTS

Let us consider the q-Dirac system

$$
\begin{align*}
-\frac{1}{q} D_{q^{-1}} y_{2}+p(x) y_{1} & =\lambda y_{1} \tag{2}\\
D_{q} y_{1}+r(x) y_{2} & =\lambda y_{2} \tag{3}
\end{align*}
$$

where λ is a complex eigenvalue parameter, p and r are real-valued functions defined on $(-\infty, \infty)$ and continuous at zero, and $p, r \in L_{q, l o c}^{1}(-\infty, \infty)$. This system, as $q \rightarrow 1$, is reduced to the classical one dimensional Dirac system

$$
\begin{aligned}
-y_{2}^{\prime}+p(x) y_{1} & =\lambda y_{1}, \\
y_{1}^{\prime}+r(x) y_{2} & =\lambda y_{2} .
\end{aligned}
$$

We will denote by $\phi_{1}(x, \lambda)=\binom{\phi_{11}(x, \lambda)}{\phi_{12}(x, \lambda)}$ and $\phi_{2}(x, \lambda)=\binom{\phi_{21}(x, \lambda)}{\phi_{22}(x, \lambda)}$, the solution of the system (2)-(3) which satisfy the initial conditions

$$
\begin{equation*}
\phi_{11}(0, \lambda)=1, \phi_{12}(0, \lambda)=0, \phi_{21}(0, \lambda)=0, \phi_{22}(0, \lambda)=1 . \tag{4}
\end{equation*}
$$

Let $\left[-q^{-m}, q^{-m}\right]$ be an arbitrary finite interval, where $m \in \mathbb{N}:=\{1,2, \ldots\}$.

Now we will consider the boundary value problem (2)-(3) with the boundary conditions

$$
\begin{align*}
& y_{2}\left(-q^{-m}\right) \cos \alpha+y_{1}\left(-q^{-m}\right) \sin \alpha=0, \tag{5}\\
& y_{2}\left(q^{-m}\right) \cos \beta+y_{1}\left(q^{-m}\right) \sin \beta=0, \alpha, \beta \in \mathbb{R}, m \in \mathbb{N} .
\end{align*}
$$

In [1], the authors prove that the boundary value problem (2)-(3) with the boundary conditions (5) has a compact resolvent operator, thus it has a purely discrete spectrum.

Let $\lambda_{0}, \lambda_{ \pm 1}, \lambda_{ \pm 2}, \ldots$ be the eigenvalues and $y_{0}, y_{ \pm 1}, y_{ \pm 2}, \ldots$ be the corresponding eigenfunctions of the problem (2), (3), (5), where $y_{ \pm n}(x)=$ $\binom{y_{ \pm n 1}(x)}{y_{ \pm n 2}(x)}$. Since the solutions of this problem are linearly independent, we get

$$
y_{n}(x)=c_{n} \phi_{1}\left(x, \lambda_{n}\right)+d_{n} \phi_{2}\left(x, \lambda_{n}\right) .
$$

There is no loss of generality in assuming that $\left|c_{n}\right| \leq 1$ and $\left|d_{n}\right| \leq 1$. Now let us set

$$
z_{n}^{2}=\int_{-q^{-m}}^{q^{-m}}\left\|y_{n}(x)\right\|_{E}^{2} \mathrm{~d}_{q} x
$$

Let $f()=.\binom{f_{1}()}{.f_{2}()}. \in L_{q}^{2}\left(\left(-q^{-m}, q^{-m}\right) ; E\right)$. If we apply the Parseval equality (see [2]) to $f(x)$, then we obtain

$$
\begin{aligned}
& \int_{-q^{-m}}^{q^{-m}}\|f(x)\|_{E}^{2} \mathrm{~d}_{q} x \\
& =\sum_{n=-\infty}^{\infty} \frac{1}{z_{n}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f(x), y_{n}(x)\right)_{E} \mathrm{~d}_{q} x\right\}^{2}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{n=-\infty}^{\infty} \frac{1}{z_{n}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f(x), c_{n} \phi_{1}\left(x, \lambda_{n}\right)+d_{n} \phi_{2}\left(x, \lambda_{n}\right)\right)_{E} \mathrm{~d}_{q} x\right\}^{2} \tag{6}\\
& =\sum_{n=-\infty}^{\infty} \frac{c_{n}^{2}}{z_{n}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f(x), \phi_{1}\left(x, \lambda_{n}\right)\right)_{E} \mathrm{~d}_{q} x\right\}^{2} \\
& +2 \sum_{n=-\infty}^{\infty} \frac{c_{n} d_{n}}{z_{n}^{2}} \prod_{j=1}^{2}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f(x), \phi_{j}\left(x, \lambda_{n}\right)\right)_{E} \mathrm{~d}_{q} x\right\} \\
& +\sum_{n=-\infty}^{\infty} \frac{d_{n}^{2}}{z_{n}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f(x), \phi_{2}\left(x, \lambda_{n}\right)\right)_{E} \mathrm{~d}_{q} x\right\}^{2}
\end{align*}
$$

