A NEW CHARACTERIZATION OF $A_p(2)$ AND $A_{p-1}(2)$ WHERE $2^p - 1$ IS A PRIME

AZAM BABAI and MARYAM KHATAMI

Communicated by Vasile Brînzănescu

Let G be a finite group, and $\operatorname{Irr}(G)$ be the set of complex irreducible characters of G. An element $g \in G$ is called a vanishing element if there exists an irreducible character $\chi \in \operatorname{Irr}(G)$ such that $\chi(g) = 0$. The set of orders of vanishing elements of G is denoted by $\operatorname{Vo}(G)$. A recent conjecture states that if G is a finite group and M is a finite nonabelian simple group such that $\operatorname{Vo}(G) = \operatorname{Vo}(M)$ and |G| = |M|, then $G \cong M$. In this paper, we give a positive answer to this conjecture for a family of classical simple groups, namely $A_p(2)$ and $A_{p-1}(2)$, where $p \neq 2, 3$ and $2^p - 1$ is a prime.

AMS 2010 Subject Classification: 20C15, 20D05.

Key words: vanishing element, prime graph, simple group.

1. INTRODUCTION

Let n be a positive integer. By $\pi(n)$ we mean the set of prime divisors of n. Let G be a finite group and $\pi(G)$ be the set of prime divisors of |G|. Denote by $\omega(G)$, the set of element orders of G. For a finite set of positive integers X, the prime graph $\Pi(X)$ is a graph whose vertices are the prime divisors of elements of X, and two distinct vertices p and q are adjacent if X has an element divisible by pq. We denote the graph $\Pi(\omega(G))$ by GK(G) and we call it the prime graph or the Gruenberg-Kegel graph of G. The number of connected components of GK(G) is denoted by t(G), and the connected components of GK(G) is denoted by $\pi_1(G), \dots, \pi_{t(G)}(G)$. If there is no ambiguity, we use the notation π_i instead of $\pi_i(G)$. If $2 \in \pi(G)$, we assume that $2 \in \pi_1(G)$. It is easy to see that |G| can be written as the product of coprime positive integers m_i such that $\pi(m_i) = \pi_i(G)$, for $i = 1, \dots, t(G)$. These integers are called the order components of G.

We denote by $\operatorname{Irr}(G)$ the set of complex irreducible characters of G. We call an element $g \in G$, a vanishing element, if there exists $\chi \in \operatorname{Irr}(G)$ such that $\chi(g) = 0$. Put Vo(G), the set of orders of all vanishing elements of G. The prime graph $\Pi(\operatorname{Vo}(G))$ is denoted by $\Gamma(G)$ and is called the vanishing prime

graph of G. Note that for every finite group G, $\Gamma(G)$ is a subgraph of GK(G). There is a strong relation between the structure of a group G and the set $\operatorname{Vo}(G)$. For example, if a finite group G does not have any vanishing element whose order is divisible by p, where $p \in \pi(G)$, then G has a normal Sylow psubgroup [2]. In [7], it is proved that if x is a non-vanishing element of a solvable group G, then x^2 is an element of the Fitting subgroup F(G) and conjectured that $x \in F(G)$. In [13], this conjecture has been proved in a special case that if G is solvable and no Mersenne prime divides |G|, then every non-vanishing element of G is an element of F(G). In [14], it is proved that the finite simple group A_5 is recognizable by its set of orders of vanishing elements. But not all finite simple groups are characterizable by their set of orders of vanishing elements. For example $\operatorname{Vo}(L_3(5)) = \operatorname{Vo}(Aut(L_3(5)))$, but $L_3(5) \not\cong Aut(L_3(5))$. In [4], M. Foroudi Ghasemabadi et al. proposed the following conjecture that finite nonabelian simple groups are recognizable by their order and their set of orders of vanishing elements:

CONJECTURE. Let G be a finite group and M be a finite nonabelian simple group such that Vo(G) = Vo(M) and |G| = |M|. Then $G \cong M$.

They proved this conjecture for $M = A_1(q)$, where $q \in \{5, 7, 8, 9, 17\}$, $A_4(4)$, A_7 , Sz(8) and Sz(32). Also in [5], the conjecture has been proved where M is a sporadic simple group, an alternating group, $A_1(p)$, for an odd prime p, and finite simple K_3 -groups and K_4 -groups. In this paper, we show that this conjecture is true for classical simple groups $M = A_p(2)$ and $A_{p-1}(2)$, where $2^p - 1$ is a prime and GK(M) is disconnected. So if $M = A_p(2)$, we assume that $p \neq 2$, and if $M = A_{p-1}(2)$, we assume that $p \neq 2$, 3. In fact, we prove the following theorem:

MAIN THEOREM. Let G be a group and $M = A_p(2)$, where $p \neq 2$ and $2^p - 1$ is a prime; or $A_{p-1}(2)$, where $p \neq 2, 3$ and $2^p - 1$ is a prime. Then $G \cong M$ if and only if Vo(G) = Vo(M) and |G| = |M|.

