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INTRODUCTION

The calculus without limits is known as the g-calculus (or quantum cal-
culus). The concept of g-calculus was initiated by Jackson [11] in the first
quarter of 19th century. Since then, the ¢-difference operators have been stu-
died extensively. Hence, the ¢g-calculus has a rich literature (see [7]). Moreover,
the g-calculus has important applications in several mathematical areas such as
the theory of relativity, orthogonal polynomials, combinatorics, number theory,
quantum groups [5,7].

On the other hand, spectral expansion theorems are important for solving
various problems in mathematics. Specially, we lead to the problem of expan-
ding an arbitrary function as a series of eigenfunctions when we seek a solution
of a partial differential equation by separation of variables. The eigenfunction
expansion is obtained by several methods. For instance, by the methods of
integral equations, contour integration and the finite difference [3,4,8,9,14,16].

In [2], the authors investigated the eigenfunction expansions for singular
g-Dirac systems on [0, 00). In this work, we extend the results of [2] to obtain a
Parseval equality and an expansion theorem for such operators on the whole
line.

PRELIMINARIES

In this section, we recall some necessary fundamental concepts of ¢-
analysis. Following the standard notations in [12] and [5], let ¢ be a positive
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number with 0 < ¢ < 1, A C R := (—00,00) and a € A. A ¢-difference equation
is an equation that contains g-derivatives of a function defined on A. Let y be
a complex-valued function on A. The g-difference operator D, the Jackson
q-derivative is defined by

y(qz) —y (x)

Dy (@) = (- Dz

We know that there is a connection between the g-deformed Heisenberg
uncertainty relation and the Jackson derivative on the g¢-basic numbers (see
[15]). In the g-derivative, as ¢ — 1, the g-derivative is reduced to the classical
derivative. The g-derivative at zero is defined by

Dy (0) = lim y(¢"z) —y(0)

n—00 q"x

for all x € A.

(z € A),

if the limit exists and does not depend on x. A right-inverse to Dy, the Jackson
g-integration is given by

[ rwap=c0-0X @@ e
n=0
provided that the series converges, and

b b a
/af(t)dqt:/o f(t)dqt/o F)dgt (a,be A,

The g-integration for a function defined in [10] is given by the formulas

| rode=a-0 3 arw).
0 (o)
[ rwar=a-a 3 @1,
[ 1wai=0-0 > U 1)

A function f which is defined on A, 0 € A, is said to be g-regular at zero
if
lim f(zq") = £ (0)
for every z € A. Throughout the rest of the paper, we deal only with the

functions which are g-regular at zero.
If f and g are g-regular at zero, then we have

/0 "9 (6) Dof (£) dyt + /0 " f (at) Dyg (t) dyt = £ (a) g (a) — £ (0) g (0).
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Let L2(—o00,00) be the space of all complex-valued functions defined on

(—00, 00) such that
00 1/2
1= ([ 1r@Page) <o

The space Lg(—oo, 00) is a separable Hilbert space with the inner product

(F9) = [ F@) 3@, f.9€ L0,
(see [6]).
Let y(x) = < 332 Ei; ), z(x) = ( 2 Eg > Then, we define the g¢-
Wronskian of y (z) and z (z) by

(1) Wy (y,2) () =y (2) 22 (¢ '2) — 21 (2) g2 (¢ ') .

Now, we introduce the convenient Hilbert space H = L2 ((—oc0,00) ; E)
(E := R?) of vector-valued functions by using the inner product

(9= [ (@), g(2) pdge.

—0Q0

MAIN RESULTS
Let us consider the g-Dirac system

1
(2) —quflyz +p(x)y1 = Ay,

(3) Day1 + 7 (%) y2 = Aya,
where A is a complex eigenvalue parameter, p and r are real-valued functions

defined on (—o0,00) and continuous at zero, and p,r € L;loa (—00,00). This

system, as ¢ — 1, is reduced to the classical one dimensional Dirac system
—yo +p(2) y1 = Ay,
y1 +1(2) y2 = Ay

We will denote by ¢; (z, /\):( ii; Ei’ i; ) and ¢ (z, )\):< zz; Ei’ i; >=

the solution of the system (2)-(3) which satisfy the initial conditions
(4) ¢11 (07 )‘) = 17 ¢12 (07 )\) = 07 ¢21 (07 )‘) = 07 ¢22 (07 )‘) =1.
Let [—¢~"™, ¢~™] be an arbitrary finite interval, where m € N := {1,2,...}.
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Now we will consider the boundary value problem (2)-(3) with the boun-
dary conditions

y2 (—¢7™)cosa+y1 (—g~™)sina = 0,

(5) y2 (g ™) cosB+y1(¢"™)sinf =0, a, € R, meN.