Now, we will define the nondecreasing step function $\mu_{i j, q^{-m}}(i, j=1,2)$ on $\left(-q^{-m}, q^{-m}\right)$ by

$$
\begin{gathered}
\mu_{11, q^{-m}}(\lambda)=\left\{\begin{array}{cc}
-\sum_{\lambda<\lambda_{n}<0} \frac{c_{n}^{2}}{z_{2}^{2}}, & \text { for } \lambda \leq 0 \\
\sum_{0 \leq \lambda_{n}<\lambda} \frac{c_{n}^{n}}{z_{n}^{2}} & \text { for } \lambda>0
\end{array}\right. \\
\mu_{12, q^{-m}}(\lambda)=\left\{\begin{array}{cc}
-\sum_{\lambda<\lambda_{n}<0} \frac{c_{n} d_{n}}{z_{2}^{n}}, & \text { for } \lambda \leq 0 \\
\sum_{0 \leq \lambda_{n}<\lambda} \frac{c_{n} d_{n}}{z_{n}^{2}} & \text { for } \lambda>0,
\end{array}\right. \\
\mu_{12, q^{-m}}(\lambda)=\mu_{21, q^{-m}}(\lambda), \\
\mu_{22, q^{-m}}(\lambda)=\left\{\begin{array}{cc}
-\sum_{\lambda<\lambda_{n}<0} \frac{d_{n}^{2}}{z_{n}^{2}}, & \text { for } \lambda \leq 0 \\
\sum_{0 \leq \lambda_{n}<\lambda} \frac{d_{n}^{n}}{z_{n}^{2}} & \text { for } \lambda>0
\end{array}\right.
\end{gathered}
$$

From (6), we obtain

$$
\begin{equation*}
\int_{-q^{-m}}^{q^{-m}}\|f(x)\|_{E}^{2} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i}(\lambda) F_{j}(\lambda) \mathrm{d} \mu_{i j, q^{-m}}(\lambda) \tag{7}
\end{equation*}
$$

where

$$
F_{i}(\lambda)=\int_{-q^{-m}}^{q^{-m}}\left(f(x), \phi_{i}\right)_{E} \mathrm{~d}_{q} x \quad(i=1,2)
$$

Now we will prove a lemma, but first we recall some definitions.
A function f defined on an interval $[a, b]$ is said to be of bounded variation if there is a constant $C>0$ such that

$$
\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq C
$$

for every partition

$$
\begin{equation*}
a=x_{0}<x_{1}<\ldots<x_{n}=b \tag{8}
\end{equation*}
$$

of $[a, b]$ by points of subdivision $x_{0}, x_{1}, \ldots, x_{n}$.
Let f be a function of bounded variation. Then, by the total variation of f on $[a, b]$, denoted by $\underset{a}{b}(f)$, we mean the quantity

$$
\stackrel{b}{V}(f):=\sup \sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|
$$

where the least upper bound is taken over all (finite) partitions (8) of the interval $[a, b]$ (see [13]).

Lemma 1. There exists a positive constant $\Lambda=\Lambda(\xi), \xi>0$ such that

$$
\begin{equation*}
\stackrel{\xi}{V}\left\{\mu_{i j, q^{-m}}(\lambda)\right\}<\Lambda \quad(i, j=1,2) \tag{9}
\end{equation*}
$$

where Λ does not depend on q^{-m}.
Proof. From (4), we have

$$
\phi_{i j}(0, \lambda)=\delta_{i j},
$$

where $\delta_{i j}(i, j=1,2)$ is the Kronecker delta. So there exists a $k>0$ such that

$$
\begin{equation*}
\left|\phi_{i j}(x, \lambda)-\delta_{i j}\right|<\varepsilon, \varepsilon>0,|\lambda|<\xi, x \in[0, k] . \tag{10}
\end{equation*}
$$

