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In this paper, the vanishing and non-vanishing of generalized completion homol-
ogy modules LiΛ

I(N,M) has been studied. As a technical tool, several natural
homomorphisms of LiΛ

I(N,M), generalized cohomology modules Hi
I(N,M) and

generalized homology modules UI
i (N,M) have been developed. Under some ad-

ditional conditions, these natural homomorphisms were found isomorphisms. We
will prove finitely generated modules M and N over a commutative Noetherian
ring R Hi(M) = 0, for all i 6= c = grade(I,M).

AMS 2010 Subject Classification: 13D45.

Key words: generalized completion homology modules, generalized local coho-
mology and homology modules, Ext and Tor modules.

1. INTRODUCTION

Let I be an ideal of a commutative Noetherian ring R. The I-adic comple-
tion functor LiΛ

I(M) of an R-module M , was first studied by Matlis (see [17]
and [18] for details). If I is generated by a regular sequence, then the following
isomorphism was proved by him:

LiΛ
I(M) ∼= ExtiR(lim

−→
R/Is,M) for all i ∈ Z.

Later, Greenlees and May determined the criterion for computing
LiΛ

I(M) in terms of certain local homology groups (see [9, Theorem 2.2]).
Schenzel constructed the completion homology modules as dual to local coho-
mology modules H i

I(M) [30, Theorem 1.1]. The details of H i
I(M) are described

in [8].

Afterward, Cuong and Nam introduced in [4] the local homology module
U Ii (M), which is in fact a dualization of local cohomology modules. There it is
proved that for an Artinian R-module M , the module U Ii (M) is isomorphic to
LiΛ

I(M) for all i ∈ Z. The duality between the local homology modules and
local cohomology modules was also proved by them [4, Proposition 4.1].

Recently, in [11], Herzog define the generalization of local cohomology
modules as follows:
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H i
I(N,M) ∼= lim

−→
ExtiR(N/IsN,M) for all i ∈ Z,

where N is an arbitrary R-module. Adequate study is being done on the
vanishing, non-vanishing and Artinianess properties of H i

I(N,M) (see [5,6,12,
16, 20]). Yassemi defined the functor ΓI(N,M) and proved its cohomology
modules are isomorphic to Herzog’s generalized local cohomology functors [34,
Theorem 3.4].

The dualization of generalized local cohomology functors was introduced
by Nam, as generalized local homology modules U Ii (N,M), which are defined
as lim
←−

TorRi (N/IsN,M) (see [25]).

Bijan-Zadeh and Moslehi have proved finiteness and vanishing properties
of U Ii (N,M) (see [3, Theorems 3.1 and 4.4]). The non-vanishing results are
given in [21, Theorem 2.4].

The notion of generalized completion homology modules LiΛ
I(N,M),

defined by Nam as LiΛ
I(N,M) = Hi(lim←−

(N/IsN ⊗R FR· )), where FR· is a

flat resolution of M (see [25]). The generalized completion homology module
LiΛ

I(N,M) become ordinary I-adic completion functor of M , when N = R.
We obtain the vanishing and non-vanishing results of generalized com-

pletion homology modules. The Matlis dual functor can be defined for a local
ring R as D(·) = HomR(·, ER(k)). We proved that:

H i
I(N,M) = 0 for all i 6= c,

⇔ U Ii (N,D(M)) = 0 for all i 6= c,
⇔ LiΛ

I(N,D(M)) = 0 for all i 6= c,

where c = grade(I,M) (see Corollary 3.2).
To aid our analysis, we established various natural homomorphisms of

LiΛ
I(N,M), H i

I(N,M) and U Ii (N,M). These homomorphisms become iso-
morphisms, as stated in the following Theorem:

Theorem 1.1. Let I be an ideal and M a non-zero module over R. With
c = grade(I,M), the following conditions are equivalent:

(i) H i
I(M) = 0 for all i 6= c.

(ii) For any finitely generated R-module N, the natural homomorphism

H i
I(N,H

c
I (M))→ H i+c

I (N,M),

is an isomorphism for all i ∈ Z.

In addition, if R is local, then the above conditions can be equivalently
described as follows:

(iii) For any finitely generated R-module N, the natural homomorphism

H i
I(N,D(M))→ H i+c

I (N,D(Hc
I (M))),
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is an isomorphism for all i ∈ Z.

(iv) For any finitely generated R-module N, the natural homomorphism

U Ii+c(N,D(M))→ U Ii (N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

(v) For any finitely generated R-module N, the natural homomorphism

Li+cΛ
I(N,D(M))→ LiΛ

I(N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

Further, if we assume that M is Artinian, then the following conditions
are equivalent to the above conditions:

(vi) For any finitely generated R-module N, the natural homomorphism

U Ii+c(N,D(D(Hc
I (M))))→ U Ii (N,M),

is an isomorphism for all i ∈ Z.

