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We give the decomposition into irreducible factors of Weil representations of
Sp2g(Z) at even levels, generalizing the decompositions in [8, 19] at odd levels.
We then derive the decomposition of the quantum representations of SL2(Z)
arising in the SU(2) and SO(3) TQFTs. As application we show that, when the
level indexing the TQFT is not a multiple of 4, the universal construction of [5]
applied to a cobordism category without framed links leads to the same TQFT.
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1. INTRODUCTION AND STATEMENTS

1.1. A BRIEF HISTORY

In this paper, we study a family of unitary representations of the sym-
plectic groups Sp2g(Z), indexed by some integer p ≥ 2, which are related to
number theory, mathematical physics and topology (see the next section for
definitions). They first appeared in the work of Kloosterman in 1946 (see [19])
where they arise as modular transformations of spaces of theta functions. They
were rediscovered independently by the physicist Shale [32] following Segal [30]
in 1962 when the authors studied the Weyl quantization of the symplectic torus.
Their construction has been generalized to arbitrary locally compact abelian
groups by Weil in 1964 (see [34]). The ones we consider in this paper are as-
sociated to Z/pZ. They also appeared independently in the work of Igusa [18]
and Shimura [33] on theta functions. See also [25] for another construction.

The mathematical physics community studied the semi-classical proper-
ties of the Weil representations associated to finite cyclic groups when the level
p tends to infinity as a model for quantum chaotical behavior (see [3,6,11,21]).

Topologists began to study these representations because they fit into the
framework of Topological Quantum Field Theories. Their definition for even
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levels and arbitrary genus first appeared in [13,17] in relation with 3-manifold
invariants which were studied in [26] and further explored in [9] in the more
general context of abelian invariants.

The main motivation of the author for this paper was to obtain informa-
tion on the Witten-Reshetikhin-Turaev representations of the mapping class
groups, as defined in [35], using a relation between the two families of repre-
sentations in the genus one case.

The construction we will use in this paper is related to knot and skein
theory following the topological point of view of [15]. Though less standard
that the number theoretical or geometrical construction, this point of view
is more elementary, crucial in the proofs of Theorem 4.13 and makes more
transparent the relation with the Witten-Reshetikhin-Turaev representations
made in the last section.

1.2. STATEMENTS

Given two integers p ≥ 2 and g ≥ 1, the Weil representations are projec-
tive unitary representations of the symplectic group Sp2g(Z)

πp,g : Sp2g(Z)→ PGL(U⊗gp )

where Up is a free module of rank p over the ring:

kp :=

 Z
[
A, 1

2p

]
/(φp(A)) , when p is odd.

Z
[
A, 1

p

]
/(φ2p(A)), when p is even.

where φp ∈ Z[X] represents the cyclotomic polynomial of degree p.

In [19], Kloosterman gave a complete decomposition of the Weil repre-
sentations when g = 1 and p is odd. His result was further generalized by
Cliff, Mc Neilly and Szechtman in [8] to arbitrary genus still at odd levels (see
also [27]).

The main result of this paper is the extension of these decompositions to
even levels.

Let a, b ≥ 2 be two coprime non negative integers with b odd, and let u
and v be odd integers such that au + bv = 1 in the case where a is odd and
such that 2au+ bv = 1 if a is even and b is odd. We define a ring isomorphism
µ : kab → ka ⊗ kb by µ(A) = (Avb, Aau) if a is odd and µ(A) = (Avb, A2au) if
a is even, which turns U⊗ga ⊗ U⊗gb into a kab-module.

For r prime and n ≥ 1, we define the ring homomorphism µ : krn → krn+2

by µ(A) = Ar
2

which turns U⊗grn into a krn+2-module.

Set σ(p) for the number of divisors of p including 1.
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Theorem 1.1. The level p Weil representation contains σ(p) irreducible
submodules, when p is odd and σ(p2), when p is even. They decompose according
to the following rules, where ∼= denotes an isomorphism of Sp2g(Z) projective
modules:

1. If a, b ≥ 2 are two coprime integers, then:

U⊗ga ⊗ U
⊗g
b
∼= U⊗gab

2. If r is prime and n ≥ 1, then:

U⊗g
rn+2

∼= U⊗grn ⊕W
⊗g
rn+2

where Wrn+2 is a free submodule of Urn+2.

3. If r is an odd prime, then:

U⊗g
r2
∼= 1⊕W⊗g

r2

where 1 denotes the trivial representation.

4. Every factor U⊗gp ,W⊗grn for p ≥ 3 decomposes into two invariant submod-
ules,

U⊗gp
∼= Ug,+p ⊕ Ug,−p

W⊗grn
∼= W g,+

rn ⊕W
g,−
rn

We call Ug,+p and W g,+
rn the even modules and Ug,−p ,W g,−

rn the odd mod-
ules.

5. The application of the previous four rules decomposes any U⊗gp into a
direct sum of modules of the form Br1 ⊗ . . . ⊗ Brk with r1, . . . , rk dis-
tinct prime numbers and Bri ∈ {U

g,±
ri , W g,±

rni
}. These modules are all

irreducible and pairwise distinct.

The Witten-Reshetikhin-Turaev representations Vp of SL2(Z) defined
in [35] are projectively isomorphic to the odd submodule U−p of the Weil rep-
resentations (see [12] when p is even, [22] when p ≡ 1 (mod 4) and the last
section of this paper for a general proof). We deduce the following:

Corollary 1.2. We have the following decomposition into irreducible
modules of the genus one SO(3) and SU(2) quantum representations at level
p of SL2(Z):

Vp ∼=
⊕

B∈E,B1∈E1,...,Bk∈Ek

B ⊗B1 ⊗ . . .⊗Bk, when p is even;

Vp ∼=
⊕

B1∈E1,...,Bk∈Ek

B1 ⊗ . . .⊗Bk, when p is odd.

where p = 2mrn1
1 . . . rnkk is the factorization into primes and:
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• If j is such that nj is odd,

Ej =

{
W+

r
nj−2aj
j

,W−
r
nk−2aj
j

, U+
rj , U

−
rj | 0 ≤ aj ≤

⌈nk
2

⌋
− 1

}
.

• If j is such that nj is even,

Ej =

{
W+

r
nj−2aj
j

,W−
r
nk−2aj
j

,1 | 0 ≤ aj ≤
⌈nk

2

⌋
− 1

}
.

• If m is odd, E =
{
W+

2m−2a ,W
−
2m−2a , U2 | 0 ≤ a ≤

⌈
m
2

⌋
− 1
}
.

• If m is even, E =
{
W+

2m−2a ,W
−
2m−2a , U

+
4 , U

−
4 | 0 ≤ a ≤

⌈
m
2

⌋
− 1
}

.

with the condition that each summand B ⊗ B1 ⊗ . . . ⊗ Bk or B1 ⊗ . . . ⊗ Bk
contains an odd number of modules U−p ,W

−
rn.

Example 1. The Weil representation (π500, U500) at level 500 decomposes
as follows:

U500
∼= U4 ⊗ U125

∼= U4 ⊗ (U5 ⊕W125)
∼= (U+

4 ⊗ U
+
5 )⊕ (U−4 ⊗ U

+
5 )⊕ (U+

4 ⊗ U
−
5 )⊕ (U−4 ⊗ U

−
5 )

⊕(U+
4 ⊗W

+
125)⊕ (U+

4 ⊗W
−
125)⊕ (U−3 ⊗W

+
125)⊕ (U−3 ⊗W

−
125)

In particular, we derive the following decomposition of the SU(2)-quantum
representation (ρ500, V500) in genus one at level 500:

V500
∼= U−500

∼= (U−4 ⊗ U
+
5 )⊕ (U+

4 ⊗ U
−
5 )⊕ (U−4 ⊗W

+
125)⊕ (U+

4 ⊗W
−
125)

where each factor in parenthesis is an irreducible factor.

