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In this paper, biharmonicity of some special maps from or into a warped product
manifold are studied. First, we obtain the biharmonicity conditions of semi-
conformal maps from a Riemannian manifold into a warped product manifold.
Next, we give some characterization for semi-conformal surjective maps from a
warped product manifold onto a Riemannian manifold to be biharmonic. Finally,
two new classes of non-harmonic biharmonic maps are constructed by using
products of semi-conformal surjective maps Φ = φ× ψ : M ×N −→ P ×Q and
warping the domain or target.

AMS 2010 Subject Classification: 58E20, 53C20.

Key words: harmonic maps, biharmonic maps, warped product manifolds.

1. INTRODUCTION

The notion of warped product manifolds was first studied by Bishop and
O’Neill for constructing negative curvature manifolds, [8]. In view of Physics,
warped product manifolds play a crucial role in plethora of physical application
such as general relativity, string and super gravity theories, [7]. For instance,
the best model of space-time that describes the out space near black holes or
bodies with large gravitational force is given as a warped product manifold, [11].

In 1969, biharmonic maps, as an extension of harmonic maps, were first
introduced by Eells and Sampson, [9]. A smooth map φ : (M, g) −→ (N,h) is
called biharmonic if φ is a critical point of the bienergy functional defined as
follows

E2(φ) :=
1

2

∫
M
| τ(φ) |2 dνg,

where τ(φ) := trace∇dφ is the tension field of φ. The Euler-Lagrange equation
associated to E2 is obtained as follows

(1.1) τ2(φ) := −Jφ(τ(φ)) = −∆φτ(φ)− trace RN (dφ, τ(φ))dφ = 0,
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here Jφ is a Jacobi operator and ∆φ is the rough Laplacian on the sections of

φ−1(TN), [10]. The equation (1.1) is called biharmonic equation of φ.

Since 2000, harmonic and biharmonic maps have been extensively stu-

died by many scholars, see for instance, [1–6, 9, 10, 12, 13]. Two main research

directions related to this topic are differential geometry and partial differential

equation. From the differential geometric aspect, constructing the examples

and classification results have become important. We shall try to follow this

direction in this paper. In view of partial differential equation, biharmonic

maps are solutions of a fourth order strongly elliptic semi-linear PDE.

In [6], the authors studied the biharmonicity of special maps between

warped product manifolds such as projections, inclusions and product maps

and gave examples. In [1], the authors constructed new examples of non-

harmonic biharmonic maps by conformally deforming the domain metric of

harmonic ones, while in [5], there were given new methods to construct non-

harmonic biharmonic map by conformal change of metric on the target ma-

nifold of harmonic Riemannian submersions. Moreover, recently in [2], by

exploiting biconformal transformations of the metric, the authors constructed

biharmonic functions and mappings from Riemannian manifolds. Biharmonic

semi-conformal maps between Riemannian manifolds were studied in [3, 12].

In [6], two new classes of non-harmonic biharmonic maps are given by using

product of harmonic maps and warped product manifolds. In the present pa-

per, this idea is taken by replacing harmonic by biharmonic semi-conformal

map.

The present article is organized as follows.

In Section 2, the concept of warped product manifolds and semi-conformal

maps are reviewed. In Section 3, the biharmonicity conditions of some special

semi-conformal maps from a Riemannian manifold P into a warped product

manifold M ×f N are analyzed. In Section 4, some characterization are given

for semi-conformal maps from a warped product manifold M ×f N onto a

Riemannian manifold to be biharmonic maps. In Section 5, two new classes

of non-harmonic biharmonic maps are constructed by using products of semi-

conformal maps Φ = φ × ψ : M × N −→ P × Q and warping the domain or

target.

Throughout this paper, we consider that (Mm, g), (Nn, h), (P p, %), (Qq, ρ)

be Riemannian manifolds of dimensions m,n, p and q, repectively. Let φ :

(M, g) −→ (N,h) be a smooth map between Riemannian manifolds. Denote

the Levi-Civita connections on M and N by ∇M and ∇N , respectively. Furt-

hermore, the induced connection on φ−1TN and ⊗2T ∗M⊗φ−1TN are denoted

by ∇φ and ∇, respectively.
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2. PRELIMINARIES

In this section, a few basic notions of warped product manifolds, distri-
butions and semi-conformal maps are provided which will be used later. For
more details see [3, 4, 9].

2.1. WARPED PRODUCT MANIFOLDS

Let (Mm, g) and (Nn, h) be Riemannian manifolds and let f ∈ C∞(M)
be a positive smooth function on M . The warped product M ×f N is the
product manifold M ×N equipped with the Riemannian metric

(2.1) Gf = π∗1(g) + (f ◦ π1)2π∗2(h),

where X,Y ∈ Γ(T (M × N)), π1 : M ×f N −→ M and π2 : M ×f N −→ N
are canonical projection maps. The function f is called warping function. A
warped product manifold M ×f N with a constant warping function is said to
be a direct product manifold.