Let k and n be coprime integers. We recall that if there exists an integer x such that $x^2 \equiv k \pmod{n}$, then k is called a quadratic residue mode n, otherwise k is called a quadratic nonresidue mode n. For a prime p, the Legendre symbol (a/p) is defined as follows: (a/p) = 1 if a is a quadratic residue mode p, (a/p) = -1 if a is a quadratic nonresidue mode p, and (a/p) = 0 if $p \mid a$. It is a well known result due to Euler that $(-1/p) = (-1)^{(p-1)/2}$.

Let n and m be positive integers and p be a prime. We write $p^m || n$, if $p^m | n$ but $p^{m+1} \nmid n$. We write $n_p = p^m$, if $p^m || n$. All further notation can be found in [1], for instance.

2. PRELIMINARY RESULTS

Definition 2.1. A finite group G is called a 2-Frobenius group if it has a normal series $1 \leq H \leq K \leq G$, where K and G/H are Frobenius groups with kernels H and K/H, respectively.

The following lemma summarizes the basic structural properties of a Frobenius group and a 2–Frobenius group:

LEMMA 2.2 ([9]). (a) Let G be a Frobenius group and let H, K be the Frobenius complement and the Frobenius kernel of G, respectively. Then t(G) = 2 and the prime graph components of G are $\pi(H)$ and $\pi(K)$. Moreover, K is nilpotent and hence GK(K) is a complete graph.

(b) If G is a 2-Frobenius group then t(G) = 2. With the notations of Definition 2.1, we also have $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi_2 = \pi(K/H)$.

The next lemma is a consequence of Gruenberg–Kegel Theorem (see [12]):

LEMMA 2.3. If G is a finite group with disconnected prime graph GK(G), then one of the following holds:

(1) the finite group G is a Frobenius group and t(G) = 2;

(2) the finite group G is a 2-Frobenius group and t(G) = 2;

(3) the finite group G has a normal series $1 \leq H \leq K \leq G$, such that H and G/K are π_1 -groups and K/H is a nonabelian simple group, where H is a nilpotent group and |G/K| | |Out(K/H)|.

LEMMA 2.4 ([2,3]). If G is a finite nonabelian simple group except A_7 , then $GK(G) = \Gamma(G)$.

As a consequence of [8, Corollary 22.26], we get the following lemma:

LEMMA 2.5. If $\chi \in Irr(G)$ vanishes on a p-element for some prime p, then $p \mid \chi(1)$.

Let p be a prime number. A character $\chi \in Irr(G)$ is said to be of p-defect zero if p is not a divisor of $|G|/\chi(1)$. It is a well-known result that if χ is of p-defect zero, then for every element $g \in G$ which order is divisible by p, we have $\chi(g) = 0$ (see for example [6, Theorem 8.17]).

LEMMA 2.6 ([9, Lemma 2.5]). Let G be a finite group with $t(G) \ge 2$, and let N be a normal subgroup of G. If N is a π_i -group for some prime graph component of G and m_1, m_2, \ldots, m_r are some order components of G but not π_i -numbers, then $m_1m_2 \ldots m_r$ is a divisor of |N| - 1.

LEMMA 2.7 ([10, Lemma 8]). Assume q > 1 is a natural number, $s = \prod_{i=1}^{n} (q^i - 1)$, p is a prime, $p \mid s$. We denote the power of p in the standard

factorization of s by s_p . $e = min\{d : p \mid q^d - 1\}, q^e = 1 + p^r k, p \nmid k$. If p > 2 or r > 2, then $s_p < q^{np/(p-1)}$.

LEMMA 2.8 ([15, Zsigmondy Theorem]). Let p be a prime and let n be a positive integer. Then one of the following holds:

(i) there is a primitive prime p' for $p^n - 1$, that is, $p' \mid (p^n - 1)$ but $p' \nmid (p^m - 1)$, for every $1 \leq m < n$,

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

LEMMA 2.9 ([9, Lemma 2.9]). The equation $p^m - q^n = 1$, where p and q are primes and m, n > 1 has only one solution, namely $3^2 - 2^3 = 1$.

