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Let G be a finite group, and Irr(G) be the set of complex irreducible characters of
G. An element g ∈ G is called a vanishing element if there exists an irreducible
character χ ∈ Irr(G) such that χ(g) = 0. The set of orders of vanishing elements
of G is denoted by Vo(G). A recent conjecture states that if G is a finite group
and M is a finite nonabelian simple group such that Vo(G) = Vo(M) and |G| =
|M |, then G ∼= M . In this paper, we give a positive answer to this conjecture for
a family of classical simple groups, namely Ap(2) and Ap−1(2), where p 6= 2, 3
and 2p − 1 is a prime.
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1. INTRODUCTION

Let n be a positive integer. By π(n) we mean the set of prime divisors of
n. Let G be a finite group and π(G) be the set of prime divisors of |G|. Denote
by ω(G), the set of element orders of G. For a finite set of positive integers
X, the prime graph Π(X) is a graph whose vertices are the prime divisors
of elements of X, and two distinct vertices p and q are adjacent if X has an
element divisible by pq. We denote the graph Π(ω(G)) by GK(G) and we call it
the prime graph or the Gruenberg-Kegel graph of G. The number of connected
components of GK(G) is denoted by t(G), and the connected components of
GK(G) is denoted by π1(G), · · · , πt(G)(G). If there is no ambiguity, we use the
notation πi instead of πi(G). If 2 ∈ π(G), we assume that 2 ∈ π1(G). It is
easy to see that |G| can be written as the product of coprime positive integers
mi such that π(mi) = πi(G), for i = 1, · · · , t(G). These integers are called the
order components of G.

We denote by Irr(G) the set of complex irreducible characters of G. We
call an element g ∈ G, a vanishing element, if there exists χ ∈ Irr(G) such that
χ(g) = 0. Put Vo(G), the set of orders of all vanishing elements of G. The
prime graph Π(Vo(G)) is denoted by Γ(G) and is called the vanishing prime
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graph of G. Note that for every finite group G, Γ(G) is a subgraph of GK(G).
There is a strong relation between the structure of a group G and the set
Vo(G). For example, if a finite group G does not have any vanishing element
whose order is divisible by p, where p ∈ π(G), then G has a normal Sylow p-
subgroup [2]. In [7], it is proved that if x is a non-vanishing element of a solvable
group G, then x2 is an element of the Fitting subgroup F (G) and conjectured
that x ∈ F (G). In [13], this conjecture has been proved in a special case that
if G is solvable and no Mersenne prime divides |G|, then every non-vanishing
element of G is an element of F (G). In [14], it is proved that the finite simple
group A5 is recognizable by its set of orders of vanishing elements. But not
all finite simple groups are characterizable by their set of orders of vanishing
elements. For example Vo(L3(5)) = Vo(Aut(L3(5))), but L3(5) 6∼= Aut(L3(5)).
In [4], M. Foroudi Ghasemabadi et al. proposed the following conjecture that
finite nonabelian simple groups are recognizable by their order and their set of
orders of vanishing elements:

Conjecture. Let G be a finite group and M be a finite nonabelian simple
group such that Vo(G) = Vo(M) and |G| = |M |. Then G ∼= M .

They proved this conjecture for M = A1(q), where q ∈ {5, 7, 8, 9, 17},
A4(4), A7, Sz(8) and Sz(32). Also in [5], the conjecture has been proved
where M is a sporadic simple group, an alternating group, A1(p), for an odd
prime p, and finite simple K3-groups and K4-groups. In this paper, we show
that this conjecture is true for classical simple groups M = Ap(2) and Ap−1(2),
where 2p − 1 is a prime and GK(M) is disconnected. So if M = Ap(2), we
assume that p 6= 2, and if M = Ap−1(2), we assume that p 6= 2, 3. In fact, we
prove the following theorem:

Main Theorem. Let G be a group and M = Ap(2), where p 6= 2 and
2p − 1 is a prime; or Ap−1(2), where p 6= 2, 3 and 2p − 1 is a prime. Then
G ∼= M if and only if V o(G) = V o(M) and |G| = |M |.