Let $f_{k}(x)=\binom{f_{k 1}(x)}{f_{k 2}(x)}$ be a nonnegative vector-valued function such that $f_{k 1}(x)$ vanishes outside the interval $[0, k]$ with

$$
\begin{equation*}
\int_{0}^{k} f_{k 1}(x) \mathrm{d}_{q} x=1 \tag{11}
\end{equation*}
$$

and $f_{k 2}(x)=0$. Set

$$
\begin{aligned}
F_{i k}(\lambda) & =\int_{0}^{k}\left(f_{k}(x), \phi_{i}\right)_{E} \mathrm{~d}_{q} x \\
& =\int_{0}^{k} f_{k 1}(x) \phi_{i 1}(x, \lambda) \mathrm{d}_{q} x \quad(i=1,2)
\end{aligned}
$$

Using (10) and (11), we obtain

$$
\begin{equation*}
\left|F_{1 k}(\lambda)-1\right|<\varepsilon,\left|F_{2 k}(\lambda)\right|<\varepsilon, \quad|\lambda|<\xi \tag{12}
\end{equation*}
$$

Now, by applying the Parseval equality (7) to $f_{k}(x)$, we get

$$
\begin{gathered}
\int_{0}^{k} f_{k 1}^{2}(x) \mathrm{d}_{q} x \geq \int_{-\xi}^{\xi} F_{1 k}^{2}(\lambda) \mathrm{d} \mu_{11, q^{-m}}(\lambda)+2 \int_{-\xi}^{\xi} F_{1 k}(\lambda) F_{2 k}(\lambda) \mathrm{d} \mu_{12, q^{-m}}(\lambda) \\
+\int_{-\xi}^{\xi} F_{2 k}^{2}(\lambda) \mathrm{d} \mu_{22, q^{-m}}(\lambda) \geq \int_{-\xi}^{\xi} F_{1 k}^{2}(\lambda) \mathrm{d} \mu_{11, q^{-m}}(\lambda) \\
-2 \int_{-\xi}^{\xi}\left|F_{1 k}(\lambda)\right|\left|F_{2 k}(\lambda)\right|\left|\mathrm{d} \mu_{12, q^{-m}}(\lambda)\right| .
\end{gathered}
$$

From (12), we have

$$
\begin{aligned}
& \int_{0}^{k} f_{k 1}^{2}(x) \mathrm{d}_{q} x>\int_{-\xi}^{\xi}(1-\varepsilon)^{2} \mathrm{~d} \mu_{11, q^{-m}}(\lambda)-2 \int_{-\xi}^{\xi} \varepsilon(1+\varepsilon)\left|\mathrm{d} \mu_{12, q^{-m}}(\lambda)\right| \\
& \quad=(1-\varepsilon)^{2}\left(\mu_{11, q^{-m}}(\xi)-\mu_{11, q^{-m}}(-\xi)\right)-2 \varepsilon(1+\varepsilon){\underset{-\xi}{\xi}\left\{\mu_{12, q^{-m}}(\lambda)\right\}}^{l} .
\end{aligned}
$$

Since
$\stackrel{\xi}{\underset{-}{\xi}}\left\{\mu_{12, q^{-m}}(\lambda)\right\} \leq \frac{1}{2}\left[\mu_{11, q^{-m}}(\xi)-\mu_{11, q^{-m}}(-\xi)+\mu_{22, q^{-m}}(\xi)-\mu_{22, q^{-m}}(-\xi)\right]$, we get

$$
\begin{align*}
\int_{0}^{k} f_{k 1}^{2}(x) \mathrm{d}_{q} x & >(1-3 \varepsilon)\left\{\mu_{11, q^{-m}}(\xi)-\mu_{11, q^{-m}}(-\xi)\right\} \\
& -\varepsilon(1+\varepsilon)\left\{\mu_{22, q^{-m}}(\xi)-\mu_{22, q^{-m}}(-\xi)\right\} \tag{14}
\end{align*}
$$

Let $g_{k}(x)=\binom{g_{k 1}(x)}{g_{k 2}(x)}$ be a nonnegative vector-valued function such that $g_{k 2}(x)$ vanishes outside the interval $[0, k]$ with $\int_{0}^{k} g_{k 2}(x) \mathrm{d}_{q} x=1$, and $g_{k 1}(x)=0$. Similar arguments apply to the function $g_{k}(x)$, and we obtain

$$
\begin{align*}
\int_{0}^{k} g_{k 2}^{2}(x) \mathrm{d}_{q} x & >(1-3 \varepsilon)\left\{\mu_{22, q^{-m}}(\xi)-\mu_{22, q^{-m}}(-\xi)\right\} \\
& -\varepsilon(1+\varepsilon)\left\{\mu_{11, q^{-m}}(\xi)-\mu_{11, q^{-m}}(-\xi)\right\} \tag{15}
\end{align*}
$$