The previous decomposition has the following application. The TQFTs
defined in [5] associate to each closed oriented surface Σ, a vector space Vp(Σ).
To a triple (M,φ,L), where M is a closed oriented 3 manifold, φ : ∂M → Σ
an orientation-preserving homeomorphism and L ⊂ M an embedded framed
link (possibly empty), the TQFT associates a vector Zp(M,φ,L) ∈ Vp(Σ).
Such vectors generate Vp(Σ) by definition (see the last section). The following
theorem was proved by Roberts in the particular case where p is prime (it
results from Lemma 2 in [29]).

Theorem 1.3. If 4 does not divides p, then in the SU(2) and SO(3)
TQFTs (see [5] for definitions), the vectors Zp(M,φ, ∅), associated to cobor-
disms without framed links, generate Vp(Σ).

It results that the universal construction of [5] applied to a cobordism
category without framed links leads to the same TQFTs. In particular, these
TQFTs are determined by their 3 manifolds invariants without framed links
(see the last section for details). It contrasts with the usual constructions
(see [5,28]) where standard generating sets for Vp(Σ) are constructed from the
skein modules of Handlebodies.
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2. DEFINITION OF THE PROJECTIVE WEIL REPRESENTATIONS

The following section closely follows the definitions from [15].

2.1. HEISENBERG GROUPS AND SCHRÖDINGER REPRESENTATIONS

Definition 2.1. 1. Let p ≥ 2 and M be a compact oriented 3-manifold
possibly with boundary. The reduced abelian skein module T̃p(M) is the
kp-module generated by the isotopy classes of oriented banded links of
ribbons in M quotiented by the relations given by the abelian skein re-
lations of Fig. 1 and by the submodule generated by the links made of p
parallel copies of the same ribbon.

p times

...

Fig. 1. Skein relations defining the reduced abelian skein modules.

The reduced abelian skein module of the sphere S3 has rank one. The
class of a link L ⊂ S3 in this module is equal to the class of the empty
link multiplied by Alk(L) where lk(L) represents the self-linking number
of L. This gives a natural isomorphism T̃p(S3) ∼= kp.

It is classic, that if M ∼= Σ× [0, 1] is a thickened surface, then its reduced
skein module T̃p(M) is isomorphic to kp[H1(Σ,Z/pZ)].

2. Denote by Hg the genus g handlebody. Its abelian skein module is freely
generated by the elements of H1(Hg,Z/pZ). So, if we denote by Up the

module T̃p(S1×D2), we have a natural kp-isomorphism between T̃p(Hg)
and U⊗gp .

3. Let Σg be a closed oriented surface of genus g. The module T̃p(Σg× [0, 1])
has an algebra structure with product induced by superposition, which
appears to be the algebra of the following group.
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We denote by c ∈ T̃p(Σg × [0, 1]) the product of the class of the empty
link by A ∈ kp. We call Heisenberg group and denote Hp,g the subgroup

of T̃p(Σg × [0, 1]) generated by c and H1(Σg,Z/pZ). Denote by ω the
intersection form ω : H1(Σg,Z/pZ) × H1(Σg,Z/pZ) → Z/pZ when p is
odd and ω : H1(Σg,Z/pZ) × H1(Σg,Z/pZ) → Z/2pZ, when p is even.
Then Hp,g is isomorphic to the group H1(Σg,Z/pZ) × Z/pZ, when p is
odd and H1(Σg,Z/2pZ) × Z/2pZ when p is even with group law given
by:

(X, z) • (X ′, z′) = (X +X ′, z + z′ + ω(X,X ′))

4. We choose a homeomorphism φ : Σg → Σg so that (Σg × [0, 1])
⋃
φHg

∼=
Hg. This gluing induces a linear action of the Heisenberg group on

the reduced skein module T̃p(Hg) ∼= U⊗gp . This representation is called
the Schrödinger representation and will be denoted by Addp : Hp,g →
GL(U⊗gp ). Up to isomorphism, this representation does not depend on φ.

2.2. THE WEIL REPRESENTATIONS

Every element of the mapping class group Mod(Σg) acts on H1(Σg,Z)
by preserving the intersection form. Choosing a basis of H1(Σg,Z) we obtain
a surjective morphism f : Mod(Σg) → Sp2g(Z) whose kernel is called Torelli
group.

Let g ≥ 1, the module T̃p(Σg × [0, 1]) is spanned by classes of links em-
bedded in Σ × {1

2} with parallel framing whose class only depends on their
homology class in Σg. The action in homology of the mapping class group
Mod(Σg) induces, by passing through the quotient by the reduced skein rela-
tions, an action on the Heisenberg group. We denote by • this action. Let
φ ∈ Mod(Σg) and consider the representation sφ : Hp,g → GL(U⊗gp ) defined
by sφ(h) := Addp(φ • h) for all h ∈ Hp,g. It is a standard fact, referred as
the Stone-Von Neumann theorem, that the Schrödinger representation is the
unique irreducible representation of the Heisenberg group sending the central
element c to the scalar operator A · 1.

It results that the representation sφ is conjugate to the Schrödinger rep-
resentation. Thus there exists πp,g(φ) ∈ GL(U⊗gp ), uniquely determined up to
multiplication by an invertible scalar, so that:

(1) πp,g(φ) Addp(h)πp,g(φ)−1 = Addp(φ • h), for any h ∈ Hp,g
The equation (1) is called the Egorov identity and we easily show that

the elements πp,g(φ) define a projective representation πp,g : Mod(Σg) →
PGL(U⊗gp ) called the Weil representation.
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Since the action of Mod(Σg) on Hp,g factorizes through the Torelli group
and through Sp2g(Z/pZ) when p is odd and Sp2g(Z/2pZ) when p is even, so
do the Weil representations.

The previous definition of the Weil representations as intertwining oper-
ators is not explicit. To manipulate it more easily, we choose the generators
of Sp2g(Z) consisting of the image through f of the Dehn twists Xi, Yi, Zij of
Fig. 2 (see [23] for a proof these Dehn twists generate the mapping class group).
We define the basis {ea1 ⊗ . . . ⊗ eag |a1, . . . , ag ∈ Z/pZ} of U⊗gp as in Fig. 3,
that means that ea1 ⊗ . . .⊗ eag is the class of a link made of ai parallel copies
of an unframed ribbon encircling the ith hole of Hg one time. To express the
image of the generators in the basis, we will first need to define Gauss sums.

X22X1Y Y Y1

Z Z
12 23

X3
3

Fig. 2 – A set of Dehn twists generating the mapping class group
and the symplectic group.

a a a
1 2 3

Fig. 3 – A basis for the abelian skein module of the genus g handlebody. Here an
integer i in front of a ribbon means that we take i parallel copies of it.

Definition 2.2. Let p ≥ 2 and a, b be two integers. We define the Gauss
sums by the formulas:

1. G(a, b, p) :=
∑

k∈Z/pZA
ak2+bk ∈ kp when p is odd.

2. G(a, b, 2p) :=
∑

k∈Z/2pZA
ak2+bk = 2

∑
k∈Z/pZA

ak2+bk ∈ kp when p is
even.

The computation of the Gauss sums is detailed in [2].

Proposition 2.3. The expression of the matrices of the Weil representa-
tion on the generators Xi, Yi and Zi,j in the basis {ea1 ⊗ . . .⊗ eag |a1, . . . , ag ∈
Z/pZ} of U⊗gp is given by the projective class of the following matrices:
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• πp,1(X) = (A2i2δi,j)i,j and πp,g(Xi) = 1
⊗(i−1) ⊗ π1

p(X)⊗ 1⊗(g−i).

• πp,g(Zi,j)(ea1 ⊗ . . .⊗ eag) = A(ai−aj)2(ea1 ⊗ . . .⊗ eag).

• πp,1(Y ) =

{
G(1,0,N)

N (A−(i−j)2)i,j , when p is odd.
G(1,0,2N)

2N (A−(i−j)2)i,j , when p is even.

πp,g(Yi) = 1
⊗(i−1) ⊗ πp,1(Y )⊗ 1⊗(g−i).

These generating matrices are unitary (they verify ŪTU = 1 where Ū =(
Ūi,j
)
i,j

is defined by the involution of kp sending A to A−1) so are the Weil
representations.