Theorem 2.1 ([6]). Let (M, g) and (N,h) be Riemannian manifolds with
the Levi-Civita connections ∇M and ∇N , respectively. Let ∇ and ∇̃ denote the
Levi-Civita connections of direct product manifold M ×N and warped product
manifold M ×f N , respectively. The Levi-Civita connection of warped product
manifold is given by
(2.2)

∇̃XY = ∇XY +
1

2f2
Y1(f2)(0, X2)+

1

2f2
X1(f2)(0, Y2)− 1

2
h(X2, Y2)(grad f2, 0),

for any (X1, Y1), (X2, Y2) ∈ Γ(T (M×N)), where X1, X2 ∈ Γ(TM) and Y1, Y2 ∈
Γ(TN). Here (Xi, Yi) , i = 1, 2, is identified with (Xi, 02) + (01, Yi).

Theorem 2.2 ([6]). Let (M, g) and (N,h) be Riemannian manifolds with
the Levi-Civita connections ∇M and ∇N , respectively and let R and R̃ denote
the curvature tensors of M×N and M×fN , respectively. Then, the curvature
tensor of warped product manifold M ×f N is given as follows:

R̃(X,Y )−R(X,Y ) =
1

2f2
{(∇MY1grad f

2 − 1

2f2
Y1(f2)grad f2, 0) ∧Gf (0, X2)

− (∇MX1
grad f2 − 1

2f2
X1(f2)grad f2, 0) ∧Gf (0, Y2)

− 1

2f2
| grad f2 |2 (0, X2) ∧Gf (0, Y2)}(2.3)

for any X,Y ∈ Γ(T (M × N)), X = (X1, X2), Y = (Y1, Y2), where X1, Y1 ∈
Γ(TM) and X2, Y2 ∈ Γ(TN).
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2.2. DISTRIBUTION

Let φ : (Mm, g) −→ (Nn, h) be a smooth submersion map between Rie-
mannian manifolds. For each x ∈ M , the tangent space at x splits TxM =
TVxM ⊕ THx M, where TVxM = ker dφx and THx M is the orthogonal compli-
ment of TVxM . By this decomposition, there exists the horizontal distribution
H = ∪xTHx M such that TM = H + V, where V = ∪xTVxM is the vertical dis-
tribution. This decomposition permits to write a vector field X ∈ χ(M) into
the horizontal and vertical form X = HX + VX, uniquely. The fundamental
tensor A and T associated to the horizontal and vertical distributions are given
by

(2.4) T (X,Y ) = H∇MVXVY + V∇MVXHY,

and

(2.5) A(X,Y ) = H∇MHXVY + V∇MHXHY,

where X,Y ∈ Γ(TM). Divergence and rough Laplacian of an arbitrary vector
field X on M related to the horizontal distribution are defined as follows

(2.6) divHX =
n∑
a=1

g(ea,∇MeaX),

and

(2.7) ∆HX = −
n∑
a=1

{
∇Mea∇

M
eaX −∇

M
∇Meaea

X

}
,

where {ea}na=1 is a local orthonormal frame of H. By reversing the roles of V
and H, the operators divV and ∆V can be defined similarly. Furthermore, the
mean curvator vector of the map φ is denoted by µV and defined as follows

(2.8) µV :=
m−n∑
r=1

H(∇Mer er),

where {er}m−nr=1 is a local orthonormal frame of V.

2.3. SEMI-CONFORMAL MAP

A smooth map φ : (Mm, g) −→ (Nn, h) is called semi-conformal map
with dilation λ if at each point x ∈M , either dφx ≡ 0 or the linear map

(2.9) dφx|Hx : Hx −→ Tφ(x)N,
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is a surjective and conformal map with dilation λ(x), [4]. For a semi conformal
submersion map φ : (Mm, g) −→ (Nn, h) with dilation λ, the tension field of
φ is given by τ(φ) = dφ(ωφ), where

(2.10) ωφ := (2− n)H grad lnλ− (m− n)µV ,

here µV denotes the mean curvature of the fibres, [4]. Now, we have

Lemma 2.3 ([3]). Let φ : (Mm, g) −→ (Nn, h) be a semi-conformal map
with dilation λ and υ be a vector field on M . Then

traceg(∇φ)2(dφ(υ)) = dφ(trace∇2υ) +∇φυτ(φ) + 2 < ∇dφ,∇υb >
+ dφ(RicciM (υ))− λ2RicciN (dϕ(υ)),(2.11)

where υb = g(υ, •) is the corresponding 1-form of υ determined by metric g and
< ∇dφ,∇υb >=

∑
i,j ∇φdφ(ei, ej)∇υb(ei, ej), here {ei} is a local orthonormal

frame on M.

By Lemma 2.3 and Equation (1.1), the biharmonic equation of φ can be
written as follows

(2.12) dφ(Tr∇2ωφ) +∇φωφdφ(ωφ) + 2 < ∇dφ,∇ωφ > +dφ(RicciM (ωφ)) = 0,

where ωφ is defined by (2.10).