If we add the inequalities (14) and (15), then we get

$$
\int_{0}^{k}\left\{f_{k 1}^{2}(x)+g_{k 2}^{2}(x)\right\} \mathrm{d}_{q} x>\left(1-4 \varepsilon-\varepsilon^{2}\right)\left\{\begin{array}{c}
\mu_{11, q^{-m}}(\xi)-\mu_{11, q^{-m}}(-\xi) \\
+\mu_{22, q^{-m}}(\xi)-\mu_{22, q^{-m}}(-\xi)
\end{array}\right\}
$$

If we choose $\varepsilon>0$ such that $1-4 \varepsilon-\varepsilon^{2}>0$, then we obtain the assertion of the lemma for the functions $\mu_{11, q^{-m}}(\lambda)$ and $\mu_{22, q^{-m}}(\lambda)$ relying on their monotonicity. From (13), we have the assertion of the lemma for the function $\mu_{12, q^{-m}}(\lambda)$.

Now we recall Helly's theorems.
Theorem 2 ([13]). Let $\left(w_{n}\right)_{n \in \mathbb{N}}$ be a uniformly bounded sequence of real nondecreasing functions on a finite interval $a \leq \lambda \leq b$. Then there exists a subsequence $\left(w_{n_{k}}\right)_{k \in \mathbb{N}}$ and a nondecreasing function w such that

$$
\lim _{k \rightarrow \infty} w_{n_{k}}(\lambda)=w(\lambda), \quad a \leq \lambda \leq b .
$$

Theorem 3 ([13]). Assume that $\left(w_{n}\right)_{n \in \mathbb{N}}$ is a real, uniformly bounded sequence of nondecreasing functions on a finite interval $a \leq \lambda \leq b$, and suppose that

$$
\lim _{n \rightarrow \infty} w_{n}(\lambda)=w(\lambda), a \leq \lambda \leq b
$$

If f is any continuous function on $a \leq \lambda \leq b$, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(\lambda) \mathrm{d} w_{n}(\lambda)=\int_{a}^{b} f(\lambda) \mathrm{d} w(\lambda)
$$

Now let ϱ be any nondecreasing function on $-\infty<\lambda<\infty$. Denote by $L_{\varrho}^{2}(-\infty, \infty)$ the Hilbert space of all functions $f:(-\infty, \infty) \rightarrow \mathbb{R}$ which are measurable with respect to the Lebesque-Stieltjes measure defined by ϱ and such that

$$
\int_{-\infty}^{\infty} f^{2}(\lambda) \mathrm{d} \varrho(\lambda)<\infty
$$

with the inner product

$$
(f, g)_{\varrho}:=\int_{-\infty}^{\infty} f(\lambda) g(\lambda) \mathrm{d} \varrho(\lambda)
$$

The main results of this paper are the following three theorems.
THEOREM 4. Let $f()=.\binom{f_{1}()}{.f_{2}()}. \in \mathcal{H}$. Then, there exist monotonic functions $\mu_{11}(\lambda)$ and $\mu_{22}(\lambda)$ which are bounded over every finite interval, and a function $\mu_{12}(\lambda)$ which is of bounded variation over every finite interval with the property

$$
\begin{equation*}
\int_{-\infty}^{\infty}\|f(x)\|_{E}^{2} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i}(\lambda) F_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda) \tag{16}
\end{equation*}
$$

where

$$
F_{i}(\lambda)=\lim _{n \rightarrow \infty} \int_{-q^{-n}}^{q^{-n}}\left(f(x), \phi_{i}(x, \lambda)\right)_{E} \mathrm{~d}_{q} x
$$

We note that the matrix-valued function $\mu=\left(\mu_{i j}\right)_{i, j=1}^{2}\left(\mu_{12}=\mu_{21}\right)$ is called a spectral function for the system (2)-(3).

Proof. Assume that the function $f_{n}(x)=\binom{f_{1 n}(x)}{f_{2 n}(x)}$ satisfies the following conditions:

1) $f_{n}(x)$ vanishes outside the interval $\left[-q^{-n}, q^{-n}\right]$, where $q^{-n}<q^{-m}$.
2) The functions $f_{n}(x)$ and $D_{q} f_{n}(x)$ are q-regular at zero.