Let k and n be coprime integers. We recall that if there exists an integer
x such that x2 ≡ k (mod n), then k is called a quadratic residue mode n, ot-
herwise k is called a quadratic nonresidue mode n. For a prime p, the Legendre
symbol (a/p) is defined as follows: (a/p) = 1 if a is a quadratic residue mode
p, (a/p) = −1 if a is a quadratic nonresidue mode p, and (a/p) = 0 if p | a. It
is a well known result due to Euler that (−1/p) = (−1)(p−1)/2.

Let n and m be positive integers and p be a prime. We write pm||n, if
pm | n but pm+1 - n. We write np = pm, if pm||n. All further notation can be
found in [1], for instance.
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2. PRELIMINARY RESULTS

Definition 2.1. A finite group G is called a 2-Frobenius group if it has a
normal series 1 EH EK E G, where K and G/H are Frobenius groups with
kernels H and K/H, respectively.

The following lemma summarizes the basic structural properties of a Fro-
benius group and a 2−Frobenius group:

Lemma 2.2 ([9]). (a) Let G be a Frobenius group and let H, K be the
Frobenius complement and the Frobenius kernel of G, respectively. Then t(G) =
2 and the prime graph components of G are π(H) and π(K). Moreover, K is
nilpotent and hence GK(K) is a complete graph.

(b) If G is a 2−Frobenius group then t(G) = 2. With the notations of
Definition 2.1, we also have π1 = π(G/K) ∪ π(H) and π2 = π(K/H).

The next lemma is a consequence of Gruenberg–Kegel Theorem (see [12]):

Lemma 2.3. If G is a finite group with disconnected prime graph GK(G),
then one of the following holds:
(1) the finite group G is a Frobenius group and t(G) = 2;
(2) the finite group G is a 2-Frobenius group and t(G) = 2;
(3) the finite group G has a normal series 1EHEKEG, such that H and G/K
are π1-groups and K/H is a nonabelian simple group, where H is a nilpotent
group and |G/K| | |Out (K/H)|.

Lemma 2.4 ([2, 3]). If G is a finite nonabelian simple group except A7,
then GK(G) = Γ(G).

As a consequense of [8, Corollary 22.26], we get the following lemma:

Lemma 2.5. If χ ∈ Irr(G) vanishes on a p-element for some prime p,
then p | χ(1).

Let p be a prime number. A character χ ∈ Irr(G) is said to be of p-defect
zero if p is not a divisor of |G|/χ(1). It is a well-known result that if χ is of
p-defect zero, then for every element g ∈ G which order is divisible by p, we
have χ(g) = 0 (see for example [6, Theorem 8.17]).

Lemma 2.6 ([9, Lemma 2.5]). Let G be a finite group with t(G) ≥ 2, and
let N be a normal subgroup of G. If N is a πi-group for some prime graph
component of G and m1,m2, . . . ,mr are some order components of G but not
πi-numbers, then m1m2 . . .mr is a divisor of |N | − 1.

Lemma 2.7 ([10, Lemma 8]). Assume q > 1 is a natural number, s =∏n
i=1(q

i − 1), p is a prime, p | s. We denote the power of p in the standard
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factorization of s by sp. e = min{d : p | qd − 1}, qe = 1 + prk, p - k. If p > 2
or r > 2, then sp < qnp/(p−1).

Lemma 2.8 ([15, Zsigmondy Theorem]). Let p be a prime and let n be a
positive integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn − 1, that is , p′ | (pn − 1) but
p′ - (pm − 1), for every 1 ≤ m < n,

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

Lemma 2.9 ([9, Lemma 2.9]). The equation pm − qn = 1, where p and q
are primes and m,n > 1 has only one solution, namely 32 − 23 = 1.

3. MAIN RESULTS

Theorem 3.1. Let G be a group and M = Ap(2), where p 6= 2 and 2p−1 is
a prime number. Then G ∼= M if and only if V o(G) = V o(M) and |G| = |M |.