In [1], the authors prove that the boundary value problem (2)—(3) with
the boundary conditions (5) has a compact resolvent operator, thus it has a
purely discrete spectrum.

Let Ao ,A+1,A12,... be the eigenvalues and g ,y+1 ,%y+2,... be the
corresponding eigenfunctions of the problem (2), (3), (5), where yi, (z)=
< Y+nl (.T})

Ytn2 ()
we get

>. Since the solutions of this problem are linearly independent,

Yn (x) = Cn¢1 (SC, An) + dn¢2 (xa )\n) .

There is no loss of generality in assuming that |c,| < 1 and |d,,| < 1. Now

let us set
2 " 2
2= @l dge
q ™
Let f(.) = ( jil ) € L2 ((=¢~™,q¢~™); E). If we apply the Parseval
2 (
equality (see [2]) to f (z), then we obtain

e 2
/ I @lEdea
7q m

- . 2
> 12{ I <f<x>,yn<a:>>Edqx}
n:O;oo " *q_m )
(6) =Y ;{/q_m (f (x), cndr1 (z,An) + dnoa ($7)\n))Edqf‘7}
e 2
-y { / L F@)en <x,An>>Edqa:}
b2y o 1l { [ @ An»Edqx}

© q 2
+ Z CZl;{/q_m (f($)7¢2(x7>‘n))Edqx} .
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Now, we will define the nondecreasing step function p;; ,—m (i,7 = 1,2)
on (—¢~"™,q~™) by

2
— > aern<0zs, for A<0

:ull,q—m ()‘) = n
ZO<A”<>\ z2 for A > 0,

— Y e 0%, for A <0
H12,g—m ()\):{ <D

Cnln

D 0<hn <A 2 for A >0,
Hi12,q—m (A) = H21,g—m (A

2
— 2 A<An<0 d% for A <0

H22.g—m (A) = 2"
209\”@\ = for A > 0.
From (6), we obtain

D[ el = [T RO E M ),

4,j=1
where

—m
q

B0 = [ (@) d)pde (i=12).

_qu
Now we will prove a lemma, but first we recall some definitions

A function f defined on an interval [a, b] is said to be of bounded variation
if there is a constant C' > 0 such that

S OIf () = f e < C
k=1
for every partition

(8) a=z0< 21 <..<xTp=">
of [a, b] by points of subdivision xg, x1, ..., Tp.
Let f be a function of bounded variation. Then, by the total variation of

b
f on [a,b], denoted by V (f), we mean the quantity

b

V(f)=sup IS (er) = f (x-)],
k=1

where the least upper bound is taken over all (finite) partitions (8) of the
interval [a, b] (see [13]).



374 Bilender P. Allahverdiev and Hiiseyin Tuna 6

LEMMA 1. There exists a positive constant A = A (§), & > 0 such that

) V {0} <A (5 =1,2),

where A does not depend on ¢~ ™.

Proof. From (4), we have
¢i5 (0,A) = 63,
where 6;; (i,7 = 1,2) is the Kronecker delta. So there exists a k > 0 such that
(10) |pij (z,N) — dij| <e, e>0, [N <& zel0,k].

Let f (x) = ( ?’:; Ei; > be a nonnegative vector-valued function such

that fr1 () vanishes outside the interval [0, k] with

k
(11) /0 fr1 () dgz =1,
and fgo () = 0. Set

k
Fi (V) = /0 (fi (@), 64)p dg

k
= / fr1 (x) dir (x,\)dgz (1 =1,2).
0
Using (10) and (11), we obtain
(12) B (A) — 1] <&, [Fa (V)] <&, [N <&
Now, by applying the Parseval equality (7) to fx (x), we get
k § 3
| @awz [ RO a0 +2 [ ) i 0) dimagon O
3

I3
+ / B ) () 2 / RO o O

3
=2 [ 1R O] 1B )] [tz O]
From (12), we have

3

k 3
/0 fi () dgz > /£ (1-¢)? dpgy,g-m (A) — 2/55 (1+e) {dﬂm,q*m ()\)‘

=(1- 5)2 (/in,q*m &) - Hi1,q—m (‘f)) —2e(1+¢) ffs {/J12,q*m ()\)} .
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Since
(13)
1

§
Yé {m12,g-m N} < 5 [11,4-m (€) — p11,g-m (=€) + pan,g-m (§) — pag g-m (=€)],

we get

\]

k
/0 S (@) dgz > (1 - 3¢) {Mn,q*m () — pi1,gm (_5)}
(14) —e(1+e) {pang—m (§) — pagg—m (=€)}
gr2 ()

that ggo (r) vanishes outside the interval [0, k] with fok gk2 (x)dgz = 1, and
gk1 (x) = 0. Similar arguments apply to the function gy (x), and we obtain