If we apply the Parseval equality to $f_{n}(x)$, then we get

$$
\begin{equation*}
\int_{-q^{-n}}^{q^{-n}}\left\|f_{n}(x)\right\|_{E}^{2} \mathrm{~d}_{q} x=\sum_{k=-\infty}^{\infty} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), y_{k}(x)\right)_{E} \mathrm{~d}_{q} x\right\}^{2} \tag{17}
\end{equation*}
$$

Then, via integrating by parts, we obtain

$$
\begin{aligned}
& \int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), y_{k}(x)\right)_{E} \mathrm{~d}_{q} x \\
& =\frac{1}{\lambda_{k}} \int_{-q^{-m}}^{q^{-m}} f_{1 n}(x)\left[-\frac{1}{q} D_{q^{-1}} y_{k 2}(x)+p(x) y_{k 1}(x)\right] \mathrm{d}_{q} x
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{\lambda_{k}} \int_{-q^{-m}}^{q^{-m}} f_{2 n}(x)\left[D_{q} y_{k 1}(x)+r(x) y_{k 2}(x)\right] \mathrm{d}_{q} x \\
& =\frac{1}{\lambda_{k}} \int_{-q^{-m}}^{q^{-m}}\left[-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x)\right] y_{k 1}(x) \mathrm{d}_{q} x \\
& +\frac{1}{\lambda_{k}} \int_{-q^{-m}}^{q^{-m}}\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right] y_{k 2}(x) \mathrm{d}_{q} x
\end{aligned}
$$

Thus we have

$$
\begin{gathered}
\sum_{\left|\lambda_{k}\right| \geq s} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), y_{k}(x)\right)_{E} \mathrm{~d}_{q} x\right\}^{2} \\
\leq \frac{1}{s^{2}} \sum_{\left|\lambda_{k}\right| \geq s} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left\{\begin{array}{c}
{\left[-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x)\right] y_{k 1}(x)} \\
+\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right] y_{k 2}(x)
\end{array}\right\} \mathrm{d}_{q} x\right\}^{2} \\
\leq \frac{1}{s^{2}} \sum_{k=-\infty}^{\infty} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left\{\begin{array}{c}
{\left[-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x)\right] y_{k 1}(x)} \\
+\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right] y_{k 2}(x)
\end{array}\right\} \mathrm{d}_{q} x\right\}^{2} \\
=\frac{1}{s^{2}} \int_{-q^{-n}}^{q^{-n}}\left\{\begin{array}{c}
{\left[\begin{array}{c}
-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x) \\
+\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right]^{2}
\end{array}\right\} \mathrm{d}_{q} x .}
\end{array}\right.
\end{gathered}
$$

By using (17), we obtain

$$
\begin{gathered}
\left|\int_{-q^{-n}}^{q^{-n}}\left(f_{n}(x), y_{k}(x)\right)_{E} \mathrm{~d}_{q} x-\sum_{-s \leq \lambda_{k} \leq s} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), y_{k}(x)\right)_{E} \mathrm{~d}_{q} x\right\}^{2}\right| \\
\leq \frac{1}{s^{2}} \int_{-q^{-n}}^{q^{-n}}\left\{\begin{array}{c}
{\left[\begin{array}{c}
\left.-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x)\right]^{2} \\
+\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right]^{2}
\end{array}\right\} \mathrm{d}_{q} x}
\end{array}\right.
\end{gathered}
$$

and

$$
\begin{gathered}
\sum_{-s \leq \lambda_{k} \leq s} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), y_{k}(x)\right)_{E} \mathrm{~d}_{q} x\right\}^{2} \\
=\sum_{-s \leq \lambda_{k} \leq s} \frac{1}{z_{k}^{2}}\left\{\int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), c_{k} \phi_{1}\left(x, \lambda_{k}\right)+d_{k} \phi_{2}\left(x, \lambda_{k}\right)\right)_{E} \mathrm{~d}_{q} x\right\}^{2} \\
=\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i n}(\lambda) F_{j n}(\lambda) \mathrm{d} \mu_{i j, q^{-m}}(\lambda)
\end{gathered}
$$

where

$$
F_{i n}(\lambda)=\int_{-q^{-m}}^{q^{-m}}\left(f_{n}(x), \phi_{i}(x, \lambda)\right)_{E} \mathrm{~d}_{q} x \quad(i=1,2)
$$