(vii) For any finitely generated R-module N, the natural homomorphism

Li+cΛ
I(N,D(D(Hc

I (M))))→ LiΛ
I(N,M),

is an isomorphism for all i ∈ Z.

The natural homomorphisms of Theorems 1.1 are derived in Theorem 2.8
and Corollary 2.9.

If N is finitely generated and M is Artinian, we successfully proved
LiΛ

I(N,M) isomorphic to U Ii (N,M) for all i ∈ Z (see Proposition 2.6). This
result generalizes [4, Proposition 4.1].

In Corollary 3.7, as an application of Theorem 1.1, there are several
characterizations of grade and co-grade. For the definition and basic results of
co-grade, see [27].

2. GENERALIZED HOMOLOGIES AND COHOMOLOGIES

In the rest of paper, a commutative Noetherian ring will be denoted by R.
Let f : X → Y be a morphism of R-complexes. If the map H i(X) → H i(Y )
induced by f is an isomorphism for each i ∈ Z, then f is called a quasi-
isomorphism. In this case, it will be written as f : X

∼−→ Y . For well-known
results on homological algebra, see [1] , [10] and [33]. In the rest of paper,
cochain complexes will be used.

Let M and N be arbitrary R-modules. For an ideal I of R, H i
I(M) for

all i ∈ Z, denote the local cohomology modules of M with respect to I (see [8]
for its definition). In [11], Herzog introduced the generalized local cohomology
modules H i

I(N,M) as the direct limit of direct system {ExtiR(N/IsN,M) : i ∈
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Z}. Later on, Nam defined the generalized local homology modules U Ii (N,M)
as the inverse limit of inverse system {TorRi (N/IsN,M) : i ∈ Z} (see [25]). For
a flat resolution FR· of M , Nam introduced the notion of generalized completion
homology modules as:

LiΛ
I(N,M) := Hi(lim←−

(N/IsN ⊗R FR· )) for all i ∈ Z,

(see [25]). Note that, LiΛ
I(N,M) are independent of the choice of FR· . As the

tensor product is not left exact while the inverse limit is not right exact, this
implies that:

L0ΛI(N,M) 6= lim
←−

(N/IsN ⊗RM).

Clearly, if N = R, then LiΛ
I(R,M) is the usual left derived functors of

the completion, LiΛ
I(M). For more details about LiΛ

I(M), one should see [9].
If R is a local ring with the unique maximal ideal m, then E = ER(k) is

the injective hull of the residue field k = R/m, while D(·) = HomR(·, E) stands
for the Matlis dual functor.

Definition 2.1. Let I be an ideal of R and M an R-module such that
IM 6= M . Then, grade of M is defined as:

grade(I,M) = inf{i ∈ Z : H i
I(M) 6= 0}.

In the following, the definition of co-grade will be needed, which is defined
in [27, Definition 3.10].

Definition 2.2. For an R-module N, an element x ∈ R is co-regular, if
AnnN (xR) 6= 0. A sequence x = x1, · · · , xr ∈ R must satisfy the following
conditions to be co-regular:

(i) AnnN (xR) 6= 0.

(ii) Each xi is an AnnN ((x1, · · ·, xi−1)R)-coregular element for all i = 1, · · ·, r.

Suppose that N is a finitely generated R-module and M is an Artinian
R-module. Then, the length of any maximal M -coregular sequence contained
in AnnR(N) is called CogradeM (N), see [27, Definition 3.10].

Definition 2.3. Let I be an ideal of any ring R(not necessarily local). If
M and N are R-modules with c = grade(I,M), then M is cohomologically
complete intersection with respect to the pair (N, I), if H i

I(N,M) = 0 for all
i 6= c. If N = R, M will be a cohomologically complete intersection with
respect to I.

Since U Ii (N,M) = lim
←−

TorRi (N/IsN,M), this naturally implies the fol-

lowing homomorphisms:

LiΛ
I(N,M)→ U Ii (N,M) for all i ∈ Z.
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It can be proved that these natural homomorphisms are surjective. The
following Lemma holds for specific module, N = R [9, Proposition 1.1].

Lemma 2.4. Let I be an ideal of any ring R. For arbitrary R-modules M
and N, there exits an exact sequence:

0→
1

lim
←−

TorRi+1(N/IsN,M)→ LiΛ
I(N,M)→ U Ii (N,M)→ 0,

for every i ∈ Z.

Proof. The proof of this Lemma is along similar lines to that of [9, Propo-
sition 1.1]. �

Lemma 2.5 (Hom-Tensor Duality). Let M and N be any modules over a
local ring R. For every i ∈ Z, the following isomorphisms hold:

(i) ExtiR(N,D(M)) ∼= D(TorRi (N,M)).

(ii) For a finitely generated R-module N,

D(ExtiR(N,M)) ∼= TorRi (N,D(M)).