Proof. If G ∼= M , the result is obvious. Let V o(G) = V o(M) and |G| =
|M | = 2p(p+1)/2

∏p
i=1(2

i+1 − 1). According to Lemma 2.4, we have Γ(G) =
Γ(M) = GK(M). Hence, Γ(G) has 2 connected components and l = 2p − 1
is an isolated vertex in Γ(G). So G has an l-element g such that χ(g) = 0
for some irreducible complex character χ of G. Now, Lemma 2.5, implies that
l divides χ(1). Since l‖|M | and |G| = |M |, χ is an irreducible character of
l-defect zero of G. So, by the fact that l is an isolated vertex in Γ(G), we
conclude that l is an isolated vertex in GK(G). Hence t(G) ≥ 2.

Step 1. Let G be a Frobenius group and let H, K be the Frobenius
complement and the Frobenius kernel of G, respectively. Consequently, Γ(G)
has two connected components, namely π(H) and π(K). Since 2p − 1 is an
isolated vertex in Γ(G), then 2p−1 is a connected component. Since |H| | (|K|−
1), we conclude that |H| = 2p − 1 = l. Let p 6= 3, 7. There exists a primitive
prime divisor x of 2p−1 − 1. Set S ∈ Sylx(K), so S E G and |S| | (2p−1 − 1).
On the other hand, H acts fixed point freely on S, and consequently |S| ≡ 1
(mod l), which is a contradiction. If p = 3, take S ∈ Syl5(K), and if p = 7,
take S ∈ Syl31(K). By a similar argument one can get a contradiction.

Step 2. Let G be a 2-Frobenius group, so G has a normal series 1 E
H EK EG, such that π2(G) = π(K/H) and |G/K| | (|K/H| − 1). Therefore
|K/H| = 2p − 1 and |G/K| | 2(2p−1 − 1). Then (2p−2 − 1) | |H|. Let p 6= 3, 5,
and x be a primitive prime of 2p−2 − 1 and S ∈ Sylx(H). So similarly to
Step 1 we get a contradiction. If p = 3, then Sylow 7-subgroup of G acts
fixed point freely on Sylow 5-subgroup of H, which implies that 7 | 5 − 1, a
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contradiction. If p = 5, then Sylow 31-subgroup of G acts fixed point freely on
Sylow 7-subgroup of H, and we get a contradiction similarly.

Step 3. Therefore, by Lemma 2.3, G has a normal series 1EHEKEG,
such that H and G/K are π1-groups, K/H is a nonabelian simple group with
disconnected prime graph, H is a nilpotent group and |G/K| | |Out (K/H)|.
Now by [11, Tables 1a-1c], we consider each possibility for K/H, separately:

Case 1. Let K/H ∼= Ap′ , where p′ − 2 is not odd prime.

Therefore p′ = 2p − 1, and so |K/H| = (2p − 1)!/2 ≤ |G|. The only
possibility is p = 3 and therefore p′ = 7, which is impossible since p′− 2 is odd
prime.

Similarly, K/H cannot be isomorphic to Am, where m ∈ {p′ + 1, p′ + 2}
and m or m−2 is not odd prime and K/H cannot be isomorphic to Ap′ , where
p′ and p′ − 2 are prime numbers.

Case 2. Let K/H ∼= 2Ap′−1(q), where q = rf and p′ is an odd prime.

Therefore (qp
′
+ 1)/((q + 1)(p′, q + 1)) = 2p − 1. We know that

qp
′−1 − 1 ≥ qp

′
+ 1

(q + 1)(p′, q + 1)
= 2p − 1 ⇒ qp

′−1 ≥ 2p.

On the other hand, we know that qp
′(p′−1)/2 | |S|, where S ∈ Sylr(G).

Let r 6= 2, so by Lemma 2.7, |S| < 2(p+1)r/(r−1) ≤ 23(p+1)/2 ≤ q3(p
′−1)/2+3/2.

Consequently, p′(p′ − 1)/2 < 3p′/2, which implies that p′ = 3.