Consequently, we get

$$
\begin{align*}
& \left|\int_{-q^{-n}}^{q^{-n}}\left(f_{n}(x), f_{n}(x)\right)_{E} \mathrm{~d}_{q} x-\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i n}(\lambda) F_{j n}(\lambda) \mathrm{d} \mu_{i j, q^{-m}}(\lambda)\right| \\
& \leq \frac{1}{s^{2}} \int_{-q^{-n}}^{q^{-n}}\left[-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x)\right]^{2} \mathrm{~d}_{q} x \tag{18}\\
& +\frac{1}{s^{2}} \int_{-q^{-n}}^{q^{-n}}\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right]^{2} \mathrm{~d}_{q} x .
\end{align*}
$$

By Lemma 1 and Theorems 2 and 3, we can find sequences $\left\{-q^{-m_{k}}\right\}$ and $\left\{q^{-m_{k}}\right\}$ such that the functions $\mu_{i j, q^{-m_{k}}}(\lambda)\left(m_{k} \rightarrow \infty\right)$ converge to a monotone function $\mu_{i j}(\lambda)$. Passing to the limit with respect to $\left\{-q^{-m_{k}}\right\}$ and $\left\{q^{-m_{k}}\right\}$ in (18), we have

$$
\begin{aligned}
& \left|\int_{-q^{-n}}^{q^{-n}}\left(f_{n}(x), f_{n}(x)\right)_{E} \mathrm{~d}_{q} x-\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i n}(\lambda) F_{j n}(\lambda) \mathrm{d} \mu_{i j}(\lambda)\right| \\
& \leq \frac{1}{s^{2}} \int_{-q^{-n}}^{q^{-n}}\left[-\frac{1}{q} D_{q^{-1}} f_{2 n}(x)+p(x) f_{1 n}(x)\right]^{2} \mathrm{~d}_{q} x \\
& +\frac{1}{s^{2}} \int_{-q^{-n}}^{q^{-n}}\left[D_{q} f_{1 n}(x)+r(x) f_{2 n}(x)\right]^{2} \mathrm{~d}_{q} x .
\end{aligned}
$$

As $s \rightarrow \infty$, we get

$$
\int_{-q^{-n}}^{q^{-n}}\left(f_{n}(x), f_{n}(x)\right)_{E} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i n}(\lambda) F_{j n}(\lambda) \mathrm{d} \mu_{i j}(\lambda)
$$

Now let $f(.) \in \mathcal{H}$. Choose functions $\left\{f_{\eta}(x)\right\}$ satisfying the conditions 1-2 and such that

$$
\lim _{\eta \rightarrow \infty} \int_{-\infty}^{\infty}\left\|f(x)-f_{\eta}(x)\right\|_{E}^{2} \mathrm{~d}_{q} x=0
$$

Let

$$
F_{i \eta}(\lambda)=\int_{-\infty}^{\infty}\left(f_{\eta}(x), \phi_{i}(x, \lambda)\right)_{E} \mathrm{~d}_{q} x \quad(i=1,2)
$$

Then, we have

$$
\int_{-\infty}^{\infty}\left\|f_{\eta}(x)\right\|_{E}^{2} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i \eta}(\lambda) F_{j \eta}(\lambda) \mathrm{d} \mu_{i j}(\lambda)
$$

Since

$$
\int_{-\infty}^{\infty}\left\|f_{\eta_{1}}(x)-f_{\eta_{2}}(x)\right\|_{E}^{2} \mathrm{~d}_{q} x \rightarrow 0 \text { as } \eta_{1}, \eta_{2} \rightarrow \infty
$$

we have

$$
\int_{-\infty}^{\infty} \sum_{i=1}^{2}\left(F_{i \eta_{1}}(\lambda) F_{j \eta_{1}}(\lambda)-F_{i \eta_{2}}(\lambda) F_{j \eta_{2}}(\lambda)\right) \mathrm{d} \mu_{i j}(\lambda)
$$

$$
=\int_{-\infty}^{\infty}\left\|f_{\eta_{1}}(x)-f_{\eta_{2}}(x)\right\|_{E}^{2} \mathrm{~d}_{q} x \rightarrow 0
$$

as $\eta_{1}, \eta_{2} \rightarrow \infty$. Therefore, there is a limit function F which satisfies

$$
\int_{-\infty}^{\infty}\|f(x)\|_{E}^{2} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i}(\lambda) F_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda)
$$

by the completeness of the space $L_{\mu}^{2}(-\infty, \infty)$.
Now, we will show that the sequence $\left(K_{\eta}\right)$ given by

$$
K_{\eta}(\lambda)=\int_{-q^{-\eta}}^{q^{-\eta}} f_{1}(x) \phi_{1}(x, \lambda)+f_{2}(x) \phi_{2}(x, \lambda) \mathrm{d}_{q} x
$$

converges as $\eta \rightarrow \infty$ to F in the metric of the space $L_{\mu}^{2}(-\infty, \infty)$. Let g be another function in \mathcal{H}. By similar arguments, $G(\lambda)$ can be defined by g.