Proof. For proof see [13, Example 3.6]. �

Under some assumptions, the natural homomorphisms LiΛ
I(N,M) →

U Ii (N,M) can be proved to be isomorphisms, as shown in Proposition 2.6.
A result of a similar kind is proved in [25, Theorems 3.2 and 3.6] and [4,
Proposition 4.1].

Proposition 2.6. Let I be an ideal over an arbitrary ring R. For a
finitely generated R-module N, we have:

(i) If M is an Artinian R-module, then the natural homomorphism

LiΛ
I(N,M)→ U Ii (N,M),

is an isomorphism for each i ∈ Z. For a local ring R, we have the
following isomorphism

D(H i
I(N,D(M))) ∼= U Ii (N,M) for each i ∈ Z.

(ii) If M is a module over a local ring R, then the natural homomorphism

LiΛ
I(N,D(M))→ U Ii (N,D(M)),

is an isomorphism for each i ∈ Z. Also, D(H i
I(N,M)) ∼= U Ii (N,D(M))

for each i ∈ Z.

Proof. To prove the statement in (i), we will follow the methodology of
Cuong and Nam [4, Proposition 4.1]. Since, N is a finitely generated R-module
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and M an Artinian R-module, then TorRi+1(N/IsN,M) is also an Artinian R-
module for all i ∈ Z. This implies, lim

←−
1 TorRi+1(N/IsN,M) = 0 for all i ∈ Z.

Hence, in view of Lemma 2.4, the following natural homomorphism:

LiΛ
I(N,M)→ U Ii (N,M),

is an isomorphism. Note that, Hom functor transforms the direct systems into
inverse systems in first variable. Hence, according to Lemma 2.5, we have:

D(H i
I(N,D(M))) ∼= lim

←−
HomR(ExtiR(N/IsN,D(M)), E)

∼= lim
←−

TorRi (N/IsN,M),

for all i ∈ Z. It is important to note here that, D(D(X)) ∼= X for an Artinian
R-module X.

To prove the statement in (ii), suppose that M is a module over a local
ring R. According to the definition of the direct limit, there exists a short
exact sequence:

0→
⊕
s∈N

ExtiR(N/IsN,M)→
⊕
s∈N

ExtiR(N/IsN,M)→ H i
I(N,M)→ 0,

for each i ∈ Z. Since, N is finitely generated, application of the Matlis dual
functor to the last sequence gives the following exact sequence:

0→ D(H i
I(N,M))→

∏
s∈N

TorRi (N/IsN,D(M))

Ψi→
∏
s∈N

TorRi (N/IsN,D(M))→ 0.

Note thatD(ExtiR(N/IsN,M)) ∼= TorRi (N/IsN,D(M)) (see Lemma 2.5).
It transforms the direct system {ExtiR(N/IsN,M) : i ∈ N} into the following
inverse system:

{TorRi (N/IsN,D(M)) : i ∈ N}.

Now, by [33, Definition 3.5.1], it follows that:

lim
←−

TorRi (N/IsN,D(M)) ∼= D(H i
I(N,M)) and lim

←−
1 TorRi (N/IsN,D(M))

∼= coker Ψi = 0,

for all i ∈ Z. On the other hand, by Lemma 2.4, we have the following exact
sequence:

0→ lim
←−

1 TorRi+1(N/IsN,D(M))→ LiΛ
I(N,D(M))→ U Ii (N,D(M))→ 0.
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Hence, the homomorphism LiΛ
I(N,D(M))→ U Ii (N,D(M)) becomes an

isomorphism for each i ∈ Z. This completes the proof. �

The next Corollary shows that the sequence of the functors {LiΛI(N,M) :
i ∈ Z} is positive strongly connected on the category of Artinian R-modules
(see [28, p. 212]).

Corollary 2.7. Suppose that I is an ideal of a local ring R and the
following sequence of R-modules is exact:

0→M1 →M2 →M3 → 0.

Then for a finitely generated R-module N, we have the following results:

(i) There exists following long exact sequence of generalized completion ho-
mology modules:

· · · → LiΛ
I(N,D(M3))→ LiΛ

I(N,D(M2))→ LiΛ
I(N,D(M1))→

Li−1ΛI(N,D(M3))→ · · · → L0ΛI(N,D(M2))→ L0ΛI(N,D(M1))→ 0.

(ii) Suppose that Mi’s is Artinian for each i = 1, 2, 3. There exists following
long exact sequence of generalized completion homology modules:

· · · → LiΛ
I(N,M1)→ LiΛ

I(N,M2)→ LiΛ
I(N,M3)→

Li−1ΛI(N,M1)→ · · · → L0ΛI(N,M2)→ L0ΛI(N,M3)→ 0.