First let (p′, q + 1) = 1. Then

q(q − 1) = 2(2p−1 − 1) = 2(2(p−1)/2 − 1)(2(p−1)/2 + 1).

It is easy to see that either q | 2(p−1)/2 − 1 or q | 2(p−1)/2 + 1. If q |
2(p−1)/2−1, then 2(p−1)/2−1 = qB and q−1 = 2(2(p−1)/2+1)B, for some positive
integer B. Therefore, 2(p+1)/2 + 3 ≤ q ≤ 2(p−1)/2 − 1, which is impossible. If
q | 2(p−1)/2 + 1, then 2(p−1)/2 + 1 = qB and q − 1 = 2(2(p−1)/2 − 1)B, for some
positive integer B. Therefore, 2(p+1)/2 − 1 ≤ q ≤ 2(p−1)/2 + 1, which implies
that p = 3, q = 3. But |2A2(3)| - |A3(2)|, a contradiction.

Let (p′, q + 1) = 3, then

(q2 − q + 1)/3 = (r3f + 1)/3(rf + 1) = 2p − 1 = l.

Obviously, l is a primitive prime divisor of r6f − 1. Since |q(q − 1)|2 = 4,
it is obvious that f is odd. We claim that π(f) = {3}. Let f = 3it, for some
non-negative integers i, t and 3 - t. So

(r3
i+1

+ 1)(1− r3i+1
+ · · ·+ r3

i+1(t−1))/3(r3
it + 1) = l.

Therefore, r3
i+1

+ 1 | 3(r3
it + 1), so by Lemma 2.8 we get that 3i+1 |

3it, a contradiction. So π(f) = {3}, and consequently π(G/K) ⊆ {3} since
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|G/K| | |Out (K/H)| = 3f . Let p 6= 3, 5 and x be a primitive prime of 2p−2−1.

Obviously x 6= 2, 3, 7. Therefore, x is a divisor of 2p − 4 = (q2 − q − 8)/3. It

is easy to get that x - |K/H| = q3(q + 1)(q2 − 1)(q2 − q + 1)/3. So x ∈ π(H).

Let T ∈ Sylx(H). So T E G and |T | | 2p−2 − 1. Now by Lemma 2.6 we have

|T | ≡ 1 (mod l), a contradiction. If p = 3, then q = 5, which is impossible

since |K/H| - |G|. If p = 5, then q(q − 1) = 92, a contradiction.

Therefore r = 2 and so (2fp
′
+ 1)/((p′, 2f + 1)(2f + 1)) = 2p− 1. Let x be

a primitive prime divisor of 22fp
′ − 1. Then x | (2p− 1), and so 2fp′ | p, which

is a contradiction.

Similarly, K/H � 2Ap′(q), where (q+ 1) | (p′+ 1) and p′ is an odd prime.

Case 3. Let K/H ∼= Cn(q), where q = rf and n = 2m ≥ 2.

Therefore (qn+1)/(2, q−1) = 2p−1 = l, it follows that qn ≡ −1 (mod l).

So (−1/l) = 1, which implies that l ≡ 1 (mod 4), a contradiction.

Similarly, K/H cannot be isomorphic to Bn(q), where n = 2m ≥ 4 and q

is odd, 2Dn(q), where n = 2m ≥ 4, 2Dn(2), where n = 2m +1 ≥ 5, and 2Dn(3),

where n = 2m + 1 6= p′ and m ≥ 2.

Case 4. Let K/H ∼= 2Dp′(3), where p′ 6= 2n + 1 and p′ ≥ 5.

Therefore (3p
′
+ 1)/4 = 2p − 1. So 2p − 1 < 3p

′ − 1, and hence 2p < 3p
′
.

Also we know that 3p
′(p′−1) | |K/H|, so if S ∈ Syl3(G), then 3p

′(p′−1) | |S|. By

Lemma 2.7, |S| < 23(p+1)/2. Therefore 3p
′(p′−1) < 23(p+1)/2 < 33(p

′+1)/2, which

is a contradiction.

