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In this paper, biharmonicity of some special maps from or into a warped product
manifold are studied. First, we obtain the biharmonicity conditions of semi-
conformal maps from a Riemannian manifold into a warped product manifold.
Next, we give some characterization for semi-conformal surjective maps from a
warped product manifold onto a Riemannian manifold to be biharmonic. Finally,
two new classes of non-harmonic biharmonic maps are constructed by using
products of semi-conformal surjective maps ® = ¢ x ¢y : M x N — P x @ and
warping the domain or target.
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1. INTRODUCTION

The notion of warped product manifolds was first studied by Bishop and
O’Neill for constructing negative curvature manifolds, [8]. In view of Physics,
warped product manifolds play a crucial role in plethora of physical application
such as general relativity, string and super gravity theories, [7]. For instance,
the best model of space-time that describes the out space near black holes or
bodies with large gravitational force is given as a warped product manifold, [11].

In 1969, biharmonic maps, as an extension of harmonic maps, were first
introduced by Eells and Sampson, [9]. A smooth map ¢ : (M, g) — (N, h) is
called biharmonic if ¢ is a critical point of the bienergy functional defined as
follows

Ba0) =5 [ 170) v,

where 7(¢) := traceVde is the tension field of ¢. The Euler-Lagrange equation
associated to Es is obtained as follows

(1.1) 72(0) := —J?(7(¢)) = —A®7(¢) — trace RN (d¢, 7(¢))d¢ = 0,
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here J? is a Jacobi operator and A? is the rough Laplacian on the sections of
¢~Y(TN), [10]. The equation (1.1) is called biharmonic equation of ¢.

Since 2000, harmonic and biharmonic maps have been extensively stu-
died by many scholars, see for instance, [1-6,9,10,12,13]. Two main research
directions related to this topic are differential geometry and partial differential
equation. From the differential geometric aspect, constructing the examples
and classification results have become important. We shall try to follow this
direction in this paper. In view of partial differential equation, biharmonic
maps are solutions of a fourth order strongly elliptic semi-linear PDE.

In [6], the authors studied the biharmonicity of special maps between
warped product manifolds such as projections, inclusions and product maps
and gave examples. In [1], the authors constructed new examples of non-
harmonic biharmonic maps by conformally deforming the domain metric of
harmonic ones, while in [5], there were given new methods to construct non-
harmonic biharmonic map by conformal change of metric on the target ma-
nifold of harmonic Riemannian submersions. Moreover, recently in [2], by
exploiting biconformal transformations of the metric, the authors constructed
biharmonic functions and mappings from Riemannian manifolds. Biharmonic
semi-conformal maps between Riemannian manifolds were studied in [3,12].
In [6], two new classes of non-harmonic biharmonic maps are given by using
product of harmonic maps and warped product manifolds. In the present pa-
per, this idea is taken by replacing harmonic by biharmonic semi-conformal
map.

The present article is organized as follows.

In Section 2, the concept of warped product manifolds and semi-conformal
maps are reviewed. In Section 3, the biharmonicity conditions of some special
semi-conformal maps from a Riemannian manifold P into a warped product
manifold M xy N are analyzed. In Section 4, some characterization are given
for semi-conformal maps from a warped product manifold M x; N onto a
Riemannian manifold to be biharmonic maps. In Section 5, two new classes
of non-harmonic biharmonic maps are constructed by using products of semi-
conformal maps ® = ¢ x ¢ : M x N — P x @) and warping the domain or
target.

Throughout this paper, we consider that (M™, g), (N™, h), (PP, 0), (Q%, p)
be Riemannian manifolds of dimensions m,n,p and ¢, repectively. Let ¢ :
(M,g) — (N, h) be a smooth map between Riemannian manifolds. Denote
the Levi-Civita connections on M and N by VM and V¥, respectively. Furt-
hermore, the induced connection on ¢ 'T'N and @>T*M ® ¢~ TN are denoted
by V? and V, respectively.
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2. PRELIMINARIES

In this section, a few basic notions of warped product manifolds, distri-
butions and semi-conformal maps are provided which will be used later. For
more details see [3,4,9].

2.1. WARPED PRODUCT MANIFOLDS

Let (M™,g) and (N",h) be Riemannian manifolds and let f € C*°(M)
be a positive smooth function on M. The warped product M x; N is the
product manifold M x N equipped with the Riemannian metric

(2.1) Gy =mi(g) + (f o m)*m3(h),

where X, Y e I'(T(M x N)), my : M xy N — M and mp : M x; N — N
are canonical projection maps. The function f is called warping function. A
warped product manifold M Xy N with a constant warping function is said to
be a direct product manifold.