Let gi (z) = ( 9r1 () ) be a nonnegative vector-valued function such

k
/0 91%2 (z)dgz > (1 — 3e) {H22,qu (&) — H22 g—m (_f)}

(15) —e(1+e) {m1gm (&) = pargm (=)} -
If we add the inequalities (14) and (15), then we get

F 2 2 2 H11,q—m (&) - H11,q—m (=6
/0 {fkl () + k2 (x)} dg > (1 Tde-e ) { + o9 g—m (&) - H22 g—m (—¢) } '

If we choose £ > 0 such that 1 —4e —e2? > 0, then we obtain the assertion
of the lemma for the functions fy14-m (A) and pgy ,—m (A) relying on their
monotonicity. From (13), we have the assertion of the lemma for the function

H12.g—m ). O
Now we recall Helly’s theorems.

THEOREM 2 ([13]). Let (wy),cy be a uniformly bounded sequence of real
nondecreasing functions on a finite interval a < A < b. Then there exists a
subsequence (Wn,, ) ey and a nondecreasing function w such that

m wy,, (A) =w(A), a<A<b
k—o00

THEOREM 3 ([13]). Assume that (wy,),cy i @ real, uniformly bounded
sequence of nondecreasing functions on a finite interval a < X < b, and suppose
that

lim w, (A)=w(\), a <A <b.

n—0o0

If f is any continuous function on a < X < b, then

b
lim f ) dwy, (A / ) dw (A
n—oo
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Now let ¢ be any nondecreasing function on —co < A < oo. Denote by
Lz (—00,0) the Hilbert space of all functions f : (—oo0,00) — R which are
measurable with respect to the Lebesque-Stieltjes measure defined by o and

such that -
| Podem <o

z/_oof(A)g(A)dQ(A)-

The main results of this paper are the following three theorems.

with the inner product

THEOREM 4. Let f(.) = ( ;1 8 ) € H. Then, there exist monotonic
2 (.

functions p11 (N) and pgg (N) which are bounded over every finite interval, and
a function pio (A) which is of bounded variation over every finite interval with
the property

(16) /_||f Hde—/ S RO E () iy ).

1,j=1

where
—n

q
O =1m [ (F@).i(eN)pdea
7q—n
We note that the matriz-valued function p = (//Jij)%j:l (p12 = po21) is
called a spectral function for the system (2)-(3).

Proof. Assume that the function f, (z) = ( ;1" Eg > satisfies the follo-
2n

wing conditions:
1) fn (z) vanishes outside the interval [—¢~™, ¢~ "], where ¢~ < ¢~ ™.
2) The functions f,, (z) and D, f, (z) are g-regular at zero.
If we apply the Parseval equality to f, (z), then we get

n o - 2
[ h@kde= Y 1}3{ / <fn<x>,yk<x>>Edq:c} -
—q " k——00 —q "

Then, via integrating by parts, we obtain
q—m,
[ ) @) pdes
—q
1" 1
=/ fln( ) _5Dq*1yk2 (z) +p(z) Y1 (z) | dgz
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I

| Fen (@) [Dayra (@) + 7 (@) e ()] g

k
. _q D ) 90 o )] s )00
+ )\i ! [Dy fin () + 7 (2) fon ()] yre () dg2.

R -

Thus we have

m

- 2
Z 12{/_ . (fn (%), yk (JU))Edq:U}

z
Ail>s 7F

1 1{ [ { (=101 fon () 4 p (@) fin ()] 1 (2) }dx}

T R Ve | 4 Dafin (@) 47 (@) fon @) i (@)
Lo L[ 7 [ 2D fon (@) 4+ () fin ()] s (2) } }2

< — — q dqzzj

- QkZZooz {/—q’"{ + [Dg fin () + 7 (2) fon (z .gk 2 ()

2 )]
1 { 3Pt @) r@ @] 1y
- [Dyfin (x) + 7 () fon (2))

—q

By using (17), we obtain

—n g™ 2
[ @) 3 1{ / _m<fn<x>,yk<x>>Edqx}

2
z
—s<Ap<s k

Sy { (2D, fon (&) + 2 () fio ()] }dqx
) g |+ [Dyfin (@) + 7 (2) fon (2))
N 2
) 1{/ (o (2) 1 (2)) dqw}
—s<A<s k -
1 . 2
— Z 22{/ (fn (2), crdr (2, Ag) + dipa (2, M) pd }
—s<Ap<s Tk -
/ Z En d,qu ()\)
2,7=1
where o
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Consequently, we get
’fq fn( f Zz] 1 1”( )FJ” ()\) duij:qim ()\)
n 2
(18) < 8—2 filq*n |:—5qu1 an (IL‘) +p (l’) fln ($>:| q:r
+ 7 (Dafin (1) + 7 (2) fan (2)] dge
By Lemma 1 and Theorems 2 and 3, we can find sequences {—¢~"*} and
{q~"™*} such that the functions i g (M) (mg — 00) converge to a monotone

function p;; (A) . Passing to the limit with respect to {—¢~"*} and {¢™"*} in
(18), we have