Proof. These results are immediate consequence of the fact that LiΛ
I(N,

M) is the ith left derived functor of the complex lim
←−

(N/IsN ⊗R FR· ), where

FR· is a flat resolution of M . �

2.1. NATURAL HOMOMORPHISMS

In this section, some natural homomorphisms of the aforementioned mod-
ules, H i

I(N,M), U Ii (N,M) and LiΛ
I(N,M) will be derived. For a Gorenstein

ring, the truncation complex was first constructed by Hellus and Schenzel
(see [14, Definition 2.1]). Later, a more generalized form of truncation complex
was presented in [24, Definition 2.6]. Let I be an ideal of a ring R. For an
R-module M , the minimal injective resolution is denoted by E·R(M). Note
that:

E·R(M)i ∼=
⊕

p∈SuppM

ER(R/p)µi(p,M),

where µi(p,M) = dimk(p)(ExtiRp
(k(p),Mp)). Since ΓI(ER(R/p)) = 0 for all

p /∈ V (I) and ΓI(ER(R/p)) = ER(R/p) for all p ∈ V (I), it implies that for all
i < c = grade(I,M), we have:

ΓI(E
·
R(M))i = 0.
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This gives a natural embedding of the complexes Hc
I (M)[−c]

→ ΓI(E
·
R(M)). The cokernel C ·M (I) of this embedding is called the truncation

complex. Therefore, there exists an exact sequence of complexes:

(2.1) 0→ Hc
I (M)[−c]→ ΓI(E

·
R(M))→ C ·M (I)→ 0.

Hence:

H i(C ·M (I)) ∼=
{

0, if i ≤ c;
H i
I(M), if i > c.

Let x = x1, . . . , xr ∈ I be a system of elements such that Rad I =
Rad(x)R. Consider the Čech complex Čx with respect to x. That is:

Čx =
r
⊗
i
Čxi ,

where Čxi is the complex 0→ R→ Rxi → 0.

As a first application of this, we will prove the following result:

Theorem 2.8. With the previous notion, the following conditions are sat-
isfied for any finitely generated R-module N :

(i) For all i ∈ Z, there exist the natural homomorphisms

H i
I(N,H

c
I (M))→ H i+c

I (N,M).

These are isomorphisms for all i ∈ Z if and only if H i
I(N,C

·
M (I)) = 0

for all i ∈ Z.

(ii) In addition, if R is local, then for all i ∈ Z, there exist the natural
homomorphisms

H i
I(N,D(M))→ H i+c

I (N,D(Hc
I (M))).

These are isomorphisms for all i ∈ Z if and only if H i
I(N,D(C ·M (I))) = 0

for all i ∈ Z.

Proof. Let F·(N/I
sN) be a free resolution of N/IsN , where s ∈ N. Apply

the functor HomR(F·(N/I
sN), .) to the exact sequence (2.1). Then, it induces

the following short exact sequences of R-complexes:

0→ HomR(F·(N/I
sN), Hc

I (M))[−c]→ HomR(F·(N/I
sN),ΓI(E

·
R(M)))→

HomR(F·(N/I
sN), C ·M (I))→ 0.

Let us investigate the cohomology of the complex in the middle of above
exact sequence. Denote the complex HomR(F·(N/I

sN),ΓI(E
·
R(M))) by X.

Since the functor ΓI sends injective modules to injective modules, it follows
that H i(X) ∼= H i(HomR(N/IsN,ΓI(E

·
R(M)))) for all i ∈ Z and s ∈ N.
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Since SuppR(N/IsN) ⊆ V (I), then by [32, Lemma 2.2], there is an iso-
morphism of complexes:

HomR(N/IsN,ΓI(E
·
R(M))) ∼= HomR(N/IsN,E·R(M)).

It implies that:

H i(X) ∼= H i(HomR(F·(N/I
sN), E·R(M))) ∼= ExtiR(N/IsN,M),

for all i ∈ Z and s ∈ N. Then the aforementioned sequence induces the
following exact sequence of cohomology:

(2.2) Exti−cR (N/IsN,Hc
I (M))→ ExtiR(N/IsN,M)→ ExtiR(N/IsN,C ·M (I)),

for all i ∈ Z and s ∈ N. Since the direct limit is an exact functor. On passing
to the direct limit, we obtain the natural homomorphisms in (i). Clearly, these
homomorphisms become isomorphisms if and only if H i

I(N,C
·
M (I)) = 0 for all

i ∈ Z.

In order to construct the natural homomorphisms in (ii), the Matlis dual
functor will be applied to the short exact sequence (2.1). Then we obtain the
exact sequence:

0→ D(C ·M (I))→ D(ΓI(E
·
R(M)))→ D(Hc

I (M))[c]→ 0.

The above sequence provides us with the following exact sequence:

0→ HomR(F·(N/I
sN), D(C ·M (I)))→ HomR(F·(N/I

sN), D(ΓI(E
·
R(M))))→

HomR(F·(N/I
sN), D(Hc

I (M)))[c]→ 0.