THEOREM 2.1 ([6]). Let (M, g) and (N, h) be Riemannian manifolds with
the Levi-Civita connections VM and VY, respectively. Let V and V denote the
Levi-Civita connections of direct product manifold M x N and warped product
manifold M xy N, respectively. The Levi-Civita connection of warped product
manifold is given by
(2.2)

VY = ViV b = Vi(£2)(0, Xa) + —es X1 (£2)0, Y2)—*h(X27Y2)(9mdf2 0),

22 212
forany (X1,Y1),(Xo,Ys) e T(T(M xN)), where X1, Xy € T(TM) and Y1,Ys €
I(T'N). Here (X;,Y;) , i = 1,2, is identified with (X;,02) + (01, Y;).

THEOREM 2.2 ([6]). Let (M, g) and (N, h) be Riemannian manifolds with
the Levi-Civita connections VM and V'V, respectively and let R and R denote

the curvature tensors of M x N and M x y N, respectively. Then, the curvature
tensor of warped product manifold M x y N is given as follows:

R(X,Y) = R(X,Y) =3 f2{<V%gradf2 5 f2Y1<f2>gmd 12,0) Ag, (0, X)
- (Vxlgmdf2 - QTQXl(fQ)def?,O) Na; (0,Y2)
(2.3) _ 2}2 | grad f? 2 (0, X2) Ag, (0,Ya)}

for any X, Y € T'(T'(M x N)), X = (X1,X2), Y = (Y1,Y3), where X;,Y; €
[(TM) and Xa,Ys € D(TN).



444 Seyed Mehdi Kazemi Torbaghan and Morteza Mirmohammad Rezaii 4

2.2. DISTRIBUTION

Let ¢ : (M™,g9) — (N™, h) be a smooth submersion map between Rie-
mannian manifolds. For each x € M, the tangent space at x splits T,M =
TYM @ THM, where TY M = ker d¢, and TJ*M is the orthogonal compli-
ment of 7Y M. By this decomposition, there exists the horizontal distribution
H = U, T M such that TM = H + V, where V = U, TY M is the vertical dis-
tribution. This decomposition permits to write a vector field X € x(M) into
the horizontal and vertical form X = HX + VX, uniquely. The fundamental
tensor A and T associated to the horizontal and vertical distributions are given

by

(2.4) T(X,Y) = HVILVY + VWL HY,
and
(2.5) AX,Y) = HV VY + vV iy,

where X,Y € I'(T'M). Divergence and rough Laplacian of an arbitrary vector
field X on M related to the horizontal distribution are defined as follows

(2.6) divtX = Zg(ea, Vé\fX),
a=1
and
(2.7) ARX = -3 {VMVMX Ve, }
a=1

where {e,}!_; is a local orthonormal frame of #. By reversing the roles of V
and H, the operators divY and AY can be defined similarly. Furthermore, the
mean curvator vector of the map ¢ is denoted by p¥ and defined as follows

(2.8) Z H VMeT
r=1

where {e,};7" is a local orthonormal frame of V.

2.3. SEMI-CONFORMAL MAP

A smooth map ¢ : (M™,g) — (N™,h) is called semi-conformal map
with dilation A if at each point © € M, either d¢, = 0 or the linear map
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is a surjective and conformal map with dilation A(x), [4]. For a semi conformal
submersion map ¢ : (M™,g) — (N", h) with dilation A, the tension field of
¢ is given by 7(¢) = dé(wy), where

(2.10) wy = (2—n)Hgrad In X — (m —n)uY,
here 1V denotes the mean curvature of the fibres, [4]. Now, we have

LEMMA 2.3 ([3]). Let ¢ : (M™,g) — (N™, h) be a semi-conformal map
with dilation A and v be a vector field on M. Then

tracey(V?)*(dp(v)) = do(traceV?v) + VOr(¢) + 2 < Vdg, Vo© >
(2.11) + do(Ricci™ (v)) — A2 Ricci™ (dp(v)),

where v° = g(v, ®) is the corresponding I1-form of v determined by metric g and
< Vdg, Vol >= D V?do(ei, e;)V(ei,e;), here {e;} is a local orthonormal
frame on M.

By Lemma 2.3 and Equation (1.1), the biharmonic equation of ¢ can be
written as follows

(2.12) de(TrViwy) + Vf¢d¢(w¢) +2 < Vdg, Vwg > +dé(Ricci (wy)) = 0,
where wy is defined by (2.10).