Proof. If φ ∈ Mod(Σg) can be extended to a homeomorphism Φ of the
handlebody Hg, the action of Φ on Tp(Hg) ∼= U⊗gp defines an operator which
satisfies the Egorov identity (1) so is projectively equal to πp,g(φ). The gener-
ators Xi and Zi,j are such homeomorphisms and Fig. 4 shows how we compute
their action on the basis.

i

i

j

Fig. 4 – The computation of the matrices associated to πp,1(X) and πp,2(Z1,2).

Then choose a Heegaard splitting of the sphere Hg
⋃
φHg

∼= S3 with φ ∈
Mod(Σg). This splitting determines a pairing T̃p(Hg)×T̃p(Hg)→ T̃p(S3) ∼= k′p.

The associated bilinear pairing (·, ·)Hp : U⊗gp ⊗ U⊗gp → kp is called the Hopf
pairing. Fig. 5 shows that:(

ea1 ⊗ . . .⊗ eag , eb1 ⊗ . . .⊗ ebg
)H
p

= A−2
∑
i aibi

Thus the Hopf pairing is non degenerate.

a a'

b b'

Fig. 5 – The computation of the matrix associated to the Hopf pairing when g = 2.

The dual of πp,g(Xi) for 〈·, ·〉H satisfies the Egorov identity (1), so is

projectively equal to πp,g(Yi). If πp,1(Y ) is the dual of πp,1(X) for (·, ·)H, the
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previous expression of πp,g(Xi) implies that its dual for the Hopf pairing is
1
⊗(i−1) ⊗ πp,1(Y )⊗ 1⊗(g−i).

To compute the matrix of πp,1(Y ), we remark that the matrix S =(
A−2ij

)
i,j

of the Hopf pairing has inverse S−1 = 1
p S̄ = 1

p(A2ij)i,j . A direct
computation gives:

πp,1(Y ) = Sπp,1(X)S−1

=

{
G(1,2(j−i),p)

p = G(1,0,p)
p (A−(i−j)2)i,j , when p is odd;

G(1,2(j−i),2p)
2p = G(1,0,2p)

2p (A−(i−j)2)i,j , when p is even. �

Remark. 1. When p is even and A = exp
(
− iπ

p

)
, the projective rep-

resentations we defined here coincide with the ones from [13] and [17]
coming from theta functions.

2. When p is odd or when g = 1 and p is even, the Weil representations
lift to linear representations of SL2(Z/pZ) and SL2(Z/2pZ) respectively
(see [1] for a proof and [20] for a proof that the matrices πp,g(Xi), πp,g(Yi)
and πp,g(Zi,j), defined in Proposition 2.3 define an explicit lift).

When p is even and g ≥ 2, they lift to linear representations of ˜Sp2g(Z)
a central extension of Sp2g(Z/2pZ) by Z/2Z (see [14] for a proof and [20]
for a proof that the matrices above define an explicit lift).

We will now consider these linear lifted representations and denote them
by πp,g.

3. DECOMPOSITION OF THE WEIL REPRESENTATIONS

In this section, we prove the three first points of the Theorem 1.1. We
first define:

U+,g
p := Span{ea1 ⊗ . . .⊗ eag + e−a1 ⊗ . . .⊗ e−ag |a1, . . . , ag ∈ Z/pZ}

U−,gp := Span{ea1 ⊗ . . .⊗ eag − e−a1 ⊗ . . .⊗ e−ag |a1, . . . , ag ∈ Z/pZ}

Lemma 3.1. The submodules U+,g
p and U−,gp are πp,g-stable.

Proof. A direct computation shows that the submodules Ug,+p and Ug,−p
are stabilized by πp,g(Xi), πp,g(Yi) and πp,g(Zi,j). We can also remark that the
involution acting on the reduced skein module by changing the orientation of
a framed link, commutes with the image of π. The modules U±,gp correspond
to its two eigenspaces. �

Let a, b ≥ 2 be two coprime non negative integers with b odd, and let u
and v be odd integers such that au + bv = 1 in the case where a is odd and
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such that 2au+ bv = 1 if a is even and b is odd. We define a ring isomorphism
µ : kab → ka ⊗ kb by µ(A) = (Avb, Aau) if a is odd and µ(A) = (Avb, A2au)
if a is even, which turns U⊗ga ⊗ U⊗gb into a kab-module. We also denote by
f : Z/aZ × Z/bZ → Z/abZ the bijection sending (x, y) to xv + yu when a is
odd and to xv + 2yu when a is even. The following lemma was shown in [21],
we give a more explicit proof.

Lemma 3.2 ([21]). The isomorphism of kab-module ψ : U⊗ga ⊗U⊗gb → U⊗gab
defined by

ψ((ea1 ⊗ . . .⊗ eag)⊗ (eb1 ⊗ . . .⊗ ebg)) = ef(a1,b1) ⊗ . . .⊗ ef(ag ,bg)

makes the following diagram commute for all φ ∈ Sp2g(Z) (resp for all φ ∈
˜Sp2g(Z) when a is even):

U⊗ga ⊗ U
⊗g
b

ψ
> U⊗gab

U⊗ga ⊗ U
⊗g
b

πa,g(φ)⊗πb,g(φ)

∧

ψ
> U⊗gab

πab,g(φ)
∧

Proof. We note (A1, A2) := (Avb, Aau) when a and b are odd and (A1, A2)
= (Avb, A2au) when a is even. It is enough to show the commutativity of the
diagram for φ = Xi, Yi and Zi,j . For φ = Xi, we compute:

ψ
(
πa,g(Xi)⊗ πb,g(Xi)((ea1 ⊗ . . .⊗ eag)⊗ (eb1 ⊗ . . .⊗ ebg))

)
=

ψ
(
A
a2i
1 A

b2i
2 ((ea1 ⊗ . . .⊗ eag)⊗ (eb1 ⊗ . . .⊗ ebg))

)
=

Af(ai,bi)
2
(ef(a1,b1) ⊗ . . .⊗ ef(ag ,bg))

Then for φ = Yi, we note cp = G(1,0,p)
p when p is odd and cp = G(1,0,2p)

2p
when p is even:

ψ
(
πa,g(Yi)⊗ πb,g(Yi)((ea1 ⊗ . . .⊗ eag)⊗ (eb1 ⊗ . . .⊗ ebg))

)
= ψ (cacb

∑
k∈Z/aZ
l∈Z/bZ

A
−(ai−k)2

1 A
−(bi−l)2
2 ((ea1⊗. . .⊗ek⊗. . .⊗eag)⊗(eb1 ⊗ . . .⊗ el ⊗ . . .⊗ ebg))


= ψ(cacb)

∑
m∈Z/abZ

A−(f(ai,bi)−m)2(ef(a1,b1) ⊗ . . .⊗ em ⊗ . . .⊗ ef(ag ,bg))

where we made the change of variable m = f(k, l) to pass to the last line.
We conclude by noticing that ψ(cacb) = cab which is equivalent to ψ(G(1, 0, a)



11 Irreducible factors of Weil representations and TQFT 393

G(1, 0, b)) = G(1, 0, ab) when a is odd and ψ(G(1, 0, 2a)G(1, 0, b)) = G(1, 0, 2ab)
when a is even.

Finally, for φ = Zi,j :

ψ
(
πa,g(Zi,j)⊗ πb,g(Zi,j)((ea1 ⊗ . . .⊗ eag)⊗ (eb1 ⊗ . . .⊗ ebg))

)
= ψ

(
A

(ai−aj)2
1 A

(bi−bj)2
2 ((ea1 ⊗ . . .⊗ eag)⊗ (eb1 ⊗ . . .⊗ ebg))

)
= Af(ai,bi)

2
(ef(a1,b1) ⊗ . . .⊗ ef(ag ,bg)) �

Remark. This lemma also follows from ( [26], Proposition 2.3) where it is
showed that the 3-manifold invariant coming from the abelian TQFT at level
ab, with a coprime to b, is the product of the ones in level a and b. We can
then conclude using the same argument as in [5].