3. BIHARMONICITY OF φ : (P,%) −→ (M ×f N,Gf)

In this section, we study the biharmonicity conditions of φx0 , defined as
follows

φx0 : (P, %) −→ (M ×f N,Gf )

y −→ (x0, ϕ(y))(3.1)

where ϕ : (P p, %) −→ (Nn, h) is a semi-conformal submersion map with dila-
tion λ and x0 be an arbitrary point of M . Particularly, it is shown that the
biharmonicity of the leaf {x0} ×N implies that grad | grad f2 |2= 0, at x0.

Remark 3.1. Let ψ : (P p, %) −→ (Mm, g) be a biharmonic semi-conformal
surjective map and y0 be an arbitrary point of N. Then, φy0 : (P, %) −→
(M ×f N,Gf ), defined by φy0(y) = (ψ(y), y0), is biharmonic.

Now, we use the methods of [1,3,4] to establish the following two lemmas.

Lemma 3.2. Let ϕ : (M, g) −→ (N,h) be a semi-conformal submersion
map with dilation λ and X,Y ∈ H. Then

(3.2) H∇XY = L(X,Y )− Y (lnλ)X − ωX,Y grad lnλ,
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where L(X,Y ) :=
∑

i,j X
b(ei)ei(Y

b(ej))ej and ωX,Y :=
∑

i,j δijX
b(ei)Y

b(ej),
here {ei} is a local orthonormal frame on M.

Proof. Take an arbitrary point of x0 ∈ M and fix it. We choose a local
orthonormal frame field {fa}na=1 corresponding to the normal coordinates in a
neighborhood of ϕ(x0). Then, we define ea as the normalize horizontal lift of fa
for a = 1, · · · , n, such that dϕ(ea) = λfa. Finally, we complete the horizontal
local frame field {ea}1≤a≤n to an orthonormal frame {ej}1≤j≤m = {ea, er},
where er ∈ kerdϕ, r ∈ {n+1, · · · ,m}, in a neighborhood of x0. On calculating
at x0, we have

λ2g([ea, eb], ec) = h(dφ([ea, eb]),dφ(ec))

= h(([dφ(ea), dφ(eb)]), dφ(ec))

= h(ea(λ)fb − eb(λ)fa, λfc)(3.3)

Thus

(3.4) g([ea, eb], ec) = ea(lnλ)δbc − eb(lnλ)δac

Due to the fact that ∇M is the Levi-Civita connection on M determined
by the metric g, we have

(3.5) 2g(∇Meaeb, ec) = g([ea, eb], ec) + g([ec, ea], eb)− g([eb, ec], ea),

by combining (3.5) and (3.4) we obtain

(3.6) H∇Meaeb = −eb(lnλ)ea + δab grad lnλ,

at the point x0. �

Lemma 3.3. Let ϕ : (Mm, g) −→ (Nn, h) be a semi-conformal submersion
map with dilation λ between Riemannian manifolds. Then

∇ϕY dϕ(X) = dϕ(∇MY X) +X(ln λ)dϕ(Y ) + Y (lnλ)dϕ(X)

− ωHX,HY dϕ(grad lnλ)− dϕ

(
A(X,Y ) +A(Y,X)

+ T (X,Y )

)
,(3.7)

where X,Y ∈ Γ(TM) and ωX,Y :=
∑

i,j δijX
b(ei)Y

b(ej), here {ei} is a local
orthonormal frame on M.

Proof. Taking an arbitrary point of x0 ∈ M and fix it. Let {ei}1≤i≤m =
{ea, er} be the local orthonormal frame field in a neighborhood of x0, as in
proof of Lemma 3.2. By calculating at the point x0 and considering (3.2), we
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have

∇ϕY dϕ(X) = Y b(ei)ei(X
b(ea))dϕ(ea) +Xb(ea)Y

b(ei)ei(lnλ)dϕ(ea)

= Y b(ei)ei(X
b(ej))dϕ(ej) + Y (lnλ)dϕ(X)(3.8)

and

H∇MY X = Y b(ei)ei(X
b(ea))ea +Xb(ej)Y

b(ei)H∇Mei ej
= Y b(ei)ei(X

b(ea))ea +Xb(ea)Y
b(eb)H∇Meb ea

+Xb(er)Y
b(eb)H∇Meb er +Xb(ea)Y

b(es)H∇Mes ea
+Xb(er)Y

b(es)H∇Mes er(3.9)

Due to the fact that dϕ(A(HX,VY )) = dϕ(A(X,Y )) and dϕ(T (VX,VY ))
= dϕ(T (X,Y )), we obtain

Y b(ei)ei(X
b(ea)dϕ(ea) = dϕ(∇MY X)− ωHX,HY dϕ(grad lnλ) +X(lnλ)dϕ(Y )

− dϕ(A(X,Y ) +A(Y,X) + T (X,Y )).(3.10)

By substituting (3.10) in (3.8), the formula (3.7) is obtained and hence com-
pletes the proof. �

Theorem 3.4. Let ϕ : (P p, %) −→ (Nn, h) be a non-harmonic biharmonic
semi-conformal submersion map with dilation λ between Riemannian manifold
and x0 be an arbitrary point of M. Then, φx0, defined by (3.1), is a non-
harmonic biharmonic map if and only if λ and f and the following equations
are satisfied

ωϕ −
1

1 + 2(n− 1)λ2f2
(H grad lnλn(n−6) + nµ) = 0,(3.11)

and

− div ωϕ − divHωϕ − (n+ 2)ωϕ(lnλ)− 4n | grad lnλ |2

+ 2n∆ lnλ grad f2 − n2

4
λ2grad | grad f2 |2= 0,(3.12)

where ωφ defined by (2.10) and µV is the mean curvature vector field.