3. BIHARMONICITY OF ¢ : (P, @) — (M x; N,Gy)
In this section, we study the biharmonicity conditions of ¢,,,, defined as
follows
Pay : (Pr0) — (M x5 N,Gy)
(3.1) y — (w0, 0(y))

where ¢ : (PP, 9) — (N™, h) is a semi-conformal submersion map with dila-
tion A and zg be an arbitrary point of M. Particularly, it is shown that the
biharmonicity of the leaf {zg} x N implies that grad | grad f? |?>= 0, at xq.

Remark 3.1. Let ¢ : (PP, o) — (M™, g) be a biharmonic semi-conformal
surjective map and yo be an arbitrary point of N. Then, ¢, : (P,0) —
(M xy N,Gy), defined by ¢y, (y) = (¥(y), yo), is biharmonic.

Now, we use the methods of [1,3,4] to establish the following two lemmas.

LEMMA 3.2. Let ¢ : (M,g) — (N, h) be a semi-conformal submersion
map with dilation A\ and X,Y € H. Then

(3.2) HVxY = L(X,Y) - Y(In\)X —wx ygrad In A,
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where L(X,Y) := ZU X(e)ei(YP(ej))e; and wxy = Zi,j 55 X%(ei)Y"(ej),
here {e;} is a local orthonormal frame on M.

Proof. Take an arbitrary point of g € M and fix it. We choose a local
orthonormal frame field {f,}!_; corresponding to the normal coordinates in a
neighborhood of ¢(zp). Then, we define e, as the normalize horizontal lift of f,
for a =1,--- ,n, such that dp(e,) = Af,. Finally, we complete the horizontal
local frame field {e;}1<q<n to an orthonormal frame {e;}i<j<m = {eq,er},
where e, € kerdp, r € {n+1,--- ,m}, in a neighborhood of xy. On calculating
at xg, we have

Ng(leas en], ec) = h(dd([ea es]), dg(ec))

= h(([d¢(ea)7 d¢(eb)])7 d¢(6c))
(3'3) = h(eaO‘)fb - eb()‘)fav )\fc)
Thus
(3.4) 9([easep], ec) = eqa(In A)dpe — ep(In N)dge

Due to the fact that VM is the Levi-Civita connection on M determined
by the metric g, we have

(385)  29(V¥epee) = glleas eslsec) + gllecs eal, er) — g((ews eclsea),
by combining (3.5) and (3.4) we obtain
(3.6) HVM e, = —ep(InN)eg + dap grad In ),
at the point zo. O
LEMMA 3.3. Let o : (M™, g) — (N, h) be a semi-conformal submersion
map with dilation \ between Riemannian manifolds. Then

VEdp(X) = dp(VHX) + X(In N)de(Y) + Y (In \)dp(X)

—wyxnyde(grad In X)) —de (A(X, Y)+ A(Y, X)

(3.7) + T (X, Y)>,

where X,Y € D(TM) and wxy =}, ; 85i;X°(e;)Y®(e;), here {e;} is a local
orthonormal frame on M.

Proof. Taking an arbitrary point of 2o € M and fix it. Let {e;}1<i<m =
{eq,er} be the local orthonormal frame field in a neighborhood of xg, as in
proof of Lemma 3.2. By calculating at the point xy and considering (3.2), we
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Vidp(X) = Y (es)ei(X°(ea))dp(ea) + X (ea) Y (er)es(In A)dp(ea)

(3.8) =Y®(e:)ei(X°(ej))de(e;) + Y (In A)dep(X)
and
HVY X =Y(e;)ei (X (ea))ea + XO(e))Y () HV ¢;
= Yb(ez)ez( b(e ))ea + Xb<ea)Yb<eb>HvM
X (en) Y (e) HV Y er + XO(eq) YO (es) HV Y g
(3.9) X (e,)Y (es)HV e,

Due to the fact that dp(A(HX,VY)) = dp(A(X,Y)) and dp(T(VX, VY))
=dp(T(X,Y)), we obtain

YO (ei)ei (X (eq)dp(eq) = dp(VH X) — wyx nyde(grad In X) + X (In X)dp(Y)
(3.10) —dp(A(X,Y)+ AY,X)+ T(X,Y)).