We are interested in the cohomology of the complex HomR(F·(N/I
sN),

D(ΓI(E
·
R(M)))), denoted by X. Note that there is an isomorphism of the

following R-complexes:

X ∼= D(F·(N/I
sN)⊗R ΓI(E

·
R(M))),

(see [10, Proposition 5.15]). Since the Matlis dual functor D(·) is exact and
cohomology commutes with exact functor, the last isomorphism induces that:

H i(X) ∼= D(H−i(F·(N/I
sN)⊗R ΓI(E

·
R(M)))),

for all i ∈ Z. In order to compute the cohomology of X, we will calculate the
cohomology of Y := F·(N/I

sN)⊗R ΓI(E
·
R(M)). Since E·R(M) is a complex of

injective R-modules. Then according to [30, Theorem 3.2], we have:

Y
∼−→ F·(N/I

sN)⊗R Čy ⊗R E·R(M).

Here Čy denotes the Čech complex with respect to y = y1, . . . , yr ∈ I
such that Rad(IR) = Rad(yR).
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Since tensoring with the right bounded complexes of flat R-modules pre-
serves quasi-isomorphisms. Moreover, the support of N/IsN is contained in
V (I). So, we get the following quasi-isomorphisms:

F·(N/I
sN)⊗R Čy ⊗RM

∼−→ F·(N/I
sN)⊗R Čy ⊗R E·R(M) and

F·(N/I
sN)⊗R Čy

∼−→ N/IsN ⊗R Čy ∼= N/IsN.

Let LR· denote a free resolution of M . The following morphisms of com-
plexes are homological isomorphisms:

F·(N/I
sN)⊗R Čy ⊗R LR· → F·(N/I

sN)⊗R Čy ⊗RM, and

F·(N/I
sN)⊗R Čy ⊗R LR· → N/IsN ⊗R Čy ⊗R LR· ∼= N/IsN ⊗R LR·

Hence, we conclude, H i(Y ) ∼= H i(N/IsN ⊗R LR· ) ∼= TorR−i(N/I
sN,M)

for all i ∈ Z and s ∈ N. By Hom-Tensor Duality (see Lemma 2.5), it implies
that H i(X) ∼= ExtiR(N/IsN,D(M)) for all i ∈ Z and s ∈ N. Then the long
exact cohomology sequence provides the following exact sequence:

(2.3) ExtiR(N/IsN,D(C ·M (I)))→ ExtiR(N/IsN,D(M))

→ Exti+cR (N/IsN,D(Hc
I (M))),

for all i ∈ Z and s ∈ N. By taking the direct limits of the above sequence, we
get the natural homomorphisms of (ii) as follows:

H i
I(N,D(M))→ H i+c

I (N,D(Hc
I (M))),

for all i ∈ Z. Recall the following well-known isomorphism from [1]:

lim
−→

ExtiR(N/IsN,D(C ·M (I))) ∼= H i
I(N,D(C ·M (I))),

for all i ∈ Z. Hence, the morphisms in (ii) become isomorphisms if and only if
H i
I(N,D(C ·M (I))) = 0 for all i ∈ Z. �

Using Proposition 2.6 and Theorem 2.8, we can obtain the result stated
in Corollary 2.9.

Corollary 2.9. With the above notion, the following statements are
true:

(i) For all i ∈ Z, there are the natural homomorphisms

U Ii+c(N,D(M))→ U Ii (N,D(Hc
I (M))).

These are isomorphisms for all i ∈ Z if and only if U Ii (N,D(C ·M (I))) = 0
for all i ∈ Z.
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(ii) For all i ∈ Z, there are the natural homomorphisms

Li+cΛ
I(N,D(M))→ LiΛ

I(N,D(Hc
I (M))).

These are isomorphisms for all i ∈ Z if and only if LiΛ
I(N,D(C ·M (I))) =

0 for all i ∈ Z.
(iii) In addition, if M is Artinian, then for all i ∈ Z, there are the natural

homomorphisms

U Ii+c(N,D(D(Hc
I (M))))→ U Ii (N,M).

These are isomorphisms for all i ∈ Z if and only if U Ii (N,D(D(C ·M (I))))
= 0 for all i ∈ Z.

(iv) For all i ∈ Z, there are the natural homomorphisms

Li+cΛ
I(N,D(D(Hc

I (M))))→ LiΛ
I(N,M).

These are isomorphisms for all i ∈ Z if and only if LiΛ
I(N,D(D(C ·M (I))))

= 0 for all i ∈ Z.

Proposition 2.10. With the same assumptions as in Theorem 2.8, we
have the following results:

(i) For all i ∈ Z, there are the natural homomorphisms

U Ii+c(N,H
c
I (M))→ U Ii (N,M).

(ii) Let M be an Artinian R-module, then for all i ∈ Z, there are the natural
homomorphisms

Li+cΛ
I(N,Hc

I (M))→ LiΛ
I(N,M).

Proof. Let FR· (N/IsN) be a free resolution of N/IsN , where s ∈ N.
Then tensoring the sequence (2.1) with F·(N/I

sN), we obtain the following
short exact sequence of complexes:

0→ (F·(N/I
sN)⊗R Hc

I (M))[−c]→ F·(N/I
sN)⊗R ΓI(E

·
R(M))

→ F·(N/I
sN)⊗R C ·M (I)→ 0.