3. MAIN RESULTS

THEOREM 3.1. Let G be a group and $M = A_p(2)$, where $p \neq 2$ and $2^p - 1$ is a prime number. Then $G \cong M$ if and only if Vo(G) = Vo(M) and |G| = |M|.

Proof. If $G \cong M$, the result is obvious. Let Vo(G) = Vo(M) and $|G| = |M| = 2^{p(p+1)/2} \prod_{i=1}^{p} (2^{i+1} - 1)$. According to Lemma 2.4, we have $\Gamma(G) = \Gamma(M) = GK(M)$. Hence, $\Gamma(G)$ has 2 connected components and $l = 2^p - 1$ is an isolated vertex in $\Gamma(G)$. So G has an *l*-element g such that $\chi(g) = 0$ for some irreducible complex character χ of G. Now, Lemma 2.5, implies that l divides $\chi(1)$. Since l || |M| and |G| = |M|, χ is an irreducible character of *l*-defect zero of G. So, by the fact that *l* is an isolated vertex in $\Gamma(G)$, we conclude that *l* is an isolated vertex in GK(G). Hence $t(G) \ge 2$.

Step 1. Let G be a Frobenius group and let H, K be the Frobenius complement and the Frobenius kernel of G, respectively. Consequently, $\Gamma(G)$ has two connected components, namely $\pi(H)$ and $\pi(K)$. Since $2^p - 1$ is an isolated vertex in $\Gamma(G)$, then $2^p - 1$ is a connected component. Since $|H| \mid (|K| - 1)$, we conclude that $|H| = 2^p - 1 = l$. Let $p \neq 3, 7$. There exists a primitive prime divisor x of $2^{p-1} - 1$. Set $S \in \text{Syl}_x(K)$, so $S \trianglelefteq G$ and $|S| \mid (2^{p-1} - 1)$. On the other hand, H acts fixed point freely on S, and consequently $|S| \equiv 1 \pmod{l}$, which is a contradiction. If p = 3, take $S \in \text{Syl}_5(K)$, and if p = 7, take $S \in \text{Syl}_{31}(K)$. By a similar argument one can get a contradiction.

Step 2. Let G be a 2-Frobenius group, so G has a normal series $1 \leq H \leq K \leq G$, such that $\pi_2(G) = \pi(K/H)$ and $|G/K| \mid (|K/H| - 1)$. Therefore $|K/H| = 2^p - 1$ and $|G/K| \mid 2(2^{p-1} - 1)$. Then $(2^{p-2} - 1) \mid |H|$. Let $p \neq 3, 5$, and x be a primitive prime of $2^{p-2} - 1$ and $S \in \text{Syl}_x(H)$. So similarly to Step 1 we get a contradiction. If p = 3, then Sylow 7-subgroup of G acts fixed point freely on Sylow 5-subgroup of H, which implies that $7 \mid 5 - 1$, a

Step 3. Therefore, by Lemma 2.3, G has a normal series $1 \leq H \leq K \leq G$, such that H and G/K are π_1 -groups, K/H is a nonabelian simple group with disconnected prime graph, H is a nilpotent group and $|G/K| \mid |\text{Out } (K/H)|$. Now by [11, Tables 1a-1c], we consider each possibility for K/H, separately:

Case 1. Let $K/H \cong A_{p'}$, where p' - 2 is not odd prime.

Therefore $p' = 2^p - 1$, and so $|K/H| = (2^p - 1)!/2 \le |G|$. The only possibility is p = 3 and therefore p' = 7, which is impossible since p' - 2 is odd prime.

Similarly, K/H cannot be isomorphic to A_m , where $m \in \{p'+1, p'+2\}$ and m or m-2 is not odd prime and K/H cannot be isomorphic to $A_{p'}$, where p' and p'-2 are prime numbers.

Case 2. Let $K/H \cong {}^{2}A_{p'-1}(q)$, where $q = r^{f}$ and p' is an odd prime. Therefore $(q^{p'}+1)/((q+1)(p',q+1)) = 2^{p}-1$. We know that

$$q^{p'-1} - 1 \ge \frac{q^{p'} + 1}{(q+1)(p', q+1)} = 2^p - 1 \quad \Rightarrow \quad q^{p'-1} \ge 2^p.$$

On the other hand, we know that $q^{p'(p'-1)/2} | |S|$, where $S \in \text{Syl}_r(G)$. Let $r \neq 2$, so by Lemma 2.7, $|S| < 2^{(p+1)r/(r-1)} \le 2^{3(p+1)/2} \le q^{3(p'-1)/2+3/2}$. Consequently, p'(p'-1)/2 < 3p'/2, which implies that p' = 3.