Proof. Take an arbitrary point of p0 ∈ P and fix it. Let {ei} be the
local frame field in a neighbourhood of p0, as in Lemma (3.2). By definition of
tension field, we have

τ(φx0) =

p∑
i=1

{
∇φx0ei dφx0(ei)− dφx0(∇peiei)

}
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=

p∑
i=1

{
∇̃(0,dϕ(ei))(0,dϕ(ei))− (0,dϕ(∇peiei))

}
= (0, τ(ϕ))− n

2
λ2(grad f2, 0) ◦ φx0

= (0, dϕ(ωϕ))− n

2
λ2(grad f2, 0) ◦ φx0 .(3.13)

Here it’s obvious that φx0 is harmonic if and only if ϕ is harmonic and f
is constant, but this is in contradiction with the assumption that ϕ is a non-
harmonic biharmonic map. Now, we compute the rough Laplacian of section
τ(φx0). By (2.2), we have

∇φx0ei τ(φx0) = ∇φx0ei (0,dϕ(ωϕ))− n

2
∇φx0ei λ2(grad f2, 0) ◦ φx0

= ∇̃(0,dϕ(ei))(0, dϕ(ωϕ))− n

2
λ2∇̃(0,dϕ(ei))(grad f

2, 0) ◦ φx0
− nλ2ei(lnλ)(grad f2, 0) ◦ φx0

= (0,∇ϕeidϕ(ωϕ))− 1

2
λ2(ωb

ϕ(ei) + 2nei(lnλ))(grad f2, 0) ◦ φx0
− nλ2 | grad f |2 (0,dϕ(ei)),(3.14)

Thus, we get

∇φx0ei ∇
φx0
ei τ(φx0) = ∇φx0ei ∇

φx0
ei (0, dϕ(ωϕ))− n

2
∇φx0ei ∇

φx0
ei λ2(grad f2, 0) ◦ φx0

= −λ2 | grad f |2 (5n ei(lnλ) + ωb
ϕ(ei))(0,dϕ(ei))

+ (0,∇ϕei∇
ϕ
eidϕ(ωϕ))− 1

2

{
h(dϕ(ei),∇ϕeidϕ(ωϕ))

+ λ2(2ωb
ϕ(ei)ei(lnλ) + ei(ω

b
ϕ(ei)) + 4n(ei(ln λ))2

+ 2nei(ei(ln λ))− n h(dϕ(ei),dϕ(ei)) | grad f |2)

}
(grad f2, 0) ◦ φx0 .(3.15)

Moreover

∇φx0∇peiei
τ(φx0) = ∇φx0∇Peiei

(0, dϕ(ωϕ))− n

2
∇φx0∇Peiei

λ2(grad f2, 0) ◦ φx0

= (0,∇ϕ∇Peiei
dϕ(ωϕ))− nλ2 | grad f |2 (0, dϕ(∇Peiei))

− 1

2

{
h(dϕ(ωϕ), dϕ(∇Peiei)) + 2nλ2d lnλ(∇Peiei)

}
(grad f2, 0) ◦ φx0 ,(3.16)
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Furthermore,
p∑
i=1

h(dϕ(ei),∇ϕeidϕ(ωϕ)) =
n∑
a=1

h(dϕ(ea),∇ϕeadϕ(ωϕ))

= λ2
n∑
a=1

{
%(ea,∇Peaωϕ) + ωϕ(lnλ)δaa

}
= λ2divH(ωϕ) + nλ2ωϕ(lnλ)(3.17)

and
p∑
i=1

h(dϕ(ωϕ), dϕ(∇peiei)) = λ2
p∑
i=1

%(ωϕ,∇Peiei)

= λ2
p∑
i=1

{
ei(ω

b
ϕ(ei))− %(ei,∇Peiωϕ)

}

= −λ2(div ωϕ −
p∑
i=1

ei(ω
b
ϕ(ei))(3.18)

By (3.15)–(3.18), we get

−∆φx0 τ(φx0) = (0,−∆ϕτ(ϕx0)) +
λ2

2

{
(−div ωϕ − divHωϕ

− (n+ 2)ωϕ(ln λ)− 4n | grad lnλ |2 +2n∆ lnλ

+ n2λ2 | grad f |2)

}
(grad f2, 0) ◦ φx0

+ λ2 | grad f |2 (0,dϕ(grad lnλn(n−6) + nT − ωϕ))(3.19)

On the other hand, by making use of (2.3), it can be seen that

traceR̃(τ(φx0),dφx0)dφx0 = traceR̃(dφx0(ωϕ),dφx0)dφx0

− n

2
λ2traceR̃((grad f2, 0),dφx0)dφx0

= λ2(0, RicciN (dϕ(ωϕ)))