The homology of Y = F·(N/I
sN) ⊗R ΓI(E

·
R(M)), already calculated in

Theorem 2.8(ii), are:

H i(Y ) ∼= TorR−i(N/I
sN,M), for all i ∈ Z.

With these isomorphisms, the long exact cohomology sequence provides the
following exact sequences:
(2.4)

TorRc−i(N/I
sN,Hc

I (M))→ TorR−i(N/I
sN,M)→ TorR−i(N/I

sN,C ·M (I)),
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for all i ∈ Z. As −i varies over Z, we can replace it with i. Passing to the
inverse limits, we obtain the natural homomorphisms in (i).

Now, suppose that M is Artinian. Using Lemma 2.4, we get the following
natural homomorphisms:

Li+cΛ
I(N,Hc

I (M))→ U Ii+c(N,H
c
I (M)),

for all i ∈ Z. Also, from Proposition 2.6(ii), U Ii (N,M) ∼= LiΛ
I(N,M) for all

i ∈ Z. Now, using (i), we obtain the homomorphisms in (ii). �

In the next Corollary, we will relate the surjectivity and injectivity of
natural homomorphisms obtained in Theorem 2.8 and Corollary 2.9.

Corollary 2.11. Let I be an ideal and N a finitely generated module
over a local ring R. Suppose that M is an R-module such that c = grade(I,M).
Then for each i ∈ Z, we obtain:

(1) The following conditions are equivalent:

(i) The natural homomorphism

H i
I(N,H

c
I (M))→ H i+c

I (N,M),

is injective (resp. surjective).

(ii) The natural homomorphism

U Ii+c(N,D(M))→ U Ii (N,D(Hc
I (M))),

is surjective (resp. injective).

(iii) The natural homomorphism

Li+cΛ
I(N,D(M))→ LiΛ

I(N,D(Hc
I (M))),

is surjective (resp. injective).

(2) In addition, if M is Artinian, then the following conditions are equivalent:

(i) The natural homomorphism

H i
I(N,D(M))→ H i+c

I (N,D(Hc
I (M))),

is injective (resp. surjective).

(ii) The natural homomorphism

U Ii+c(N,D(D(Hc
I (M))))→ U Ii (N,M),

is surjective (resp. injective).

(iii) The natural homomorphism

Li+cΛ
I(N,D(D(Hc

I (M))))→ LiΛ
I(N,M),

is surjective (resp. injective).

Proof. Using Proposition 2.6, Theorem 2.8 and Corollary 2.9, the Matlis
duality proves the results in (1) and (2). �
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3. VANISHING AND NON-VANISHING PROPERTIES

In this last section, the vanishing and non-vanishing results of LiΛ
I(N,M)

will be discussed. Also, with some additional conditions on M , the natural ho-
momorphisms, described in the previous section are even isomorphisms. Fur-
ther, the cohomologically complete intersection of M with respect to the pair
(N, I) is studied from various homological points of view. As a last result, the
characterization of grade and co-grade is presented.

Corollary 3.1. Let I be an ideal and M a module over a local ring R.
Then for each i ∈ Z and finitely generated R-module N, we have:

(i) H i
I(N,M) = 0, if and only if U Ii (N,D(M)) = 0, if and only if LiΛ

I(N,
D(M)) = 0.

(ii) If M is Artinian, then H i
I(N,D(M)) = 0, if and only if U Ii (N,M) = 0,

if and only if LiΛ
I(N,M) = 0.

Proof. It is an immediate consequence of Proposition 2.6. �

Corollary 3.2. With the same notion as in Corollary 3.1, the following
conditions are equivalent:

(i) M is cohomologically complete intersection with respect to (N, I).

(ii) U Ii (N,D(M)) = 0 for all i 6= c.

(iii) LiΛ
I(N,D(M)) = 0 for all i 6= c.

Proof. The proof can be deduced from Corollary 3.1(i). �

In the rest of paper, the theory of spectral sequences will be needed. For
details, see [1, 28] and [33].

Proposition 3.3. Let I be an ideal and N a finitely generated module
over an arbitrary ring R. Suppose that M is an R-module with grade(I,M) =
c. Then the following conditions are satisfied:

(i) The natural homomorphism

H0
I (N,Hc

I (M))→ Hc
I (N,M),

is an isomorphism and H i
I(N,M) = H i−c

I (N,Hc
I (M)) = 0 for all i < c.

(ii) In addition, if R is local, then the natural homomorphism

U Ic (N,D(M))→ U I0 (N,D(Hc
I (M)),

is an isomorphism and U Ii (N,D(M)) = U Ii−c(N,D(Hc
I (M))) = 0 for all

i < c.