First let (p', q+1) = 1. Then

$$q(q-1) = 2(2^{p-1}-1) = 2(2^{(p-1)/2}-1)(2^{(p-1)/2}+1).$$

It is easy to see that either $q \mid 2^{(p-1)/2} - 1$ or $q \mid 2^{(p-1)/2} + 1$. If $q \mid 2^{(p-1)/2} - 1$, then $2^{(p-1)/2} - 1 = qB$ and $q-1 = 2(2^{(p-1)/2} + 1)B$, for some positive integer *B*. Therefore, $2^{(p+1)/2} + 3 \le q \le 2^{(p-1)/2} - 1$, which is impossible. If $q \mid 2^{(p-1)/2} + 1$, then $2^{(p-1)/2} + 1 = qB$ and $q-1 = 2(2^{(p-1)/2} - 1)B$, for some positive integer *B*. Therefore, $2^{(p+1)/2} - 1 \le q \le 2^{(p-1)/2} + 1$, which implies that p = 3, q = 3. But $|^2A_2(3)| \nmid |A_3(2)|$, a contradiction.

Let (p', q+1) = 3, then

$$(q^2 - q + 1)/3 = (r^{3f} + 1)/3(r^f + 1) = 2^p - 1 = l.$$

Obviously, l is a primitive prime divisor of $r^{6f} - 1$. Since $|q(q-1)|_2 = 4$, it is obvious that f is odd. We claim that $\pi(f) = \{3\}$. Let $f = 3^i t$, for some non-negative integers i, t and $3 \nmid t$. So

$$(r^{3^{i+1}}+1)(1-r^{3^{i+1}}+\cdots+r^{3^{i+1}(t-1)})/3(r^{3^{i}t}+1)=l.$$

Therefore, $r^{3^{i+1}} + 1 \mid 3(r^{3^i t} + 1)$, so by Lemma 2.8 we get that $3^{i+1} \mid 3^i t$, a contradiction. So $\pi(f) = \{3\}$, and consequently $\pi(G/K) \subseteq \{3\}$ since

 $|G/K| \mid |\operatorname{Out}(K/H)| = 3f$. Let $p \neq 3, 5$ and x be a primitive prime of $2^{p-2}-1$. Obviously $x \neq 2, 3, 7$. Therefore, x is a divisor of $2^p - 4 = (q^2 - q - 8)/3$. It is easy to get that $x \nmid |K/H| = q^3(q+1)(q^2-1)(q^2-q+1)/3$. So $x \in \pi(H)$. Let $T \in \operatorname{Syl}_x(H)$. So $T \leq G$ and $|T| \mid 2^{p-2} - 1$. Now by Lemma 2.6 we have $|T| \equiv 1 \pmod{l}$, a contradiction. If p = 3, then q = 5, which is impossible since $|K/H| \nmid |G|$. If p = 5, then q(q-1) = 92, a contradiction.

Therefore r = 2 and so $(2^{fp'} + 1)/((p', 2^f + 1)(2^f + 1)) = 2^p - 1$. Let x be a primitive prime divisor of $2^{2fp'} - 1$. Then $x \mid (2^p - 1)$, and so $2fp' \mid p$, which is a contradiction.

Similarly, $K/H \not\cong {}^{2}A_{p'}(q)$, where $(q+1) \mid (p'+1)$ and p' is an odd prime. **Case 3.** Let $K/H \cong C_n(q)$, where $q = r^f$ and $n = 2^m \ge 2$.

Therefore $(q^n+1)/(2, q-1) = 2^p - 1 = l$, it follows that $q^n \equiv -1 \pmod{l}$. So (-1/l) = 1, which implies that $l \equiv 1 \pmod{4}$, a contradiction.

Similarly, K/H cannot be isomorphic to $B_n(q)$, where $n = 2^m \ge 4$ and q is odd, ${}^2D_n(q)$, where $n = 2^m \ge 4$, ${}^2D_n(2)$, where $n = 2^m + 1 \ge 5$, and ${}^2D_n(3)$, where $n = 2^m + 1 \ne p'$ and $m \ge 2$.

Case 4. Let $K/H \cong {}^{2}D_{p'}(3)$, where $p' \neq 2^{n} + 1$ and $p' \geq 5$.