Let r be a prime number and n ≥ 0 if r is odd or n ≥ 1 if r = 2. Let
Ū⊗grn be the submodule of U⊗g

rn+2 spanned by the vectors ga1 ⊗ . . . ⊗ gag where
gi :=

∑
0≤k≤r−1 er(i+krn).

Lemma 3.3. The submodule Ū⊗grn is stabilized by πrn+2,g. Moreover, the

isomorphism of krn+2-modules ψ : U⊗grn → Ū⊗grn sending ea1 ⊗ . . . ⊗ eag to
ga1 ⊗ . . .⊗ gag makes the following diagram commute for all φ ∈ Sp2g(Z) (for

all φ ∈ ˜Sp2g(Z) when r = 2 respectively):

GL(U⊗g
rn+2)Ū

⊗g
rn

πrn+2,g(φ)
> GL(U⊗g

rn+2)Ū
⊗g
rn

GL(U⊗grn )

∪

∧

πrn,g(φ)
> GL(U⊗grn )

∪

∧

Proof. We generalize an argument of [8] to even levels to show that Ū⊗grn
is πrn+2,g-stable. Denote by I the principal ideal I := rn+1H1(Σg,Z/rn+2Z)
of H1(Σg,Z/rn+2Z) and by D the subgroup D := (I × I, 0) of Hrn+2,g. Since
I2 = {0} and I is an ideal, D is a subgroup of Hrn+2,g stable under the
action of Sp2g(Z). We deduce from the Egorov identity that the space {v ∈
U⊗g
rn+2 |Addp(φ)v = v,∀φ ∈ D} is preserved by πrn+2,g. We now easily show

that this space is Ū⊗grn .

We then verify the commutativity of the diagram for φ = Xi, Yi and Zi,j .
When φ = Xi we have:

πrn+2,g(Xi)(ga1 ⊗ . . .⊗ gag) = A(ri)2(ga1 ⊗ . . .⊗ gag) = µ(A)i
2
(ga1 ⊗ . . .⊗ gag)

When φ = Yi we have:

πrn+2,g(Yi)(ga1 ⊗ . . .⊗ gag)
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= crn+2

∑
x∈Z/rn+2

∑
k∈Z/rZ

A−(r(ai+kr
n)−x)2ga1 ⊗ . . .⊗ ex ⊗ . . .⊗ eag

= crn+2

∑
x∈Z/rn+2Z

A−x
2−xrai−r2a2i

 ∑
k∈Z/rZ

(A2r(n+1)x)k

 ga1⊗. . .⊗ex⊗. . .⊗gag

= rcrn+2

∑
y∈Z/rn+1Z

(Ar
2
)−(y−ai)2ga1 ⊗ . . .⊗ ery ⊗ . . .⊗ gag

= rcrn+2(µ(A))−(z−ai)2
∑

z∈Z/rnZ

ga1 ⊗ . . .⊗ gz ⊗ . . .⊗ gak

We verify that µ(crn) = rcrn+2 to conclude in this case. Finally when
φ = Zi,j :

πrn+2,g(Zi,j)(ga1 ⊗ . . .⊗ gag)

=
∑

k,l∈Z/pZ

A(r(ai+kr
n)−p(aj+lrn))2(ga1⊗ . . . er(ai+krn)⊗ . . .⊗er(aj+lrn)⊗ . . .⊗gag)

=
∑

k,l∈Z/pZ

(Ar
2
)(ai−aj)2(ga1 ⊗ . . . er(ai+krn) ⊗ . . .⊗ er(aj+lrn) ⊗ . . .⊗ gag)

= (µ(A)(ai−aj)2(ga1 ⊗ . . .⊗ gag) �

Let Wrn+2 be the submodule of Urn orthogonal for the invariant form
turning {e0, . . . , ern+2−1} into an orthogonal basis. It is freely generated by
the vectors ei when r does not divide i and by the vectors eri−r(i+k+rn) for
i ∈ {0, . . . , rn − 1} and k ∈ {1, . . . , r − 1}.

The orthogonal of Ū⊗grn in U⊗g
rn+2 is isomorphic to W⊗g

rn+2 and is stabilized

by πrn+2,g. So are the two submodules W g,±
rn+2 := W⊗g

rn+2

⋂
Ug,±
rn+2 .

4. IRREDUCIBILITY OF THE FACTORS

4.1. THE GENUS ONE CASES

The goal of this section is to extend Kloosterman’s work [19] to even
levels.

When g = 1 the strategy for the proof lies on the computation of the
following Kloosterman’s sums:

Sp := 1
|SL2(Z/pZ)|

∑
φ∈SL2(Z/pZ) |Tr(πp(φ))|2, when p is odd.(2)

S2p := 1
|SL2(Z/2pZ)|

∑
φ∈SL2(Z/2pZ) |Tr(πp(φ))|2, when p is even.(3)
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It is a classical fact that if this sum is equal to the number of component
in a decomposition of πp then each factors appearing in this decomposition are
irreducible and they are pairwise distinct (see [31], chapter 2).

Lemma 4.1. If a is prime to b then Sab = Sa × Sb if they are both odd
and S2ab = S2a × Sb if a is even.

Proof. This follows from the fact that we have a group isomorphism
SL2(Z/abZ) ∼= SL2(Z/aZ)× SL2(Z/bZ) together with Proposition 3.2. �

In [19] Kloosterman showed that for an odd prime r and n ≥ 1 then
Srn = n + 1. Thus, to complete the proof of Theorem 1.1 it remains to show
the following:

Proposition 4.2. For n ≥ 1, we have:

S2n = n− 1

Since the summand |Tr(π2n(φ))|2 only depends on the conjugacy class of
φ we will first make a complete study of the conjugacy classes of SL2(Z/2nZ).
Then we will compute the characters of the Weil representations on represen-
tatives of each conjugacy classes.

4.1.1. Conjugacy classes of SL2(Z/2nZ)

We begin by defining three invariants of the conjugacy classes which al-
most classify the conjugacy classes:

Definition 4.3. For A ∈ SL2(Z/2nZ) there exists a unique integer l ∈
{0, . . . , n} and x ∈ {0, . . . , 2l − 1} such that:

A ≡ x1+ 2lU1 (mod 2n)

for some matrix U1 which reduction modulo 2 is neither the identity, nor the
null matrix. We define a third integer

τ :=

{
Tr(A) ∈ Z/2nZ, when l = 0.
det(U1) ∈ Z/2n−lZ, when l ≥ 1.

Note that det(U) = 1(mod 2n) implies that x2 = 1(mod 2l) hence if l = 1
then x = 1, when l = 2 then x = 1 or 3, when l ≥ 3 we have four choices:
x = 1, 2l − 1, 2l−1 + 1 or 2l−1 − 1.

Let us denote by C(x, l, τ) the set of matrices of SL2(Z/2nZ) having x, l
and τ as invariants. Clearly C(−1, l, τ) = −C(1, l, τ) and C(2l−1 − 1, l, τ) =
−C(2l−1 +1, l, τ), thus we only need to study the conjugacy classes of C(x, l, τ)
when x = 1 or x = 2l−1 + 1.
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As example, the matrices with l = 0 are the matrices which are not equal
to the identity matrix modulo 2 whereas those with l = n are the four scalar
matrices.

Definition 4.4. We define the following representatives of C(x, l, τ), where
c1 will denote an odd number:

• l = 0, A0(τ, c1) :=

(
1 c−1

1 (τ − 2)
c1 τ − 1

)
.

• l ≥ 1, x = 1, Al(τ, c1) :=

(
1 c−1

1 2lτ
c12l 1 + 2lτ

)
.

• l ≥ 3, x = 1 + 2l−1,

Bl(τ, c1) :=

(
1 + 2l−1 −c−1

1 2lτ
2lc1 1 + 2l−1 − (1 + 2l−1)−1(2l + 22l−2 + 22lτ)

)
.

Similar representative for x = −1 and x = 2l−1 − 1 are given by taking
−Al and −Bl.