(iii) The natural homomorphism

LcΛ
I(N,D(M))→ L0ΛI(N,D(Hc

I (M))),
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is an isomorphism and LiΛ
I(N,D(M)) = Li−cΛ

I(N,D(Hc
I (M))) = 0

for all i < c.

Proof. Let ER· be an injective resolution of the truncation complex C ·M (I).
Then by definition of the truncation complex, it follows that H i(ER· ) = 0 for
all i ≤ c. Also, note that:

ExtiR(·, C ·M (I)) ∼= H i(HomR(·, ER· )),

for all i ∈ Z (see [28, p. 331]). Now, for a fixed natural number s ∈ N, consider
the following spectral sequence

Ep,q2 := ExtpR(N/IsN,Hq
I (ER· )) =⇒ Ep+q∞ = Hp+q(HomR(N/IsN,ER· )),

(see [28, Theorem 11.38]). Let p+ q ≤ c. Then p ≥ 0 implies q ≤ c. Therefore,
it turns out that:

Hp+q(HomR(N/IsN,ER· )) = 0 for all p+ q ≤ c.

Hence, as a consequence of the spectral sequence, H i(HomR(N/IsN,ER· ))
= 0 for all i ≤ c and s ∈ N. This gives

H i
I(N,C

·
M (I)) = lim

−→
ExtiR(N/IsN,C ·M (I)) = 0,

for all i ≤ c. By [2, Proposition 5.5], it follows that H i
I(N,M) = 0 for all i < c

and Hc
I (N,M) 6= 0. After taking the direct limit of exact sequence (2.2), we

found that the following map

H0
I (N,Hc

I (M))→ Hc
I (N,M),

is an isomorphism and H i−c
I (N,Hc

I (M)) = 0 for all i < c. This proves the
claim in (i). By Corollaries 2.11(1) and 3.1(1), the statements in (ii) and (iii)
are also true. epr

Corollary 3.4. Let I be an ideal of an arbitrary ring R. Let M be a
cohomologically complete intersection R-module with respect to I. Then for
any finitely generated R-module N, the following are true:

(i) The natural homomorphism

H i
I(N,H

c
I (M))→ H i+c

I (N,M),

is an isomorphism for all i ∈ Z.

(ii) The natural homomorphism

U Ii+c(N,H
c
I (M))→ U Ii (N,M),

is injective for all i ∈ Z.
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(iii) In addition, if R is local, then the natural homomorphism

H i
I(N,D(M))→ H i+c

I (N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

(iv) The natural homomorphism

U Ii+c(N,D(M))→ U Ii (N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

(v) The natural homomorphism

Li+cΛ
I(N,D(M))→ LiΛ

I(N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

(vi) Assume further that M is Artinian, then the natural homomorphism

U Ii+c(N,D(D(Hc
I (M))))→ U Ii (N,M),

is an isomorphism for all i ∈ Z.

(vii) The natural homomorphism

Li+cΛ
I(N,D(D(Hc

I (M))))→ LiΛ
I(N,M),

is an isomorphism for all i ∈ Z.

Proof. Since H i
I(M) = 0 for al i 6= c. Then by definition of the truncation

complex, H i(C ·R(I)) = 0 for all i ∈ Z. Hence, the complex C ·R(I) is exact.
Let F·(N/I

sN) be a free resolution of N/IsN , where s ∈ N. The complex
HomR(F·(N/I

sN), C ·R(I)) is also exact for each s ∈ N. This implies that

H i
I(N,C

·
M (I)) = lim

−→
ExtiR(N/IsN,C ·M (I)) = 0,

for all i ∈ Z. Hence by Theorem 2.8(i), this completes the proof of (i). The
statement in (iv) and (v) is straightforward from Corollary 2.11(1). With the
similar arguments, Theorem 2.8(ii) and Corollary 2.11(2), we can prove the
isomorphisms in (iii), (vi) and (vii).

From the above arguments, the complex F·(N/I
sN) ⊗R C ·R(I) is exact

for each s ∈ N. This proves the injectivity of the morphisms in (ii), by virtue
of exact sequence (2.4). �

Now, we are able to prove the following Theorems.

Theorem 3.5. Let I be an ideal and M a non-zero module over R. With
c = grade(I,M), the following conditions are equivalent:

(i) M is cohomologically complete intersection with respect to I.
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(ii) For any finitely generated R-module N, the natural homomorphism

H i
I(N,H

c
I (M))→ H i+c

I (N,M),

is an isomorphism for all i ∈ Z.

In addition, if R is local, then the above conditions can be equivalently
described as follows:

(iii) For any finitely generated R-module N, the natural homomorphism

U Ii+c(N,D(M))→ U Ii (N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

(iv) For any finitely generated R-module N, the natural homomorphism

Li+cΛ
I(N,D(M))→ LiΛ

I(N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

Proof. By virtue of Corollaries 2.11(1) and 3.4(i), we only need to prove
that (ii) implies (i). Suppose (ii) is true. Then forN = R, we getH i

I(C
·
M (I)) =

0 for all i ∈ Z (see Theorem 2.8(i)). By definition of the truncation complex
and [23, Lemma 2.5], we obtain the following isomorphisms:

H i
I(C

·
M (I)) ∼= H i(C ·M (I)) ∼= H i

I(M) for i > c.