Therefore $(3^{p'}+1)/4 = 2^p - 1$. So $2^p - 1 < 3^{p'} - 1$, and hence $2^p < 3^{p'}$. Also we know that $3^{p'(p'-1)} | |K/H|$, so if $S \in \text{Syl}_3(G)$, then $3^{p'(p'-1)} | |S|$. By Lemma 2.7, $|S| < 2^{3(p+1)/2}$. Therefore $3^{p'(p'-1)} < 2^{3(p+1)/2} < 3^{3(p'+1)/2}$, which is a contradiction.

Similarly, K/H cannot be isomorphic to ${}^{2}D_{p'}(3)$, where $p' = 2^{n}+1$, $B_{p'}(3)$ and $D_{p'}(q)$, where $p' \geq 5$ is a prime and q = 2, 3, 5.

Case 5. Let $K/H \cong C_{p'}(q)$, where q = 2, 3.

Let q = 3, then $(3^{p'}-1)/2 = 2^p - 1$, which is a contradiction by Lemma 2.9. Therefore q = 2, it follows that $2^{p'} - 1 = 2^p - 1$, and so p' = p. Consequently, $2^{p^2} ||G|$, which is a contradiction.

Similarly, K/H cannot be isomorphic to $D_{p'+1}(q)$, where q = 2, 3.

Case 6. Let $K/H \cong F_4(q)$, where $q = 2^m > 2$.

If $q^4 - q^2 + 1 = 2^p - 1$, then $q^2(q^2 - 1) = 2(2^{p-1} - 1)$, which is a contradiction, since $4 \mid q^2(q^2 - 1)$. Therefore $q^4 + 1 = 2^p - 1$, it follows that $q^4 = 2(2^{p-1} - 1)$, which is a contradiction.

Similarly, K/H cannot be isomorphic to $F_4(q)$, where q is odd, ${}^3D_4(q)$. Case 7. Let $K/H \cong {}^{\varepsilon}E_6(q)$, where $q = r^f$ and $\varepsilon = \pm 1$.

Therefore $(q^6 + \varepsilon q^3 + 1)/(3, q - \varepsilon 1) = 2^p - 1$. Since $(q^6 + \varepsilon q^3 + 1) | (q^{18} - 1)$, then $2^p < q^{18}$. Also we know that $q^{36} | |K/H|$, so if $S \in \text{Syl}_r(G)$, then $q^{36} | |S|$. Let $r \neq 2$, then $|S| < 2^{r(p+1)/(r-1)} \le 2^{3(p+1)/2}$, by Lemma 2.7. Therefore $q^{36} < 2^{3(p+1)/2} < q^{27+3/2}$, which is a contradiction. Hence r = 2. If $3 | (q - \varepsilon 1)$, then $2^{6f} + \varepsilon 2^{3f} + 1 = 3(2^p - 1)$. Therefore $2^{3f}(2^{3f} + \varepsilon) = 3 \cdot 2^p - 4$, which is a contradiction. Therefore, $3 \nmid (q - \varepsilon 1)$, so $2^{6f} + \varepsilon 2^{3f} + 1 = 2^p - 1$, which is a contradiction.

Similarly, K/H cannot be isomorphic to $G_2(q)$, where $q \equiv \varepsilon \pmod{3}$, $\varepsilon = \pm 1$ and q > 2.

Case 8. Let $K/H \cong A_1(q)$, where $q = r^f$.

(8.1) Let $4 \mid (q-1)$. Obviously $q \neq 2^p - 1$. Hence $(q+1)/2 = 2^p - 1 = l$, and so by Lemma 2.8, we have l is a primitive prime divisor of $r^{2f} - 1$, which implies that 2f is a divisor of $l-1 = 2(2^{p-1}-1)$. Therefore $|G/K| \mid 2(2^{p-1}-1)$. Note that

$$|K/H| = 4(2^p - 1)(2^{p+1} - 3)(2^{p-1} - 1).$$

Let $p \neq 3, 5$ and x be a primitive prime divisor of $2^{p-2} - 1$. Obviously $x \neq 2, 3, 5, 7$. It is easy to see that $x \nmid |K/H|$. If $x \mid |G/K|$, we have x is a divisor of $2^{p-1} - 1$, a contradiction. So $x \mid |H|$. Let S be a Sylow x-subgroup of H. Obviously $S \leq G$ and $|S| \mid 2^{p-2} - 1$. On the other hand, by Lemma 2.6 we have $|S| \equiv 1 \pmod{l}$, which is impossible. If p = 3, then q = 13, which is a contradiction since $13 \nmid |G|$. If p = 5, then q = 61, which is a contradiction since $|K/H| \nmid |G|$.