Proposition 4.5. Each set C(x, l, τ) contains 1, 2 or 4 conjugacy classes
each containing a matrix ±Al(τ, c1) or ±Bl(τ, c1) for a suitable choice of c1.
The following table gives for every l, x, τ a set of 1, 2 or 4 representatives and
the cardinal m(A) of the corresponding conjugacy classes:

l and x τ Representatives of C(x, l, τ) m(A)
l = 0 Tr(U) = τ is odd A0(τ, 1) 22n−1

Tr(U) = τ = 2 (mod 4) A0(τ, 1), A0(τ, 3), A0(τ, 5), A0(τ, 7) 3 · 22n−4

Tr(U) = τ = 0 (mod 4) A0(τ, 1), A0(τ, 3) 3 · 22n−3

l = 1
and x = 1

τ = 1 (mod 8) A1(τ, 1), A1(τ, 3), A1(τ, 5), A1(τ, 7) 3 · 22n−6

τ = 3, 5, 7 (mod 8) A1(τ, 1), A1(τ, τ) 3 · 22n−5

τ = 2, 4, 6 (mod 8) A1(τ, 1), A1(τ, 3) 3 · 22n−5

τ = 0 (mod 8) A1(τ, 1), A1(τ, 3), A1(τ, 5), A1(τ, 7) 3 · 22n−6

2 ≤ l ≤ n − 3
and x = 1

τ = 1, 4, 5 (mod 8) Al(τ, 1), Al(τ, 3) 3 · 22n−2l−3

τ = 3, 7 (mod 8) Al(τ, 1) 3 · 22n−2l−2

τ = 2 (mod 8) Al(τ, 1), Al(τ, 5) 3 · 22n−2l−3

τ = 0 (mod 8) Al(τ, 1), Al(τ, 3), Al(τ, 5), Al(τ, 7) 3 · 22n−2l−4

l = n− 2
and x = 1

τ = 0, 1 (mod 4) An−2(τ, 1), An−2(τ, 3) 6

τ = 2, 3 (mod 4) An−2(τ, 1) 12
l = n− 1
and x = 1

τ = 0 (mod 2) An−1(0, 1) 3

τ = 1 (mod 2) An−1(1, 1) 3
3 ≤ l ≤ n− 1
and
x = 1 + 2l−1

τ odd Bl(τ, 1) 22n−2l−1

τ even Bl(τ, 1) 3 · 22n−2l−1

l = n 1,−1, (2n−1 + 1)1 and (2n−1 − 1)1 1
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Proposition 4.5 gives the complete description of the conjugacy classes of
SL2(Z/2nZ). The exact information needed for computing S2n is summarized
in the following:

Corollary 4.6. For A ∈ SL2(Z/2nZ) we define s(A) ∈ {2l, . . . , l + n}
to be the maximal s for which 2s−l divides τ . Let N(l, x), resp. N(l, x, s),
be the number of matrices having l, x (resp s) as invariants. We deduce from
Theorem 4.5 the following:

1. N(0, 1, 0) = 23n−2.

2. For 1 ≤ s ≤ n− 1, N(0, 1, s) = 3 · 23n−s−3.

3. N(0, 1, n) = 3 · 22n−2.

4. For l ≥ 1, N(l, 1, s) = 3.23n−l−s−3 if s 6= l + n and N(l, 1, n + l) =
3 · 22n−2l−2.

5. For l ≥ 2, N(l,−1) = 3 · 23n−3l−2.

6. For l ≥ 3, N(l, 1 + 2l−1) = N(l, 2l−1 − 1) = 23n−3l.

7. N(n, x) = 1.

The proof of Proposition 4.5 will be deduced from the following:

Lemma 4.7. Let U =

(
a b
c d

)
and U ′ =

(
a′ b′

c′ d′

)
be two matrices of

C(x, l, τ). If l = 0, we suppose that c and c′ are odd. If l ≥ 1, writing U =

x1 +

(
a1 b1
c1 d1

)
we suppose that c1 and c′1 are odd. Note that each conjugacy

class contains an element satisfying these conditions. We define EU,U ′ the
following equation:

c1x
2 + (a1 − d1)xy − b1y2 ≡ c′1 (mod 2n−l), when l ≥ 1;

cx2 + (a− d)xy − by2 ≡ c′ (mod 2n), when l = 0.

Then we have the two following properties:

1. The matrix U is conjugate to U ′ if and only if EU,U ′ has solutions.

2. If k is the number of solutions of EU,U then the conjugacy class of U has
m(U) = 1

k3 · 23n−3l−2 elements.

Once this Lemma proved, the proof of Theorem 4.5 will follows from
the study of the equations EU,U ′ . We will need the Hensel’s Lemma (see [7],
section 3.2) which states that if n ≥ 1, x0 ∈ Z/2nZ and P ∈ Z[x] is a poly-
nomial such that P (x0) ≡ 0 (mod 2n) and P ′(x0) is odd, then there exists a
unique element x̃0 ∈ Z/2n+1Z such that x̃0 ≡ x0 (mod 2n)) and P (x̃0) ≡ 0
(mod 2n+1).

Lemma 4.8. Let A ∈ SL2(Z/2nZ), then there exist exactly 8 matrices
Ã ∈ SL2(Z/2n+1Z) such that Ã ≡ A (mod 2n).
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Proof. Let A =

(
a b
c d

)
. Then at least one entry of A must be odd.

Suppose c is odd. There are exactly 8 ways to lift a, c and d into elements ã, c̃, d̃
in Z/2n+1Z. Using Hensel’s Lemma to the polynomial P (b) := −c̃b + ãd̃ − 1
we show that for each of these 8 choices, there is exactly one way to lift b in
Z/2n+1Z such that the corresponding matrix Ã lies in SL2(Z/2n+1Z). �

Note that this lemma easily implies by induction that the cardinal of
SL2(Z/2nZ) is 3 · 23n−2.

Proof of Lemma 4.7. Suppose that X =

(
x1 y1

x2 y2

)
∈ SL2(Z/2nZ) is such

that XUX−1 = U ′. A simple computation shows that XUX−1 has the form

XUX−1 =

(
∗ ∗

cy2
2 + (a− d)x2y2 − bx2

2 ∗

)
. Thus (y2, x2) is solution of EU,U ′ .

Conversely, let (y2, x2) be solution of EU,U ′ . The equality XU = U ′X is
equivalent to the following equations:

x1a+ cy1 = a′x1 + b′x2(4)

x1b+ y1d = a′y1 + b′y2(5)

x2a+ cy2 = c′x1 + d′x2(6)

x2b+ dy2 = c′y1 + d′y2(7)

The equations (6) and (7) completely determine the values of x1 and y1, so
of X, modulo 2n−l. Direct computations show that this X is in SL2(Z/2n−lZ)
and verifies (4) and (5).

Thus an element X in the stabilisator Stab(U) of U is completely deter-
mined modulo 2n−l by a solution of EU,U . Using Lemma 4.8, we see that there
are exactly 23l ways to lift such a matrix in SL2(Z/2nZ). So, if k is the number
of solutions of EU,U then |Stab(U)| = k23l. The class formula concludes the
proof. �

It remains to compute the number of solutions of the equations EU,U ′ .

Lemma 4.9. Let n ≥ 1 and A,B,C,D four integers so that ABD is odd.
Let En be the following equation:

Ax2 +Bxy + Cy2 ≡ D (mod 2n)

Then En has 2n−1 solutions if C is even and 3 ·2n−1 solutions if C is odd.

Proof. We show the result by induction on n using Hensel’s Lemma. �

Lemma 4.10. Let n ≥ 1 and A,B,C,D be integers such that A and D are
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odd. Let (E) be the following equation with variables (x, y) both in SL2(Z/pZ):

Ax2 + 2Bxy + Cy2 ≡ D (mod 2n)

We note ∆ := AC −B2. Then:

(1) If n = 1, (E) has 2 solutions.

(2) If n = 2, when ∆ ≡ 2, 3 (mod 4) then (E) has 4 solutions. When
∆ ≡ 0, 1 (mod 4) then (E) has 8 solutions if AD ≡ 1 (mod 4) and 0 otherwise.