—n

/q_n<f"<> n qx—/ 5 Fin ) Fio () g )

-4 i,j=1

<L / [—;Dq-lm (2) +p (@) fin <m>} Cdyr

_qfn

—n

—1—512/(1 [Dyfin (@) + 7 (2) fon ()] dg.

—q
As s — 00, we get

—-n

[ICCRACRETY S B ) By (3) s (1.

-4 i,5=1

Now let f (.) € H. Choose functions { f,, (x)} satisfying the conditions 1-2
and such that

lim Hf( )= f @)% dygz = 0.

n—00

Let
Fay () = / (f (@) 1 (@) dgar (i = 1,2).

Then, we have

| M@l de= [ S Fay () Fy () g ().

1,7=1
Since

/ 1o @) = fop (@)II% Az = 0 5 7,72 — 00,

we have

|3 s 00 Fgy () = Fiy () Fiy O iy )
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- / 1o (&) — i (@) ]2 dgz — 0

as 11,12 — 0o. Therefore, there is a limit function F' which satisfies

/nf uEd:c—/ S E ) E ()i ).

,j=1

by the completeness of the space Li (—00,0) .
Now, we will show that the sequence (K,) given by

Ko = [ 1612 0) + £ (0) 62 (0.3) e

—q~"

converges as 11 — oo to F' in the metric of the space LZ (—00,00). Let g be
another function in H. By similar arguments, G (\) can be defined by g.
It is obvious that

/0 TN @) - g @I dye

/ S LR () — G5 ) (F () — G5 )} s (1)
i,j=1
e (@), ze |
f r), T€|— _77’ -
9(w) = { 0, othe?rwisg.
Then, we have
/ S LR () = o () (B () = Koy (O0)) ity V)
1,j=1

_q—n [ee]
=/_ Hf(:c)HQEdqx+/ 1 @I dgz = 0 (5 = o0),

[e%¢) q—"

which proves that (K) converges to F' in Li (—o0,00) as n — oc0. O

THEOREM 5. Suppose that the functions f (.)= <§; 8) ,9()= (;}; 8)

€ H, and F (N\), G (\) are their Fourier transforms. Then, we have

| @@= [ S B0 (N ().

% i,j=1

which is called the generalized Parseval equality.
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Proof. 1t is clear that F' G are transforms of f F g. Therefore, we have

/ TN @) 4 9 (@)]3 dge

= /Oo Y (E (V) +Gi (V) (B (V) + G5 (V) dugg (V)

ij=1
and -
/_ 1f (@) — g (@)]1% dge
o 2
- / S (B () = Gi () (Fy (A) — G5 (V) dsy (V) -
0 4,5=1

By subtracting one of these equalities from the other one, we get the
desired result. [

THEOREM 6. Let f(.) = ( ;; 8 ) € H. Then, the integrals

/ TR (@) dpy (V) () = 1,2)

—00

converge in Li (—00,00) . Consequently, we have

o 2
F@ = [ B8N dey (),

= =1
which is called the expansion theorem.

Proof. Take any function fs € H and any positive number s, and set

s 2
fo@ = [ 3 RO ) duy ).

Z,j:1

Let g(.) = ( 91 () ) € H be a vector function which is equal to zero

92 ()
outside the finite interval [—¢~7, ¢ "], where ¢”7 < ¢~™. Thus we obtain
qu
/ (fs (), 9 (2))pdg
_qu

q 7 s 2
:/ . /,ZFi()‘)‘ﬁj(fcﬂ\)dﬂz‘j(%gl(a:) dyx

- 4,j=1 E
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-7

-/ S RO /q7<g<x>,¢j<x,x>>Edqx dyi; (V)

z]l

(19) / S 06, () ().
3,j=1

From Theorem 5, we get

(20) /°°<f<>< dx—/ S E 06, (g ().

i,j=1
By (19) and (20), we have
2

(F — forg)y = /W S ()G (V) dpig ().

1,j=1

Apply this equality to the function
z)—fs(x), z€|—q¢ % q°
g(x):{f()of() g, g

, otherwise,

we get

- fl < Y o, PO O ),
7,] 1 ‘>S
Letting s — oo yields the expansion result. [
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