(8.2) Let $4 \mid (q+1)$. If $q = 2^p - 1$, then f = 1, by Lemma 2.9. Moreover, $|K/H| = 2^p(2^p - 1)(2^{p-1} - 1)$ and $|G/K| \mid |\text{Out } (K/H)| = 2$. Therefore, $(2^{p-3} - 1) \mid |H|$. Let $p \neq 3$ and $s \in \pi(2^{p-3} - 1)$. Let $S \in \text{Syl}_s(H)$, so $S \leq K$. On the other hand S is cyclic, it follows that there exists a unique subgroup S_1 of S such that $|S_1| = s$, and so $S_1 \leq K$. Let $L \in \text{Syl}_l(K)$, so $L \ltimes S_1$ is a Frobenius group. Therefore, $l \mid (s-1)$, which is a contradiction. If p = 3, then $5 \in \pi(H)$ and Sylow 5-subgroup of H is normal in G. One can easily get a contradiction by Lemma 2.6. If $(q-1)/2 = 2^p - 1$, then we get a contradiction by Lemma 2.9.

(8.3) Let $q = 2^f$. Obviously, $2^f + 1 \neq 2^p - 1$. Therefore $2^f - 1 = 2^p - 1$ and so f = p. Hence, $|K/H| = (2^{2p} - 1)2^p$, which is a contradiction since $|K/H| \nmid |G|$.

Case 9. Let $K/H \cong {}^{2}B_{2}(q)$, where $q = 2^{2m+1} > 2$.

Let $2^{2m+1} - 2^{m+1} + 1 = 2^p - 1$. So $2(2^{2m} - 2^m + 1) = 2^p$, which is a contradiction, since p > 1. Similarly, $2^{2m+1} + 2^{m+1} + 1 \neq 2^p - 1$. Therefore $2^{2m+1} - 1 = 2^p - 1$ and so 2m + 1 = p. Hence, $|K/H| = 2^{2p}(2^p - 1)(2^{2p} + 1)$, which is a contradiction, since $|K/H| \nmid |G|$.

Similarly, K/H cannot be isomorphic to ${}^{2}F_{4}(q)$, where $q = 2^{2m+1} > 2$. Case 10. Let $K/H \cong G_{2}(q)$, where $q = 3^{f}$.

Let $q^2 + q + 1 = 2^p - 1$. We know that $(q^2 + q + 1) \mid (q^3 - 1)$, so $2^p < q^3$. Let $S \in \text{Syl}_3(G)$, then $3^{6f} \mid |S|$, by the order of |K/H|. On the other

hand, $|S| < 2^{3(p+1)/2} < q^6$, by Lemma 2.7, which is a contradiction. Therefore $q^2 - q + 1 = 2^p - 1$ and so $3^f(3^f - 1) = 2(2^{p-1} - 1)$. Since $4 \nmid (3^f - 1)$ it follows that f is odd. Let f > 1, then $9 \mid (2^{p-1} - 1)$ and so $6 \mid (p - 1)$. Therefore $7 \mid (2^{p-1} - 1)$, so $7 \mid (3^f - 1)$, which is a contradiction, since f is odd. Consequently, f = 1 and so p = 3, which is a contradiction since $13 \in \pi(K/H) \setminus \pi(G)$.

Similarly, K/H cannot be isomorphic to ${}^{2}G_{2}(q)$, where $q = 3^{2m+1}$.

Case 11. Let $K/H \cong E_8(q)$, where $q = r^f$.

Let $q^8 - q^6 + q^4 - q^2 + 1 = 2^p - 1$. Since $(q^8 - q^6 + q^4 - q^2 + 1) | (q^{20} - 1)$, then $2^p < q^{20}$. Let $S \in \text{Syl}_r(G)$, so $q^{120} | |S|$. If $r \neq 2$, then by Lemma 2.7, $|S| < 2^{3(p+1)/2} < q^{30+3/2}$, which is a contradiction. Therefore r = 2 and so $2^{8f} - 2^{6f} + 2^{4f} - 2^{2f} + 1 = 2^p - 1$, which is a contradiction. Similarly if

$$2^p - 1 \in \{q^8 + q^7 - q^5 - q^4 - q^3 + q + 1, q^8 - q^7 + q^5 - q^4 + q^3 - q + 1, q^8 - q^4 + 1\},$$

then we get a contradiction.

Case 12. Let $K/H \cong M_{22}$.

It is clear that $2^p - 1$ is not equal to 5 or 11. So $2^p - 1 = 7$, hence p = 3. In this case $|K/H| \nmid |G|$, which is a contradiction.