(3) If n ≥ 3, we have the following cases:

• (a) If ∆ ≡ 0 (mod 8) then (E) has 2n+2 solutions if AD ≡ 1 (mod 8)
and 0 otherwise.

• (b) If ∆ ≡ 2, 4, 6 (mod 8) then (E) has 2n+1 solutions if AD ≡ 1
(mod 8) or AD ≡ 1 + ∆ (mod 8) and 0 otherwise.

• (c) If ∆ ≡ 1, 5 (mod 8) then (E) has 2n+1 solutions if AD ≡ 1 (mod 8)
or AD ≡ 5 (mod 8) and 0 otherwise.

• (a) If ∆ ≡ 3, 7 (mod 8) then (E) has 2n solutions.

Proof. First we put z = Ax+By. The map from Z/2nZ×Z/2nZ to itself
sending (x, y) to (z, y) is bijective as A is odd and we remark that (x, y) is
solution of (E) if and only if (z, y) is solution of the following equation, say
(E′):

z2 + ∆y2 ≡ AD (mod 2n)

Thus (E) and (E′) have the same number of solutions. The number of
solutions of (E′) is easily computed using the fact (see [10], proposition 5.13)
that if a is an odd number and n ≥ 3, then the equation x2 ≡ a (mod 2n) has
4 solutions modulo 2n if a ≡ 1 (mod 8) and 0 otherwise. �

End of the Proof of Theorem 4.5. We fix three invariants l, x and τ and
study the conjugacy classes of C(l, x, τ). Let us take two matrices U,U ′ ∈
C(l, x, τ). We can always conjugate them so that they verify the hypothesis of
Lemma 4.7. These two matrices are conjugate if and only if the set of solutions
of EU,U ′ is not empty and the number of elements in the conjugacy class of U
is computed by using Lemmas 4.7, 4.10 and 4.9. �

4.1.2. Computation of the characters

Proposition 4.11. Let A ∈ SL2(Z/2nZ) and x, l, s be its associated in-
variants. The definition of s has been given in Corollary 4.6 and will make
sense now. The trace Tr(π2n−1(A)) is given by:

1. If l = 0, |Tr(π2n−1(A))|2 = 2s if 0 ≤ s ≤ n − 2, Tr(π2n−1(A)) = 0 if
s = n− 1 and |Tr(π2n−1(A))|2 = 2n−1 if s = n.
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2. If 1 ≤ l ≤ n− 2 and x = 1 then |Tr(π2n−1(A))|2 = 2s when 2l ≤ s ≤ n+
l− 2, Tr(π2n−1(A)) = 0 when s = n+ l− 1 and |Tr(π2n−1(A))|2 = 2n+l−1

if s = n+ l.

3. If l = n− 1 and x = 1 then Tr(π2n−1(A)) = 0.

4. If l = n and x = 1 (A = I2) then |Tr(π2n−1(A))|2 = 22n−2.

5. If 2 ≤ l ≤ n and x = −1 then |Tr(π2n−1(A))|2 = 4.

6. If 3 ≤ l ≤ n and x = 2l−1 + 1 then |Tr(π2n−1(A))|2 = 22l−2.

7. If 3 ≤ l ≤ n and x = 2l−1 − 1 then |Tr(π2n−1(A))|2 = 4.

Lemma 4.12. Let a be an odd integer and Da :=

(
a 0
0 a−1

)
∈ SL2(Z/2nZ).

Then we have π2n−1(Da) = ε(δai,j)i,j where ε is a scalar such that |ε|2 = 1.

Proof. It is proved by a direct computation using the fact that Da =
T−aST−a

−1
ST−aS. �

Proof of Proposition 4.11. First when l = 0 or when x = 1, we can

suppose that A =

(
1 b
c 1 + bc

)
= ST cS−1T−b with b = 2s−lb1, c = 2lc1 where

b1 and c1 are odd.

A simple computation gives:

π2n−1(A) = β±3+xG(−1, 0, 2n)2

22n

(∑
k

Ack
2+2(j−i)k−bj2

)
i,j

So:

|Tr(π2n−1(A))| =

∣∣∣∣∣
(
G(−1, 0, 2n)

2n

)2 G(c, 0, 2n)

2

G(−b, 0, 2n)

2

∣∣∣∣∣
We conclude by using the fact that, if x is odd and s ∈ {0, . . . , n} then

(see [2]):

|G(x2s, 0, 2n)|2 =


2s+n, when s ≤ n− 2;
0, when s = n− 1;
2n, when s = n.

Then when x = −1 we can suppose A = −
(

1 b
c 1 + bc

)
= S−1T cS−1T−b

with b = 2s−lb1, c = 2lc1 where b1 and c1 are odd. A similar computation
gives:

π2n−1(A)i,i = ε

(
G(−1, 0, 2n)

2n

)2

A−bi
2G(c, 4i, 2n)

2

where ε = βc−b−6 is a norm one scalar. The Gauss sum G(c, 4i, 2n) is not null
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if and only if i ∈ {0, 2n−2} when l = n, 2n−3 divides i and 2n−2 does not when
l = n− 1 and 2l−1 divdes i when 2 ≤ l ≤ n− 3.

We conclude by summing π2n−1(A)i,i over these i.

Now to compute the traces when x = 2l−1 ± 1, we write A =

(
a b
c d

)
with a odd and c = 2lc1 with c1 odd. We use the decomposition A =
ST ca

−1
SD−aT

−a−1b and Lemma 4.12 to find that:

(π2n−1(A))i,i = ε′
(
G(−1, 0, 2n)

2n

)2 G(ca−1, 2(a−1 − 1)i, 2n)

2
Aa
−1bi2

where ε′ is a norm one scalar. We conclude by summing π2n−2(A)i,i over every
i and taking the norm. �

4.1.3. The computation of the sum S2n

Proof of Proposition 4.2. Set S(x, l) :=
∑

A∈C(x,l) |T (A)|2 and S(l) :=∑
A∈C(l) |T (A)|2. By using Propositions 4.6 and 4.11 together, we compute

the following sums:

1. S(0) = 23n−2 + 3 · 23n−3(n− 1).

2. S(1, l) = 3 · 23n−l−3(n− l) if 1 ≤ l ≤ n− 2.

3. S(−1, l) = 3 · 23n−3l if 2 ≤ l ≤ n− 1.

4. S(1 + 2l−1, l) = 23n−l−2 if 3 ≤ l ≤ n− 1.

5. S(−1 + 2l−1, l) = 23n−3l+2 if 3 ≤ l ≤ n− 1.

6. S(1) = S(1, 1) = 3 · 23n−4(n− 1).

7. S(2) = S(1, 2) + S(−1, 2) = 3 · 23n−5(n− 2) + 3 · 23n−6.

8. S(l) = 3 · 23n−l−3(n− l) + 3 · 23n−3l + 23n−l−2 + 23n−3l+2 if 3 ≤ l ≤ n− 2.

9. S(n− 1) = 3 · 23 + 25 + 22n−1.

10. S(n) = 23 + 22n−1.

We conclude by computing:

|SL2(Z/2nZ)|S2n = S(0) + S(1) + S(2) +

n−2∑
l=3

S(l) + S(n− 1) + S(n)

= 3 · 23n−2(n− 1) = |SL2(Z/2nZ)| × (n− 1) �

4.2. HIGHER GENUS FACTORS

The following theorem was shown in [8] when r is odd. We give a different
argument and deal with the case r = 2 by using the results on the genus one
representations.
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Theorem 4.13. If r is prime, the modules Ug,±r and W g,±
rn are irreducible.