− 2(n− 1)f2λ4 | grad f |2 (0,dϕ(ωϕ))

+
n2

8
λ4

{
(grad | grad f2 |2, 0)

− 1

f2
| grad f2 |2 (grad f2, 0)

}
(3.20)
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by (1.1), (3.19) and (3.20), we have

τ2(φx0) =
λ2

2
(−div ωϕ − divHωϕ − (n+ 2)ωϕ(ln λ)− 4n | grad lnλ |2

+ 2n∆ lnλ)(grad f2, 0) ◦ φx0 +
n2

8
λ4(grad | grad f2 |2, 0) ◦ φx0

+ λ2 | f |2
(

0, dϕ(grad lnλn(n−6)) + nT

− (1 + 2(n− 1)λ2f2)ωϕ

)
(3.21)

Thus, biharmonicity of φx0 implies that

− div ωϕ − divHωϕ − (n+ 2)ωϕ(lnλ)− 4n | grad lnλ |2

+ 2n∆ lnλ grad f2 − n2

4
λ2grad | grad f2 |2= 0,(3.22)

and

ωϕ −
1

1 + 2(n− 1)λ2f2
(H grad lnλn(n−6) + nµ) = 0,(3.23)

This completes the proof. �

Now, we consider Theorem 3.4, when the map ϕ is conformal between
equidimensional manifolds. Note that, any conformal map φ : (Mn, g) −→
(Nn, h) between Riemannian manifolds of the same dimension (n > 2) is a
local conformal diffeomorphism, (cf. [3, Theorem 11.4.6]).

Corollary 3.5. Let ϕ : (Pn, %) −→ (Nn, h) be a non-harmonic bihar-
monic conformal map between manifolds of the same dimension (n > 2) and x0

be an arbitrary point of M. Then, φx0 defined by (3.1) is never a non-harmonic
biharmonic map.

Proof. Due to the fact that ϕ has no critical points and considering (2.10),
we have

(3.24) ωϕ = grad lnλ2−n

By using (3.11) and (3.24), the biharmonicity of φx0 implies that grad lnλ ≡
0, but this is in contradiction with that ϕ is a non-harmonic biharmonic map,
and hence completes the proof. �

By Corollary 3.5, we get

Corollary 3.6 ( [6]). Let x0 be an arbitrary point of M . Then, the
inclusion map ix0 : (N,h) −→ (M ×f N,Gf ), defined by ix0(y) = (x0, y), is a
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non-harmonic biharmonic map if and only if

(3.25) grad | grad f2 |2= 0,

at x0.

Example 3.7. Let Sm be the m−dimensional unit sphere, Rn be the
n-dimensional Euclidean space and x0 be an arbitrary point of Rn−{0}. Also,
let f(x) =

√
| x |, for x ∈ Rn − {0}. By (3.25), it can be shown that the map

ixo : Sm −→ Rn − {0} ×f Sm

y −→ (x0, y)

is a non-harmonic biharmonic map.

4. BIHARMONICITY OF φ : (M ×f N,Gf) −→ (P,%)

Let ϕ : (Mm, g) −→ (P p, %) and ψ : (Nn, h) −→ (Qq, ρ) are biharmonic
semi-conformal maps with dilation λ and σ, respectively. In this section, we
give the same characterization for

φ1 : (Mm ×f Nn, Gf ) −→ (P p, %)

(x, y) −→ ϕ(x)(4.1)

and

φ2 : (Mm ×f Nn, Gf ) −→ (Qq, ρ)

(x, y) −→ ψ(y)(4.2)

to be biharmonic. In particular case, biharmonicity of projection maps from
the warped product manifold onto a first (or second) factor are studied.

By using the methods of [3] and [12], we have the following lemma

Lemma 4.1. Let φ : (Mm, g) −→ (Nn, h) be a semi-conformal map with
dilation λ and f ∈ C∞(M) be a smooth positive function. Then

−Jφ(dφ(grad ln f)) = dφ(grad (∆ ln f) + 2RicciM (grad ln f)) + (2∆H ln f

− 2grad lnλ(ln f)− ωφ(lnλ))dφ(grad lnλ)

+ (ωφ(lnλ) + 2 | H grad lnλ |2)dφ(grad ln f)

+ grad lnλ(ln f)dφ(ωφ) + 4dφ(∇H grad lnλH grad ln f)

− dφ(A(ωφ, grad ln f))− 4∇df(ea, er)dφ(A(ea, er))

− 2∇df(er, es)dφ(T (er, es))(4.3)

Proof. By making use of (2.11) and considering the following relation

trace∇2(grad lnf) = grad ∆ ln f +RicciM (grad ln f),
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see ([3], Eq. 3, pp. 406), we have

−Jφ(dφ(grad ln f)) = ∇φgard ln fτ(φ) + 2 < ∇dφ,∇d ln f >

+ dφ(gard ∆ ln f) + 2RicciM (gard ln f).(4.4)

First, we calculate the first term of the right hand side of (4.4). By (3.7),
we get