Similarly, K/H cannot be isomorphic to other sporadic groups.

Case 13. Let $K/H \cong A_{p'-1}(q)$, where $q = r^f$, p' is an odd prime and $(p',q) \neq (3,2), (3,4)$.

Therefore $(q^{p'}-1)/((q-1)(p',q-1)) = 2^p - 1$, and so $q^{p'} \ge 2^p$. Let $S \in \text{Syl}_r(G)$, then $q^{p'(p'-1)/2} \mid |S|$.

If $r \neq 2$, then $|S| < 2^{3(p+1)/2} \le q^{3(p'+1)/2}$, by Lemma 2.7. Consequently, p'(p'-1)/2 < 3(p'+1)/2, so p'=3.

First let (p', q - 1) = 1. Then

$$q(q+1) = 2(2^{p-1}-1) = 2(2^{(p-1)/2}-1)(2^{(p-1)/2}+1).$$

So either $q \mid 2^{(p-1)/2} - 1$ or $q \mid 2^{(p-1)/2} + 1$. If $q \mid 2^{(p-1)/2} - 1$, then there exists a positive integer *B* such that $2^{(p-1)/2} - 1 = qB$ and $q + 1 = 2(2^{(p-1)/2} + 1)B$. Therefore, $2^{(p+1)/2} + 1 \le q \le 2^{(p-1)/2} - 1$, which is impossible. If $q \mid 2^{(p-1)/2} + 1$, then $2^{(p-1)/2} + 1 = qB$ and $q + 1 = 2(2^{(p-1)/2} - 1)B$, for a positive integer *B*. Therefore, $2^{(p+1)/2} - 3 \le q \le 2^{(p-1)/2} + 1$, which implies that p = 3, and so q = 2, a contradiction.

Let (p', q - 1) = 3, then

$$(q^{2} + q + 1)/3 = (r^{3f} - 1)/3(r^{f} - 1) = 2^{p} - 1 = l.$$

Obviously, l is a primitive prime divisor of $r^{3f} - 1$. We claim that $\pi(f) =$

{3}. Let $f = 3^{i}t$, for some non-negative integers i, t and $3 \nmid t$. So

$$(r^{3^{i+1}}-1)(1+r^{3^{i+1}}+\cdots+r^{3^{i+1}(t-1)})/3(r^{3^{i}t}-1)=l.$$

Therefore, $r^{3^{i+1}} - 1 \mid 3(r^{3^i t} - 1)$, so by Lemma 2.8 we get that $3^{i+1} \mid 3^i t$, a contradiction. Hence $\pi(f) = \{3\}$, and consequently $\pi(G/K) \subseteq \{2,3\}$ since $|G/K| \mid |\text{Out } (K/H)| = 6f$. Let $p \neq 3, 5$ and x be a primitive prime divisor of $2^{p-2}-1$. Obviously $x \neq 2, 3, 7$. Therefore, x is a divisor of $2^p-4 = (q^2+q-8)/3$. It is easy to get that

$$x \nmid |K/H| = q^3(q-1)^2(q+1)(q^2+q+1)/3.$$

So $x \in \pi(H)$. Let $T \in \text{Syl}_x(H)$. So $T \leq G$ and $|T| \mid 2^{p-2} - 1$. Now by Lemma 2.6 we have $|T| \equiv 1 \pmod{l}$, a contradiction. If p = 3, then q = 4, which is impossible. If p = 5, then q(q + 1) = 92, a contradiction.

Therefore r = 2 and $(2^{fp'} - 1)/((p', 2^f - 1)(2^f - 1)) = 2^p - 1$. Since $(p', q) \neq (3, 4), 2^{fp'} - 1$ has a primitive prime divisor, say x. Then $x \mid (2^p - 1)$ and so $fp' \mid p$. Consequently, f = 1, p' = p and so $K/H \cong A_{p-1}(2)$. Obviously $2^{p+1}-1 \mid |H|$. Let $p \neq 5$, and s be a primitive prime of $2^{p+1}-1$ and $S \in \text{Syl}_s(H)$. Therefore $S \leq G$ and $|S| \mid 2^{(p+1)/2}+1$. On the other hand, by Lemma 2.6 $|S| \equiv 1 \pmod{l}$, a contradiction. If p = 5, one can easily get a contradiction.

Case 14. Let K/H be isomorphic to $A_{p'}(q)$, where $q = r^f$, (q-1) | (p'+1) and p' is an odd prime.