Proof. First let us handle the Ug,±r modules, when r is prime. Denote byA
the kr-subalgebra of End(Ur) generated by the operators πr(φ) for φ ∈ SL2(Z)
and by B the kr-subalgebra of End(U⊗gr ) generated by the operators πr,g(φ)

for φ ∈ Sp2g(Z), when r is odd, and φ ∈ ˜Sp2g(Z), when r is even.
We denote by A′ and B′ their commutant in End(Ur) and End(U⊗gr ),

respectively. We know from the genus one study that A′ is generated by 1

and the symmetry θ ∈ GL(Ur) sending ei to e−i. There is a natural injection
i : A ⊗ . . . ⊗ A ↪→ B. Now using the fact that the commutant of a tensor
product is the tensor product of the commutant we get:

B′ ⊂ i((A⊗ . . .⊗A)′) = i(A′ ⊗ . . .⊗A′)

Note that when r = 2 then θ = 1 so B′ consists of scalar elements and
π2,g = π+

2,g is irreducible. We can thus suppose that r is odd.
A generic element of i(A′ ⊗ . . .⊗A′) has the form:

C =
∑
i∈I

λiai1 ⊗ . . .⊗ aig , with I ⊂ {1, . . . , p}g and aik = 1 or θ

To conclude, we must show that B′ is generated by 1⊗. . .⊗1 and θ⊗. . .⊗θ,
that is, show that if C ∈ B′ then aiu = aiv for all i ∈ I and u 6= v.

Let us choose u, v and set e := e1⊗. . .⊗e1. We compute the commutator:

[C, πr,g(Zu,v)](e) =
∑
i∈I

λi(A
4εi − 1)(ai1 ⊗ . . .⊗ aig)(e)

where εi = 0 if aiu = aiv and εi = 1 elsewhere. Since A4 6= 1 and the family
{(ai1 ⊗ . . . ⊗ aig)(e), i ∈ I} is free, the fact that C is in the commutant of B
implies that εi = 0 for all i so the two eigenspaces of θ⊗ . . .⊗ θ are irreducible.

Denote by C the krn-subalgebra of End(Urn) generated by the operators
πr(φ) for φ ∈ SL2(Z) and by the krn-subalgebra of End(U⊗grn ) generated by

the operators πr,g(φ) for φ ∈ Sp2g(Z), when r is odd, and φ ∈ ˜Sp2g(Z), when
r is even.

We denote by C′ and D′ their commutant in End(Urn) and End(U⊗grn ),
respectively. We know from the genus one study that A′ is generated by 1 and
θ. The natural injection i : C ⊗ . . .⊗ C ↪→ D implies that:

D′ ⊂ i((C ⊗ . . .⊗ C)′) = i(C′ ⊗ . . .⊗ C′)

Again we choose a generic element C =
∑

i∈I λiai1 ⊗ . . .⊗ aig ∈ i(C′ ⊗
. . .⊗C′) with I ⊂ {1, . . . , pn}g and aik = 1 or θ and suppose that C ∈ B′. Now
remember that Wrn is defined as the orthogonal of Ūrn−2 = Span(gi) in Urn

and since e1 is orthogonal to all gi we deduce that e = e1 ⊗ . . . ⊗ e1 ∈ W⊗grn .
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So the fact that the commutator [C, πrn+2,g(Zu,v)](e) is null if and only if C is
a linear combination of 1⊗ . . .⊗1 and θ⊗ . . .⊗ θ permits us to conclude. �

Finally, the irreducibility of the factors coming from the decomposition
at composite levels p = rn1

1 . . . rnkk follows, using the decomposition (1) from
Theorem 1.1, exactly as in the genus one case:

Corollary 4.14. All the modules of the form Br1⊗ . . .⊗Brk with r1, . . . ,
rk distinct prime and Bri = Ug,±ri or W g,±

rni
, are irreducible and pairwise distinct.

Proof. Let p = 2αrn1
1 . . . rnkk with ri some distinct odd primes. There is a

group isomorphism between ˜Sp2g(Z/2pZ) and ˜Sp2g(Z/2α+1Z)×Sp2g(Z/rn1
1 Z)×

. . .×Sp2g(Z/rnkk Z), if p is even, and between Sp2g(Z/pZ) and Sp2g(Z/rn1
1 Z)×

. . .× Sp2g(Z/rnkk Z), if p is odd.

Denote by Ap,g the subalgebra of End(U⊗gp ) generated by the operators
πp,g(φ). Using the first point of Theorem 1.1, we get an algebra isomorphism:

Ap,g ∼= A2α,g ⊗Arn11 ,g ⊗ . . .⊗Arnkk ,g

We conclude using the fact that the commutant of a tensor product is
the tensor product of the commutant and use Theorem 4.13. �

5. RELATION WITH THE WITTEN-RESHETIKHIN-TURAEV GENUS
ONE REPRESENTATIONS

We now give explicit isomorphisms between the submodules U−p and the
SL2(Z)-modules Vp defined in [5] extending the relations in [12,22] to the case
where p ≡ 3 (mod 4). We include also their proof for self-completeness of the
paper. Corollary 1.2 follows.

Denote by S =

(
0 1
−1 0

)
and T =

(
1 −1
0 1

)
the two generators of

SL2(Z).
Using the basis {ui, i ∈ Ip} of Vp defined in [5], where

Ip :=

{
{0, 1, 2, . . . , r − 2}, if p = 2r is even.
{0, 2, 4, . . . , p− 3}, if p is odd.

The Reshetikhin-Turaev representations in genus one are characterized
by the projective class of the matrices:

ρp(T ) =
(
Ai(i+2)δi,j

)
i,j

ρp(S) = cp
(
(−1)i+j [(i+ 1)(j + 1)]

)
i,j

where we used the ring k’p := Z
[
A, 1

p

]
/(φ2p(A)), so A is always a 2p-th root

of unity, and cp := G(−1,0,2p)
2p when p is even and cp := G(−1,0,p)

p when p is odd.
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The following theorem was shown in [12] when p is even and in [22] when
p ≡ 1 (mod 4). We extend their proofs for p ≡ 3 (mod 4).

Theorem 5.1. For p ≥ 3, the SL2(Z) projective modules U−p and Vp are
projectively equivalent.

When p is odd, the module Up is defined on the ring kp, where A is a
primitive p-th root of unity, whereas Vp is defined on k’p, where A is a primitive
2p-th root of unity. In the preceding theorem, we turned U−p into a k’p-module
using the ring morphism µ : k’p → kp defined by µ(A) = A4.

Proof. When p = 2r is even, we define an isomorphism of k’p-modules
Ψ : Vp → U−p by Ψ(ui) = er−i−1 − er+i+1. We then compute the matrices of
π−p in the basis (Ψ(ui), i = 0, 1, . . . r − 2):〈

Ψ(uj), π
−
p (T )Ψ(ui)

〉
= A(r−i−1)2δi,j

= A(r−1)2 ·A−2ri ·Ai(i+2)

= A(r−1)2ρp(T )i,j〈
Ψ(uj), π

−
p (S)Ψ(ui)

〉
= cp

(
A−2(r−i−1)(r−j−1) −A2(r−i−1)(r−j−1)

)
= cp ·A2r(i+j)

(
A−2(i+1)(j+1) −A2(i+1)(j+1)

)
= −ρp(S)i,j

So π−p and ρp are projectively equivalent when p is even.

Then when p ≥ 3 is odd, we turn U−p into a k’p-module via the ring
morphism µ : k’p → kp defined by µ(A) := A4. We define an isomorphism
Ψ : Vp → U−p of k’p-modules via Ψ(ui) := e p−1−i

2
− e p+i+1

2
. We then compute

the matrices of π−p in the basis (Ψ(ui), i = 0, 2, 4, . . . p− 3):〈
Ψ(uj), π

−
p (T )Ψ(ui)

〉
= µ(A)(

p−1−i
2 )

2

δi,j

= A(p−i−1)2δi,j

= (−A) · ρp(T )i,j〈
Ψ(uj), π

−
p (S)Ψ(ui)

〉
= cp

(
µ(A)−2( p−1−i

2
)( p−1−j

2
) − µ(A)2( p−1−i

2
)( p−1−j

2
)
)

= cp

(
A−2(p−i−1)(p−1−j) −A2(p−i−1)(p−1−j)

)
= −ρp(S)i,j

And the proof is completed. �
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6. THE WITTEN-RESHETIKHIN-TURAEV TQFTS ARE DETERMINED
BY 3-MANIFOLDS INVARIANTS WITHOUT FRAMED LINKS

In this section, we briefly review the universal construction of TQFTs
of [5] and prove Theorem 1.3. For simplicity, we omit the complications due to
the presence of an anomaly for it does not change the proof and refer to [5,16]
for more complete discussion. We also only write the proof when p is even for
the odd case easily follows using Theorem 1.5 of [5].