Similarly, K/H cannot be isomorphic to 2Dp′(3), where p′ = 2n+1, Bp′(3)

and Dp′(q), where p′ ≥ 5 is a prime and q = 2, 3, 5.

Case 5. Let K/H ∼= Cp′(q), where q = 2, 3.

Let q = 3, then (3p
′−1)/2 = 2p−1, which is a contradiction by Lemma 2.9.

Therefore q = 2, it follows that 2p
′ − 1 = 2p − 1, and so p′ = p. Consequently,

2p
2 | |G|, which is a contradiction.

Similarly, K/H cannot be isomorphic to Dp′+1(q), where q = 2, 3.

Case 6. Let K/H ∼= F4(q), where q = 2m > 2.

If q4−q2+1 = 2p−1, then q2(q2−1) = 2(2p−1−1), which is a contradiction,

since 4 | q2(q2− 1). Therefore q4 + 1 = 2p− 1, it follows that q4 = 2(2p−1− 1),

which is a contradiction.

Similarly, K/H cannot be isomorphic to F4(q), where q is odd, 3D4(q).

Case 7. Let K/H ∼= εE6(q), where q = rf and ε = ±1.

Therefore (q6+εq3+1)/(3, q−ε1) = 2p−1. Since (q6+εq3+1) | (q18−1),

then 2p < q18. Also we know that q36 | |K/H|, so if S ∈ Sylr(G), then q36 | |S|.
Let r 6= 2, then |S| < 2r(p+1)/(r−1) ≤ 23(p+1)/2, by Lemma 2.7. Therefore

q36 < 23(p+1)/2 < q27+3/2, which is a contradiction. Hence r = 2. If 3 | (q−ε1),

then 26f + ε23f + 1 = 3(2p − 1). Therefore 23f (23f + ε) = 3 · 2p − 4, which is
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a contradiction. Therefore, 3 - (q − ε1), so 26f + ε23f + 1 = 2p − 1, which is a

contradiction.

Similarly, K/H cannot be isomorphic to G2(q), where q ≡ ε (mod 3),

ε = ±1 and q > 2.

Case 8. Let K/H ∼= A1(q), where q = rf .

(8.1) Let 4 | (q− 1). Obviously q 6= 2p− 1. Hence (q+ 1)/2 = 2p− 1 = l,

and so by Lemma 2.8, we have l is a primitive prime divisor of r2f − 1, which

implies that 2f is a divisor of l−1 = 2(2p−1−1). Therefore |G/K| | 2(2p−1−1).

Note that

|K/H| = 4(2p − 1)(2p+1 − 3)(2p−1 − 1).

Let p 6= 3, 5 and x be a primitive prime divisor of 2p−2 − 1. Obviously

x 6= 2, 3, 5, 7. It is easy to see that x - |K/H|. If x | |G/K|, we have x is a

divisor of 2p−1 − 1, a contradiction. So x | |H|. Let S be a Sylow x-subgroup

of H. Obviously S EG and |S| | 2p−2 − 1. On the other hand, by Lemma 2.6

we have |S| ≡ 1 (mod l), which is impossible. If p = 3, then q = 13, which is

a contradiction since 13 - |G|. If p = 5, then q = 61, which is a contradiction

since |K/H| - |G|.
(8.2) Let 4 | (q+ 1). If q = 2p− 1, then f = 1, by Lemma 2.9. Moreover,

|K/H| = 2p(2p − 1)(2p−1 − 1) and |G/K| | |Out (K/H)| = 2. Therefore,

(2p−3 − 1) | |H|. Let p 6= 3 and s ∈ π(2p−3 − 1). Let S ∈ Syls(H), so S EK.

On the other hand S is cyclic, it follows that there exists a unique subgroup

S1 of S such that |S1| = s, and so S1 E K. Let L ∈ Syll(K), so L n S1 is a

Frobenius group. Therefore, l | (s− 1), which is a contradiction. If p = 3, then

5 ∈ π(H) and Sylow 5-subgroup of H is normal in G. One can easily get a

contradiction by Lemma 2.6. If (q− 1)/2 = 2p− 1, then we get a contradiction

by Lemma 2.9.