It is obvious that

$$
\begin{gathered}
\int_{0}^{\infty}\|f(x)-g(x)\|_{E}^{2} \mathrm{~d}_{q} x \\
=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2}\left\{\left(F_{i}(\lambda)-G_{i}(\lambda)\right)\left(F_{j}(\lambda)-G_{j}(\lambda)\right)\right\} \mathrm{d} \mu_{i j}(\lambda) .
\end{gathered}
$$

Let

$$
g(x)=\left\{\begin{array}{cc}
f(x), & x \in\left[-q^{-\eta}, q^{-\eta}\right] \\
0, & \text { otherwise }
\end{array}\right.
$$

Then, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \sum_{i, j=1}^{2}\left\{\left(F_{i}(\lambda)-K_{\eta i}(\lambda)\right)\left(F_{j}(\lambda)-K_{\eta j}(\lambda)\right)\right\} \mathrm{d} \mu_{i j}(\lambda) \\
= & \int_{-\infty}^{-q^{-\eta}}\|f(x)\|_{E}^{2} \mathrm{~d}_{q} x+\int_{q^{-\eta}}^{\infty}\|f(x)\|_{E}^{2} \mathrm{~d}_{q} x \rightarrow 0 \quad(\eta \rightarrow \infty),
\end{aligned}
$$

which proves that $\left(K_{\eta}\right)$ converges to F in $L_{\mu}^{2}(-\infty, \infty)$ as $\eta \rightarrow \infty$.
Theorem 5. Suppose that the functions $f()=.\binom{f_{1}()}{.f_{2}()},. g()=.\binom{g_{1}()}{.g_{2}()}$. $\in \mathcal{H}$, and $F(\lambda), G(\lambda)$ are their Fourier transforms. Then, we have

$$
\int_{-\infty}^{\infty}(f(x), g(x))_{E} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i}(\lambda) G_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda)
$$

which is called the generalized Parseval equality.

Proof. It is clear that $F \mp G$ are transforms of $f \mp g$. Therefore, we have

$$
\begin{gathered}
\int_{-\infty}^{\infty}\|f(x)+g(x)\|_{E}^{2} \mathrm{~d}_{q} x \\
=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2}\left(F_{i}(\lambda)+G_{i}(\lambda)\right)\left(F_{j}(\lambda)+G_{j}(\lambda)\right) \mathrm{d} \mu_{i j}(\lambda)
\end{gathered}
$$

and

$$
\begin{gathered}
\int_{-\infty}^{\infty}\|f(x)-g(x)\|_{E}^{2} \mathrm{~d}_{q} x \\
=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2}\left(F_{i}(\lambda)-G_{i}(\lambda)\right)\left(F_{j}(\lambda)-G_{j}(\lambda)\right) \mathrm{d} \mu_{i j}(\lambda) .
\end{gathered}
$$

By subtracting one of these equalities from the other one, we get the desired result.

Theorem 6. Let $f()=.\binom{f_{1}()}{.f_{2}()}. \in \mathcal{H}$. Then, the integrals

$$
\int_{-\infty}^{\infty} F_{i}(\lambda) \phi_{j}(x, \lambda) \mathrm{d} \mu_{i j}(\lambda) \quad(i, j=1,2)
$$

converge in $L_{\mu}^{2}(-\infty, \infty)$. Consequently, we have

$$
f(x)=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i}(\lambda) \phi_{j}(x, \lambda) \mathrm{d} \mu_{i j}(\lambda)
$$

which is called the expansion theorem.
Proof. Take any function $f_{s} \in \mathcal{H}$ and any positive number s, and set

$$
f_{s}(x)=\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i}(\lambda) \phi_{j}(x, \lambda) \mathrm{d} \mu_{i j}(\lambda) .
$$