Let Mlinks denotes the set of classes (M,L) of closed oriented 3 mani-
folds M equipped with an embedded framed link L ⊂ M , modulo preserving-
orientation homeomorphisms. In [4,24], the authors define a map τp :Mlinks →
C multiplicative for connected sums and sending the manifold M with opposite
orientation to the complex conjugate of the image of M .

Let Σ be a closed oriented surface and V(Σ) be the complex vector space
freely generated by (homeomorphism classes of) elements (M,φ,L) where M
is a compact oriented three manifold, φ : ∂M → Σ an orientation-preserving
homeomorphism and L ⊂ M is an embedded framed link (possibly empty).
The space V(Σ) is naturally equipped with a bilinear form 〈·, ·〉p associated to
τp defined as follows. If M1 = (M1, φ1, L1) and M2 = (M2, φ2, L2) are two
cobordisms in V(Σ), we can glue them to obtain M1 ∪ M2 := (M1 ∪φ−1

1 ◦φ2
M2, L1 ∪ L2) ∈Mlinks. We then define 〈M1,M2〉p := τp(M1 ∪M2) and extend
the form to V(Σ) by bi-linearity.

Eventually define the vector space:

Vp(Σ) := V(Σ)
/

ker(〈·, ·〉p)

By definition, any cobordism M ∈ V(Σ) defines a vector Zp(M) ∈ Vp(Σ)
by passing to the quotient. Moreover if M is a cobordism between to sur-
faces Σ1 and Σ2, we can associate a linear map Vp(M) : Vp(Σ1) → Vp(Σ2) by
sending Zp(M′) to Zp(M ◦M′). Such a functorial assignation Σ → Vp(Σ) and
M → Vp(M) is what is called a TQFT. Note that the spaces Up,g of the Weil
representations also fit into this framework (see [15,20]).

Denote by Xp(Σ) ⊂ Vp(Σ) the subspace generated by classes of cobor-
disms with an empty link. Theorem 1.3 states that whenever 4 does not divide
p, then Xp(Σ) = Vp(Σ).

By construction the subspace Xp(Σ) is determined by the restriction of
the three manifolds invariant τp to the subset M ⊂Mlinks of closed oriented
three manifolds without framed links.

We now turn to the proof of Theorem 1.3. Simply denote by Vp the space
Vp(S

1×S1) as in the previous section. Let u1 := Zp(D
2×S1, id, L) ∈ Vp be the

vector associated to the manifold D2 × S1 with trivial boundary identification
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and the link L = {0}×S1 ⊂ D2×S1 with parallel framing. Theorem 1.3 easily
follows from the following:

Lemma 6.1. If 4 does not divide p, then u1 ∈ Xp(S
1 × S1).

Proof of Theorem 1.3 using Lemma 6.1. The following argument is the
same as Robert’s argument in [29] who proved Theorem 1.3 when p is prime.
We briefly reproduce it for self-completeness of the paper. Let M = (M,φ,L) ∈
V(Σ) be a cobordism and Zp(M) ∈ Vp(Σ) its class in the quotient. We have to
show that Zp(M) is a linear combination of vectors associated to cobordisms
without links, so we suppose that L is not empty.

Let Li ⊂ L be a connected component and choose Ni a tubular neighbor-
hood of Li in M homeomorphic to D2 × S1. Writing M \ Ni = (M \ Ni, φ ∪
φNi , L \ Li) ∈ V(Σ

⊔
S1 × S1), we have (M \Ni) ∪∂Ni (Ni, φNi , Li) = M.

Passing to the quotient, we get Zp(M) = Vp(M \ Ni) ◦ Zp(Ni, φNi , Li),
where Vp(M \Ni) is a linear map from Vp to Vp(Σ) and Zp(Ni, φNi , Li) is the
vector u1 ∈ Vp. Lemma 6.1 implies the existence of three manifolds M1, . . . ,Mk

bounding S1 × S1 without framed links embedded and scalars λ1, . . . , λk in C
such that u1 =

∑
i λiZp(Mi). It follows that:

Zp(M) =
∑
i

λiZp((M \Ni) ◦Mi))

Thus Zp(M) is a linear combination of vectors associated to cobordisms
with one component less than L. We conclude by induction on the number of
components of L. �

The proof of Lemma 6.1 relies on the fact that Xp ⊂ Vp is invariant
under the action of SL2(Z) on Vp. Let u0 ∈ Vp denotes the vector associated
to D2×S1 without framed links embedded and let Λ0,Λ1 ⊂ Vp be the SL2(Z)
cyclic subspaces associated to u0 and u1, respectively.

Lemma 6.2. If 4 does not divide p, then Λ0 = Λ1.

Proof. Since Λ0 and Λ1 are SL2(Z) invariant subspaces by definition,
we have to show that for any irreducible subspace B ⊂ Vp ∼= U−p , we have
Λ0 ∩B = Λ1 ∩B. Note that Λi ∩B is either {0} or B.

Using the identification Ψ : Vp ∼= U−p of (the proof of) Theorem 5.1 and
Corollary 1.2, we know explicit basis for such irreducible modules. Denote by
Λ′i := Ψ(Λi) ⊂ U−p and remark that if p = 2r, we have:

ψ(u0) = er−1 − er+1 ψ(u1) = er−2 − er+2 .

Note p = 2rn1
1 . . . rnkk the decomposition of p in primes numbers, and

choose B = U2 ⊗ B1 ⊗ . . . ⊗ Bk ⊂ U−p an irreducible submodule as in Corol-
lary 1.2. We have to study whether the projection of ψ(ui) on B is null or not.
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First consider the case where there exists in index i such that ni ≥ 2 and
Bi 6= W±

r
ni
i

. Then Bi ⊂ U±
r
ni−2
i

which is included in the subspace spanned by

vectors ek such that ri divides k. But clearly ri does not divide r−1, r+1, r−2
nor r+2 thus the projection of both ψ(u0) and ψ(u1) on B is null and we have
Λ′0 ∩B = Λ′1 ∩B = {0}.

Next suppose that for each i such that ni ≥ 2, we have Bi = W εi
r
ni
i

where εi

is either −1 or +1. Given two integers x and n, we will denote by [x]n ∈ Z/nZ
the class of x modulo n. Let x be any integer such that none of the ri divides
x. Set:

vB := e[x]2 ⊗ e
ε1
[x]
r
n1
1

⊗ . . .⊗ eεk[x]
r
nk
k

∈ B

where we used the notation e±i := ei±e−i. By using the fact that < ei, e
ε
i >= 1

and < e−i, e
ε
i >= (−1)

1−ε
2 , we compute:

< vB, ex − e−x > =

〈
e[x]2 ⊗ e

ε1
[x]
r
n1
1

⊗ . . .⊗ eεk[x]
r
nk
k

, e[x]2⊗e[x]
r
n1
1

⊗ . . .⊗ e[x]
r
nk
k

〉
−
〈
e[x]2 ⊗ e

ε1
[x]
r
n1
1

⊗ . . .⊗ eεk[x]
r
nk
k

, e[−x]2 ⊗ e[−x]
r
n1
1

⊗ . . .⊗ e[−x]
r
nk
k

〉
= 1− (−1)

∑
i
1−εi

2 = 2 6= 0

where we used in the last line the fact that there is an odd number of i such
that εi = −1 for B ⊂ U−p . In particular the orthogonal projection of e−x on B
is non-trivial whenever none of the ri divides x. Applying this to x = r − 1
and x = r − 2, we get that Λ′0 ∩B = Λ′1 ∩B = B. �

Proof of Lemma 6.1. Since u0 belongs to Xp by definition and that Xp

is invariant under the action of SL2(Z), we have Λ0 ⊂ Xp. Now Lemma 6.2
implies that Λ1 ⊂ Xp thus u1 ∈ Xp. �
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