(8.3) Let q = 2f . Obviously, 2f + 1 6= 2p − 1. Therefore 2f − 1 = 2p − 1

and so f = p. Hence, |K/H| = (22p − 1)2p, which is a contradiction since

|K/H| - |G|.
Case 9. Let K/H ∼= 2B2(q), where q = 22m+1 > 2.

Let 22m+1 − 2m+1 + 1 = 2p − 1. So 2(22m − 2m + 1) = 2p, which is a

contradiction, since p > 1. Similarly, 22m+1 + 2m+1 + 1 6= 2p − 1. Therefore

22m+1 − 1 = 2p − 1 and so 2m+ 1 = p. Hence, |K/H| = 22p(2p − 1)(22p + 1),

which is a contradiction, since |K/H| - |G|.
Similarly, K/H cannot be isomorphic to 2F4(q), where q = 22m+1 > 2.

Case 10. Let K/H ∼= G2(q), where q = 3f .

Let q2 + q + 1 = 2p − 1. We know that (q2 + q + 1) | (q3 − 1), so

2p < q3. Let S ∈ Syl3(G), then 36f | |S|, by the order of |K/H|. On the other
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hand, |S| < 23(p+1)/2 < q6, by Lemma 2.7, which is a contradiction. Therefore

q2 − q + 1 = 2p − 1 and so 3f (3f − 1) = 2(2p−1 − 1). Since 4 - (3f − 1) it

follows that f is odd. Let f > 1, then 9 | (2p−1 − 1) and so 6 | (p − 1).

Therefore 7 | (2p−1 − 1), so 7 | (3f − 1), which is a contradiction, since f

is odd. Consequently, f = 1 and so p = 3, which is a contradiction since

13 ∈ π(K/H) \ π(G).

Similarly, K/H cannot be isomorphic to 2G2(q), where q = 32m+1.

Case 11. Let K/H ∼= E8(q), where q = rf .

Let q8− q6 + q4− q2 + 1 = 2p− 1. Since (q8− q6 + q4− q2 + 1) | (q20− 1),

then 2p < q20. Let S ∈ Sylr(G), so q120 | |S|. If r 6= 2, then by Lemma 2.7,

|S| < 23(p+1)/2 < q30+3/2, which is a contradiction. Therefore r = 2 and so

28f − 26f + 24f − 22f + 1 = 2p − 1, which is a contradiction. Similarly if

2p−1 ∈ {q8 + q7− q5− q4− q3 + q+1, q8− q7 + q5− q4 + q3− q+1, q8− q4 +1},

then we get a contradiction.

Case 12. Let K/H ∼= M22.

It is clear that 2p − 1 is not equal to 5 or 11. So 2p − 1 = 7, hence p = 3.

In this case |K/H| - |G|, which is a contradiction.

Similarly, K/H cannot be isomorphic to other sporadic groups.

Case 13. Let K/H ∼= Ap′−1(q), where q = rf , p′ is an odd prime and

(p′, q) 6= (3, 2), (3, 4).

Therefore (qp
′ − 1)/((q − 1)(p′, q − 1)) = 2p − 1, and so qp

′ ≥ 2p. Let

S ∈ Sylr(G), then qp
′(p′−1)/2 | |S|.

If r 6= 2, then |S| < 23(p+1)/2 ≤ q3(p
′+1)/2, by Lemma 2.7. Consequently,

p′(p′ − 1)/2 < 3(p′ + 1)/2, so p′ = 3.

First let (p′, q − 1) = 1. Then

q(q + 1) = 2(2p−1 − 1) = 2(2(p−1)/2 − 1)(2(p−1)/2 + 1).

So either q | 2(p−1)/2 − 1 or q | 2(p−1)/2 + 1. If q | 2(p−1)/2 − 1, then

there exists a positive integer B such that 2(p−1)/2 − 1 = qB and q + 1 =

2(2(p−1)/2+1)B. Therefore, 2(p+1)/2+1 ≤ q ≤ 2(p−1)/2−1, which is impossible.