Let $g()=.\binom{g_{1}()}{.g_{2}()}. \in \mathcal{H}$ be a vector function which is equal to zero outside the finite interval $\left[-q^{-\tau}, q^{-\tau}\right]$, where $q^{-\tau}<q^{-m}$. Thus we obtain

$$
\begin{aligned}
& \int_{-q^{-\tau}}^{q^{-\tau}}\left(f_{s}(x), g(x)\right)_{E} \mathrm{~d}_{q} x \\
& =\int_{-q^{-\tau}}^{q^{-\tau}}\left(\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i}(\lambda) \phi_{j}(x, \lambda) \mathrm{d} \mu_{i j}(\lambda), g_{1}(x)\right)_{E} \mathrm{~d}_{q} x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i}(\lambda)\left\{\int_{-q^{-\tau}}^{q^{-\tau}}\left(g(x), \phi_{j}(x, \lambda)\right)_{E} \mathrm{~d}_{q} x\right\} \mathrm{d} \mu_{i j}(\lambda) \\
& =\int_{-s}^{s} \sum_{i, j=1}^{2} F_{i}(\lambda) G_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda)
\end{aligned}
$$

From Theorem 5, we get

$$
\begin{equation*}
\int_{-\infty}^{\infty}(f(x), g(x))_{E} \mathrm{~d}_{q} x=\int_{-\infty}^{\infty} \sum_{i, j=1}^{2} F_{i}(\lambda) G_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda) \tag{20}
\end{equation*}
$$

By (19) and (20), we have

$$
\left(f-f_{s}, g\right)_{\mathcal{H}}=\int_{|\lambda|>s} \sum_{i, j=1}^{2} F_{i}(\lambda) G_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda)
$$

Apply this equality to the function

$$
g(x)=\left\{\begin{array}{cc}
f(x)-f_{s}(x), & x \in\left[-q^{-s}, q^{-s}\right] \\
0, & \text { otherwise }
\end{array}\right.
$$

we get

$$
\left\|f-f_{s}\right\|_{\mathcal{H}}^{2} \leq \sum_{i, j=1}^{2} \int_{|\lambda|>s} F_{i}(\lambda) F_{j}(\lambda) \mathrm{d} \mu_{i j}(\lambda) .
$$

Letting $s \rightarrow \infty$ yields the expansion result.

REFERENCES

[1] B.P. Allahverdiev and H. Tuna, One dimensional q-Dirac equation. Math. Methods Appl. Sci. 40 (2017), 7287-7306.
[2] B.P. Allahverdiev and H. Tuna, Eigenfunction expansion in the singular case for q-Dirac systems. Submitted.
[3] B.P. Allahverdiev and H. Tuna, An expansion theorem for q-Sturm-Liouville operators on the whole line. Turkish J. Math. 42 (2018), 3, 1060-1071.
[4] B.P. Allahverdiev and H. Tuna, The spectral expansion for the Hahn-Dirac system on the whole line. Turkish J. Math. DOI: 10.3906/mat-1902-16.
[5] M.H. Annaby and Z.S. Mansour, q-Fractional calculus and equations. Lecture Notes in Math. 2056, Springer, Berlin, 2012.
[6] M.H. Annaby, Z.S. Mansour and I.A. Soliman, q-Titchmarsh-Weyl theory: series expansion. Nagoya Math. J. 205 (2012), 67-118.
[7] T. Ernst, The History of q-Calculus and a New Method. U. U. D. M. Report (2000):16, ISSN 1101-3591, Department of Mathematics, Uppsala University, 2000.
[8] G.Sh. Guseinov, Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int. J. Difference Equ. 2 (2007), 1, 93-104.
[9] G.Sh. Guseinov, An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv. Dyn. Syst. Appl. 3 (2008), 1, 147-160.
[10] W. Hahn, Beiträge zur Theorie der Heineschen Reihen. Math. Nachr. 2 (1949), 340-379 (in German).
[11] F.H. Jackson, On q-definite integrals. Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[12] V. Kac and P. Cheung, Quantum Calculus. Springer, Berlin Heidelberg, 2002.
[13] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis. Translated by R.A. Silverman, Dover Publications, New York, 1970.
[14] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac operators. Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from Russian).
[15] P.N. Swamy, Deformed Heisenberg algebra: origin of q-calculus. Phys. A 328 (2003), 1-2, 145-153.
[16] E.C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I. (Second Edition), Clarendon Press, Oxford, 1962.

Received 18 January 2017

Süleyman Demirel University Department of Mathematics 32260 Isparta, Turkey
bilenderpasaoglu@sdu.edu.tr
Mehmet Akif Ersoy University Department of Mathematics 15030 Burdur, Turkey hustuna@gmail.com