Hence, M is cohomologically complete intersection with respect to I. �

Theorem 3.6. With the same assumptions as in Theorem 3.5, suppose
that R is local. Then the following conditions are equivalent:

(i) M is cohomologically complete intersection with respect to I.

(ii) For any finitely generated R-module N, the natural homomorphism

H i
I(N,D(M))→ H i+c

I (N,D(Hc
I (M))),

is an isomorphism for all i ∈ Z.

Further, assume that M is Artinian, then the following conditions are
equivalent to the above conditions:

(iii) For any finitely generated R-module N, the natural homomorphism

U Ii+c(N,D(D(Hc
I (M))))→ U Ii (N,M),

is an isomorphism for all i ∈ Z.

(iv) For any finitely generated R-module N, the natural homomorphism

Li+cΛ
I(N,D(D(Hc

I (M))))→ LiΛ
I(N,M),

is an isomorphism for all i ∈ Z.
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Proof. It suffices to prove (ii) and implies (i) (see Corollaries 2.11(2) and
3.4(iii)). To do this, assume (ii) is true. Then forN=R, we getH i

I(D(C ·M (I)))
= 0 for all i ∈ Z (see Theorem 2.8(ii)). We claim thatH i

I(C
·
M (I)) = 0 for all i ∈

Z. Note that by [15, Theorem 2.2], it is enough to prove ExtiR(R/I,C ·M (I)) = 0
for all i ∈ Z.

Let Čx be the Čech complex with respect to x = x1, . . . , xs ∈ I such that
Rad I = Rad(x)R. Then it implies that Čx⊗RD(C ·M (I)) is an exact complex.
This is due to the fact that H i

I(D(C ·M (I))) = 0 for all i ∈ Z.

Suppose that L·R denotes a free resolution of D(C ·M (I)). Let X := R/I⊗R
L·R, then there is an isomorphism:

TorR−i(R/I,D(C ·M (I))) ∼= H i(X),

for all i ∈ Z. Since the support of each module of X is contained in V (I). It
follows that there is an isomorphism of complexes:

Čx ⊗R X ∼= X.

Let FR· be a free resolution of the finitely generated R-module R/I. Then
by the above arguments, the following complex is exact:

Y := FR· ⊗R Čx ⊗R D(C ·M (I)).

As FR· is a right bounded complex of finitely generated free R-modules
and Čx is a bounded complex of flat R-modules. So, Y is quasi-isomorphic to
Čx ⊗R FR· ⊗R L·R. Since Y is homologically trivial, so is Čx ⊗R FR· ⊗R L·R.

Note that the morphism of complexes Čx ⊗R FR· ⊗R L·R → Čx ⊗R X,
induces an isomorphism in cohomologies. It follows that the complex Čx⊗RX
is homologically trivial. Therefore, TorRi (R/I,D(C ·M (I))) = 0 for all i ∈ Z.
Now, by Lemma 2.5, we get the following vanishing result:

ExtiR(R/I,C ·M (I)) = 0 for all i ∈ Z.

This proves our claim. Hence, following the same lines as in proof of
Theorem 3.5, it can be proved that M is cohomologically complete intersection
with respect to I. �

In the following, we will prove some results on grade and co-grade, as an
application of our results.

Corollary 3.7. Let I be an ideal of an arbitrary ring R. Let M and N
be finitely generated modules over R with c = grade(I,M). Then the following
identities are true:

(i) c = inf{i ∈ N : H i
I(N,M) 6= 0} = inf{i ∈ N : H i−c

I (N,Hc
I (M)) 6= 0}.
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(ii) Assume further that R is local, then:

c=inf{i ∈ N : U Ii (N,D(M)) 6= 0} = inf{i ∈ N : U Ii−c(N,D(Hc
I (M)) 6= 0}

= inf{i ∈ N : LiΛ
I(N,D(M)) 6= 0} = inf{i ∈ N : Li−cΛ

I(N,D(Hc
I (M)))

6= 0}.
(iii) In addition, if M is Artinian and t := CogradeM (N/IN), then:

t = inf{i ∈ N : LiΛ
I(N,M) 6= 0} = inf{i ∈ N : H i

I(N,D(M)) 6= 0}.

Proof. Since it is already known that:

c = inf{i ∈ N : H i
I(N,M) 6= 0} and t = inf{i ∈ N : U Ii (N,M) 6= 0},

(see [29, Theorem 2.3], [2, Proposition 5.5] and [3, Theorem 4.2]). In view of
Corollary 3.1(ii) and Proposition 3.3, the results can be easily deduced. �
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