If q | 2(p−1)/2 + 1, then 2(p−1)/2 + 1 = qB and q + 1 = 2(2(p−1)/2 − 1)B, for a

positive integer B. Therefore, 2(p+1)/2 − 3 ≤ q ≤ 2(p−1)/2 + 1, which implies

that p = 3, and so q = 2, a contradiction.

Let (p′, q − 1) = 3, then

(q2 + q + 1)/3 = (r3f − 1)/3(rf − 1) = 2p − 1 = l.

Obviously, l is a primitive prime divisor of r3f −1. We claim that π(f) =
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{3}. Let f = 3it, for some non-negative integers i, t and 3 - t. So

(r3
i+1 − 1)(1 + r3

i+1
+ · · ·+ r3

i+1(t−1))/3(r3
it − 1) = l.

Therefore, r3
i+1 − 1 | 3(r3

it − 1), so by Lemma 2.8 we get that 3i+1 | 3it,
a contradiction. Hence π(f) = {3}, and consequently π(G/K) ⊆ {2, 3} since
|G/K| | |Out (K/H)| = 6f . Let p 6= 3, 5 and x be a primitive prime divisor of
2p−2−1. Obviously x 6= 2, 3, 7. Therefore, x is a divisor of 2p−4 = (q2+q−8)/3.
It is easy to get that

x - |K/H| = q3(q − 1)2(q + 1)(q2 + q + 1)/3.

So x ∈ π(H). Let T ∈ Sylx(H). So T E G and |T | | 2p−2 − 1. Now by
Lemma 2.6 we have |T | ≡ 1 (mod l), a contradiction. If p = 3, then q = 4,
which is impossible. If p = 5, then q(q + 1) = 92, a contradiction.

Therefore r = 2 and (2fp
′ − 1)/((p′, 2f − 1)(2f − 1)) = 2p − 1. Since

(p′, q) 6= (3, 4), 2fp
′ − 1 has a primitive prime divisor, say x. Then x | (2p − 1)

and so fp′ | p. Consequently, f = 1, p′ = p and so K/H ∼= Ap−1(2). Obviously
2p+1−1 | |H|. Let p 6= 5, and s be a primitive prime of 2p+1−1 and S ∈ Syls(H).
Therefore SEG and |S| | 2(p+1)/2+1. On the other hand, by Lemma 2.6 |S| ≡ 1
(mod l), a contradiction. If p = 5, one can easily get a contradiction.

Case 14. Let K/H be isomorphic to Ap′(q), where q = rf , (q−1) | (p′+1)
and p′ is an odd prime.

Therefore (qp
′ − 1)/(q − 1) = 2p − 1, and so qp

′ ≥ 2p. Let S ∈ Sylr(G).
So qp

′(p′+1)/2 | |S|. If r 6= 2, then by Lemma 2.7,

qp
′(p′+1)/2 ≤ |S| < 23(p+1)/2 < q3(p

′+1)/2,

which is a contradiction. So r = 2 and (2fp
′ − 1)/(2f − 1) = 2p − 1. If 2fp

′ − 1
does not have a primitive prime, then f = 2 and p′ = 3, which is impossible
since (q−1) - (p′+1). So 2fp

′−1 has a primitive prime, say x. Then x | 2p−1,
and so fp′ | p, which implies that f = 1 and p = p′. Therefore K/H ∼= Ap(2),
H = 1 and G = K. Therefore G ∼= Ap(2), as required.

Theorem 3.2. Let G be a group and M = Ap−1(2), where p 6= 2, 3 and
2p − 1 is a prime number. Then G ∼= M if and only if V o(G) = V o(M) and
|G| = |M |.

Proof. If G ∼= M , the result follows obviously. Let V o(G) = V o(M) and
|G| = |M | = 2p(p−1)/2

∏p−1
i=1 (2i+1 − 1). Similarly to Theorem 3.1 we conclude

that G has a normal series 1EH EK EG, such that K/H ∼= Ap−1(2), H = 1
and G = K. Therefore G ∼= Ap−1(2), as required. �
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