∇φgrad lnfτ(φ) = ∇φgrad lnfdφ(ωφ)

= dφ(∇Mgrad ln fωφ + grad ln f(lnλ)ωφ − ωφ(lnλ)grad lnλ

+ ωφ(lnλ)grad ln f −A(ωφ, grad ln f)).(4.5)

Now, we calculate the second term of the right hand side of (4.4). Taking
an arbitrary point of x0 ∈M and fix it. Let {ej} = {ea, er} be an orthonormal
frame at x0, as in proof of Lemma 3.2, we get

< ∇dφ,∇df > = ∇φdφ(ea, eb)∇df(ea, eb) + (∇df(ea, er)

+∇df(er, ea))∇φdφ(ea, er) +∇φdφ(er, es)∇df(er, es),(4.6)

By making use of (3.6), it follows that

∇φdφ(ea, eb)∇df(ea, eb) = 2H grad lnλ(ea(ln f))dφ(ea)− ea(ea(ln f))

dφ(grad lnλ)+ | H grad lnλ |2 grad ln f

+ (n− 2)grad lnλ(ln f)dφ(grad lnλ).(4.7)

By (3.6), at x0, we have

∆H ln f = −ea(ea(ln f)) + d ln f(∇eaea)
= −ea(ea(ln f)) + (n− 1)grad lnλ(ln f),(4.8)

and

∇φH grad lnλdφ(Hgrad lnf) = eb(ln λ)eb(ea(ln f))dφ(ea)

+ eb(ln λ)ea(ln f)∇φebdφ(ea)

= Hgrad lnλ(ea(ln f))dφ(ea)

+ | Hgrad lnλ |2 dφ(grad ln f)(4.9)

By (4.7),(4.8) and (4.9) we get

∇φdφ(ea, eb)∇df(ea, eb) = ∆H ln fdφ(grad lnλ)

+ | H grad lnλ |2 dφ(grad ln f)

− grad lnλ(ln f)dφ(grad lnλ)

+ 2dφ(∇Hgrad lnλH grad ln f)(4.10)
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Since ∇dφ(ei, er) = −dφ(∇eier), we have

−∇φdφ(ea, er)∇df(er, ea)) = ∇φdφ(ea, er)(∇df(ea, er)

+2∇df(ea, er)dφ(A(ea, er)),(4.11)

and

∇φdφ(er, es)∇df(er, es) = −∇df(er, es)T (er, es).(4.12)

Substitute (4.10), (4.11), (4.12) into (4.7), we have

< ∇dφ,∇df > = (∆H ln f − grad lnλ(ln f))dφ(grad lnλ)

+ | H grad lnλ |2 dφ(grad ln f)

+ 2dφ(∇H grad lnλH grad ln f)

− 2∇df(ea, er)dφ(A(ea, er))−∇df(er, es)T (er, es),(4.13)

By substituting (4.5) and (4.13) in (4.4), we obtain (4.3). This completes

the proof. �

Theorem 4.2. Let ϕ : (Mm, g) −→ (P p, %) be a biharmonic semi-con-

formal submersion map with dilation λ.Then, φ1 defined by (4.1) is a non-

harmonic biharmonic map if and only if

0 = Hgrad ∆ ln f + 2HRicciM (grad ln f) + (n/2)Hgrad | grad ln f |2

+ 4H∇H grad lnλHgrad lnλ+ (2∆H ln f − 2grad lnλ(ln f)− ωφ(ln f)

− ωφ(lnλ)− n | grad ln f |2)Hgrad lnλ+H∇grad ln fωφ

+ (2ωφ(lnλ) + 2 | Hgrad lnλ |2 +2n grad lnλ(ln f))Hgrad ln f

+ 2grad lnλ(ln f)ωφ − 4∇df(ea, er)A(ea, er)− 2∇df(er, es)T (er, es)

− 2nA(Hgrad ln f,Vgrad ln f)− nT (Vgrad ln f,Vgrad ln f)

(4.14)

Proof. Take an arbitrary point of (x0, y0) ∈ M × N and fix it. Let

{Ui = (ei, 0), Um+α = (0, 1
f eα); 1 ≤ i ≤ m, 1 ≤ α ≤ n} be a local orthonormal

frame around (x0, y0), where {ei} = {ea, er} is the local orthonormal frame in

a neighbourhood of x0 ∈M , as in proof of Lemma (3.3) and {eα}1≤α≤n be an

arbitrary local orthonormal frame in a neighbourhood of y0 ∈ N . By definition

of tension field, we have

τ(φ1) =

m∑
i=1

{
∇φ1Uidφ1(Ui)− dφ1(∇̃UiUi)

}
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+
1

f2

n∑
α=1

{
∇φ1Um+α

dφ1(Um+α)− dφ1(∇̃Um+αUm+α)

}
= τ(φ) + n dφ(grad ln f)

= dφ(ωφ) + ndφ(grad ln f)(4.15)

According to the biharmonic equation, we get

−Jφ1(τ(φ1)) = −∆φ1τ(φ1)− traceGfR
p(dφ1, τ(φ1))dφ1

= τ2(φ)− nJφ(dφ(grad ln f)) + n∇φgrad ln fdφ(ωφ)