Therefore $(q^{p'}-1)/(q-1) = 2^p - 1$, and so $q^{p'} \ge 2^p$. Let $S \in \text{Syl}_r(G)$. So $q^{p'(p'+1)/2} | |S|$. If $r \ne 2$, then by Lemma 2.7,

$$q^{p'(p'+1)/2} \le |S| < 2^{3(p+1)/2} < q^{3(p'+1)/2},$$

which is a contradiction. So r = 2 and $(2^{fp'} - 1)/(2^f - 1) = 2^p - 1$. If $2^{fp'} - 1$ does not have a primitive prime, then f = 2 and p' = 3, which is impossible since $(q-1) \nmid (p'+1)$. So $2^{fp'} - 1$ has a primitive prime, say x. Then $x \mid 2^p - 1$, and so $fp' \mid p$, which implies that f = 1 and p = p'. Therefore $K/H \cong A_p(2)$, H = 1 and G = K. Therefore $G \cong A_p(2)$, as required.

THEOREM 3.2. Let G be a group and $M = A_{p-1}(2)$, where $p \neq 2,3$ and $2^p - 1$ is a prime number. Then $G \cong M$ if and only if Vo(G) = Vo(M) and |G| = |M|.

Proof. If $G \cong M$, the result follows obviously. Let Vo(G) = Vo(M) and $|G| = |M| = 2^{p(p-1)/2} \prod_{i=1}^{p-1} (2^{i+1} - 1)$. Similarly to Theorem 3.1 we conclude that G has a normal series $1 \leq H \leq K \leq G$, such that $K/H \cong A_{p-1}(2)$, H = 1 and G = K. Therefore $G \cong A_{p-1}(2)$, as required. \Box

Acknowledgements. The authors are grateful to the referee for the careful reading of the manuscript and his or her helpful comments.

REFERENCES

- J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups. Oxford: Clarendon Press, 1985.
- S. Dolfi, E. Pacifici, L. Sanus and P. Spiga, On the vanishing prime graph of finite groups. J. Lond. Math. Soc. (2) 82 (2010), 1, 311–329.
- [3] S. Dolfi, E. Pacifici, L. Sanus and P. Spiga, On the vanishing prime graph of solvable groups. J. Group Theory 13 (2010), 2, 189–206.
- [4] M. Foroudi Ghasemabadi, A. Iranmanesh and F. Mavadatpour, A new characterization of some finite simple groups. Sib. Math. J. 56 (2015), 1, 78–82.
- [5] M. Foroudi Ghasemabadi, A. Iranmanesh and M. Ahanjideh, A new characterization of some families of finite simple groups. Rend. Semin. Mat. Univ. Padova 137 (2017), 57–74.
- [6] I.M. Isaacs, Character Theory of Finite Groups. Pure Appl. Math. 69, New York-San Francisco-London: Academic Press, 1976.
- [7] I.M. Isaacs, G. Navarro and T. Wolf, Finite group elements where no irreducible character vanishes. J. Algebra 222 (1999), 413–423.
- [8] G. James and M. Liebeck, *Representations and Characters of Groups*. Cambridge Math. Textbooks, Cambridge: Cambridge Univ. Press, 1993.
- [9] A. Khosravi and B. Khosravi, A new characterization of PSL(p,q). Comm. Algebra 32 (2004), 6, 2325–2339.
- [10] H. Shi and G.Y. Chen, Relation between B_p(3) and C_p(3) with their order components where p is an odd prime. J. Appl. Math. Inform. 27 (2009), 3, 653–659.
- [11] A.V. Vasil'ev and M.A. Grechkoseeva, On the recognition of the finite simple orthogonal groups of dimension 2^m, 2^m + 1 and 2^m + 2 over a field of characteristic 2. Sib. Math. J. 45 (2004), 3, 420–431.
- [12] J.S. Williams, Prime graph components of finite groups. J. Algebra 69 (1981), 2, 487– 513.
- [13] T. Wolf, Group actions related to non-vanishing elements. Int. J. Group Theory 3 (2014), 2, 41–51.
- [14] J. Zhang, Z. Li and C. Shao, Finite groups whose irreducible characters vanish only on elements of prime power order. Int. Electron. J. Algebra 9 (2011), 114–123.
- [15] K. Zsigmondy, Zur theorie der potenzreste. Monatsh. Math. 3 (1892), 265–284.

Received 8 February 2017

University of Qom, Department of Mathematics, Qom 37185-3766, Iran a_babai@aut.ac.ir

University of Isfahan, Department of Mathematics, Isfahan 81746-73441, Iran m.khatami@sci.ui.ac.ir