+ n2∇φgrad ln fdφ(grad ln f)(4.16)

By Lemma (3.3), we have

n∇φgrad ln fdφ(ωφ) = ndφ(∇Mgrad ln fωφ) + nωφ(lnλ)dϕ(grad ln f)

− nωφ(ln f)dϕ(grad lnλ) + ngrad lnλ(ln f)dϕ(ωφ)

+ nA(ωφ,V grad ln f)(4.17)

and

n2∇φgrad ln fdφ(grad ln f) =
n2

2
dφ(grad | grad ln f |2)

+ 2n2grad ln f(lnλ)dφ(grad ln f)

− n2 | grad ln f |2 dφ(grad lnλ)

− n2dφ(T (grad ln f, grad ln f)

+ 2A(grad ln f, grad ln f))(4.18)

Substituting (4.17) and (4.18) into (4.16), we obtain (4.14) and hence

completes the proof. �

By Theorem 4.2, we have the following result

Corollary 4.3. Let ϕ : (Mn, g) −→ (Pn, %)be a biharmonic conformal

map between Riemannian manifolds of the same dimension n ≥ 3. Then, φ1

defined by (4.1) is biharmonic if and only if

0 = grad ∆ ln f + 2RicciM (grad ln f) + (n/2)grad | grad ln f |2

+ 4∇H grad lnλgrad lnλ+∇grad ln fgrad lnλ2−p

+ (2∆ ln f − 2grad lnλ(ln f)− (2− p)grad lnλ(ln f)

− (2− p)grad lnλ(lnλ)− n | grad ln f |2)grad lnλ

+ 2((2− p)grad lnλ(lnλ)+ | grad lnλ |2
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+ n grad lnλ(ln f))grad ln f

+ (2− p)grad lnλ(ln f)grad lnλ.(4.19)

By Corollary 4.3, it can be easily seen that

Corollary 4.4. The projection map of a warped product manifold onto

its first factor is biharmonic if and only if

gard∆ ln f +RicciM (gard ln f) +
n

2
grad | grad ln f |2= 0.

Similarly to the proof of Theorem 4.2, we get

Theorem 4.5. Let ψ : (Nn, h) −→ (Qq, ρ) be a biharmonic semi-con-

formal map with dilation λ and let M be a non-compact manifold. Then, the

map φ2 : (Mm ×f Nn, Gf ) −→ (Qq, ρ), defined by (4.2) is biharmonic if and

only if

(4.20) ∆f−2 − q

2
| gard f−2 |2= 0.

Proof. By calculating similar to (4.2), we have

(4.21) τ2(φ2) = (∆ f−2 − q

2
| grad f−2 |2)dϕ(ωψ),

Since ψ is a non-harmonic biharmonic map then dψ(ωψ) 6= 0. Therefore,

the biharmonicity of φ1 implies that

(4.22) ∆f−2 − q

2
| gard f−2 |2= 0.

This completes the proof. �

According to the proof of Theorem 4.5, we have

Corollary 4.6. The projection map π2 : (Mm ×f Nn, Gf ) −→ (Nn, h),

of a warped product manifold onto it’s second factor is harmonic.

Remark 4.7. The biharmonicity conditions of projection maps from a war-

ped product manifolds are studied in [6].

5. PRODUCT MAPS

In this section, we study the biharmonicity conditions of the product

maps between warped product manifolds. Let ϕ : (Mm, g) −→ (P p, %) and

ψ : (Nn, h) −→ (Qq, ρ) are biharmonic maps. It can be easily seen that

the product map φ = ϕ × ψ : (M × N, g ⊕ h) −→ (M × N, g ⊕ h) between

direct product manifolds is biharmonic if and only if ϕ and ψ are biharmonic.
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If the product metric (either as the domain or target) is modified, then the

biharmonicity of product map may be failed. First, we consider the product

map

φ̄ : (Mm ×f Nn, Gf ) −→ (P p ×Qq, %⊕ ρ)

(x, y) −→ (ϕ(x), ψ(y))(5.1)

where ϕ : (M, g) −→ (P, %) and ψ : (N,h) −→ (Q, ρ) are semi-conformal maps.

Theorem 5.1. Let ϕ : (Mm, g) −→ (P p, %) and ψ : (Nn, h) −→ (Qq, ρ)

are semi-conformal maps with dilation λ and σ, respectively. Then, φ̄, defined

by (5.1), is biharmonic if and only if φ1 and φ2 defined by (4.1)–(4.2) are

biharmonic.

Proof. Take an arbitrary point of (x0, y0) ∈ M × N and fix it. Let

{Ui, Um+α; i = 1, · · · ,m, α = 1, · · · , n} be the local orthonormal frame, as

in proof of Theorem (4.2). By definition of tension field, we have

τ(φ̄) =
m∑
i=1

{
∇Uidφ̄(Ui)− dφ̄(∇̃UiUi)

}

+
1

f2

n∑
α=1

{
∇Uαdφ̄(Uα)− dφ̄(∇̃UαUα)

}
= (τ(ϕ), 0) +

1

f2
(0, τ(ψ)) + n(dϕ(grad ln f), 0)(5.2)

by (1.1) and (5.2), we have

−J φ̄(τ(φ̄)) = −J φ̄(dφ̄(ω1))− J φ̄(
1

f2
dφ̄(ω2))− nJ φ̄(dφ̄(grad ln f))

= (τ2(ϕ), 0) +
1

f2
(0, τ2(ψ))− n

(
∆ϕ(dϕ(grad ln f)

+RicciP (dϕ(grad ln f)), 0

)
+

(
∆f−2 − n

2
f2 | grad f−2 |2)

(0, dψ(ω2)) + n(∇ϕgrad ln fdϕ(ω1), 0) + n2(∇ϕgrad ln fdϕ(grad ln f), 0

)
= (τ(φ1), 0) + (0, τ(φ2))(5.3)

Thus, biharmonicity of φ̄ implies φ1 and φ2 are biharmonic and hence

completes the proof . �

Finally, we study the biharmonicity conditions of φ̂ defined as follows

φ̂ = ̂idM × ϕ : (M × P, g ⊕ h) −→ (M ×f N,Gf )
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(x, y) −→ (x, ϕ(y))(5.4)

where idM : (M, g) −→ (M, g) is an identity map and ϕ : (P p, %) −→ (Nn, h)

is a surjective semi-conformal map with dilation λ.

Theorem 5.2. Let ϕ : (P p, %) −→ (Qq, ρ) be a biharmonic semi-conformal

map with dilation λ. Then, φ̂ defined by (5.4), is biharmonic if and only if

0 = (−div ωϕ − divHωϕ − (n+ 2)ωϕ(lnλ)− 4n | grad lnλ |2

+ 2n∆ lnλ)grad f2 − n2

4
λ2grad | grad f2 |2 −nRicciMgrad f2(5.5)

and

0 = (λ2 | grad f |2 (1 + 2(n− 1)λ2f2) + ∆ ln f + grad ln f)ωϕ

− λ2 | grad f |2 (Hgrad lnλn(n−6) + nT ),(5.6)

Proof. Taking an arbitrary point of (x0, y0) ∈ M × P . Let {Ui = (ei, 0),

Um+j = (0, fj), 1 ≤ i ≤ m, 1 ≤ j ≤ p} is a local orthonormal frame in a

neighborhood of (x0, y0), where {ei} and {fj} be local orthonormal frames

around x0 and y0, respectively. By definition of tension field, we have

τ(φ̂) =

m∑
i=1

{
∇φ̂Uidφ̂(Ui)− dφ̂(∇UiUi)

}
+

P∑
j=1

{
∇φ̂Ujdφ̂(Uj)− dφ̂(∇UjUj)

}
= −n

2
λ2(grad f2, 0) + (0, τ(ϕ))

= −nλ2f2(grad ln f, 0) + dφ̂(ωϕ)(5.7)

By calculating bitension field, we get

τ2(φ̂) =

m∑
i=1

{
∇φ̂Ui∇

φ̂
Ui
τ(φ̂)−∇φ̂∇UiUiτ(φ̂) + R̃(τ(φ̂),dφ̂(Ui))dφ̂(Ui)

}

+

p∑
j=1

{
∇φ̂Uj∇

φ̂
Uj
τ(φ̂)−∇φ̂∇UjUjτ(φ̂) + R̃(τ(φ̂),dφ̂(Uj))dφ̂(Uj)

}
= (∆ ln f + grad ln f)(0,dϕ(ωϕ))− n

2
λ2(trace(∇M )2grad f2, 0)

− n

2
λ2(RicciMgrad f2, 0)

+

p∑
j=1

{
∇φ̂Uj∇

φ̂
Uj
τ(φ̂)−∇φ̂∇UjUjτ(φ̂) + R̃(τ(φ̂),dφ̂(Uj))dφ̂(Uj)

}

=
λ2

2
(div ωϕ − divHωϕ − (n+ 2)ωϕ(lnλ)− 4n | grad lnλ |2
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+ 2n∆ lnλ)(grad f2, 0) ◦ φx0 +
n2

8
λ4(grad | grad f2 |2, 0) ◦ φx0

− n

2
λ2(RicciMgrad f2, 0) + λ2 | grad f |2 (0, dφ(grad lnλn(n−4)

+ nT ))− (λ2 | grad f |2 (1 + 2(n− 1)λ2f2) + ∆ ln f

+ grad ln f)(0,dϕ(ωϕ))(5.8)

Thus, biharmonicity of φ̂ implies that

0 = (−div ωϕ − divHωϕ − (n+ 2)ωϕ(lnλ)− 4n | grad lnλ |2

+ 2n∆ lnλ)grad f2 − n2

4
λ2grad | grad f2 |2 −nRicciMgrad f2(5.9)

and

0 = (λ2 | grad f |2 (1 + 2(n− 1)λ2f2) + ∆ ln f + grad ln f)ωϕ

− λ2 | grad f |2 (H grad lnλn(n−6) + nT ),(5.10)

This completes the proof. �
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