By substituting (3.10) in (3.8), the formula (3.7) is obtained and hence com-
pletes the proof. [

THEOREM 3.4. Let ¢ : (PP, 0) — (N™, h) be a non-harmonic biharmonic
semi-conformal submersion map with dilation A between Riemannian manifold
and xo be an arbitrary point of M. Then, ¢4,, defined by (3.1), is a non-
harmonic biharmonic map if and only if X and f and the following equations
are satisfied

(3.11) Wp — (H grad In \""=9) 4 ny) =0,

14+2(n—1)A%2f2
and

— div Wy — diquw@ _ (n + Q)WQO(IHA) — 4n ’ grad In\ ’2
2
(3.12) +2n Aln Agrad f* — %)\ngd | grad f2 =0

where wy, defined by (2.10) and pY is the mean curvature vector field.

Proof. Take an arbitrary point of py € P and fix it. Let {e;} be the
local frame field in a neighbourhood of pg, as in Lemma (3.2). By definition of
tension field, we have

p

r(0m) = S { Va6 fe) — a0 (V20|

=1
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Z{ 0aote(0.dp(en) = (0.dp(V2e0) |

= (0,7()) = 3N*(grad 2,0) © 6
= (

(3.13) 0,dip(w,)) = SA*(grad £2,0) 0 6.

Here it’s obvious that ¢, is harmonic if and only if ¢ is harmonic and f
is constant, but this is in contradiction with the assumption that ¢ is a non-
harmonic biharmonic map. Now, we compute the rough Laplacian of section
T(¢z,). By (2.2), we have

Vel () = Vert (0.dp(wy)) — 5 Ve X (grad £2,0) 0 s,

= @(o,dga(ei))(ov dep(wy)) — EAZ@(O,d@(ei))(grad £2,0) 0 s
—nX\2e;(In \)(grad £2,0) o ¢y,

1
= (0, V& dp(wp)) — 5A%(w(ei) + 2nei(In N)) (grad £2,0) © du,
(B14) - n? | grad f P (0,dg(es),
Thus, we get
ViRV () = Ve ViR (0,dp(wy) — 5 Vel Vel N (grad £2,0) © s,
= —\2 | grad f |* (5n e;(In \) + wg(ei))((],d<p(ei))
1
+(0.VEVEdpl) - 5{ ndo(en, T2 de(e)
+ /\2(2wg(ei)ei(ln A) + ei(wg(ei)) + 4n(e;(In N))?
+ 2ne;(e;(In X)) —n h(de(e;),de(e;)) | grad f ]2)}
(3.15) (grad f%,0) o ¢y, .
Moreover
Ve o 7(0) = VG2, (0.dp(wy)) = VGE, N(grad £2,0) 0 by
= (0,VE5, dp(wy)) —nd? | grad f | (0,dp(V ] e:))
_ ;{h(dgo(w¢),dgo(vzei)) + 2n)\2dln)\(vgei)}

(3.16) (grad 2,0 © ¢uy,
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Furthermore,

n

D h(de(ei), VEdp(wy)) = Y h(dp(eq), VE, dp(w,))

i=1 a=1
= \2 Z {Q(ea, Vfaw@) + wy,(In A)éaa}
a=1
(3.17) = Mdiv*(wy) + nX 2w, (In \)
and
P
Zh(dg@(w@) dp(V2 e;)) = \? Z o(wy, V
i=1
P
= \2 Z {ei(wg(ei)) — o(ey, Vfimp)}
i=1
P
(3.18) = N (divw, — Y _ ei(wh(es))
i=1
By (3.15)—(3.18), we get
/\2
—A%%0 T(Pzy) = (0, —APT(pz,)) + 2{(—div Wy — dz'v%ww
— (n+2wy(In A) —4n | grad In X [* +2nAln A
+ 0222 | grad f |2)}(gradf2, 0) 0 du,
(3.19) + 22| grad f | (0,dg(gradln A9 4 nT — W)
On the other hand, by making use of (2.3), it can be seen that
trace R(T(¢zy)s dpug)dda, = trace R(ddy, (wy), Ay )deu,
- gA2traceR((grad £2,0), dég, ) o,
= X*(0, Ricci™ (dep(w,)))
—2(n— 1)\ | grad f [* (0,dp(w,))
2
+ 7;>\4{(gmd | grad f? 2,0)
1
(3.20) - larad £ (grad £,0)}
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by (1.1), (3.19) and (3.20), we have
2
T2(zy) = %(—div wy — divitw, — (n+ 2)w,(In \) — 4n | grad In X |?

Tl2

+2nAIn ) (grad £2,0) o ¢y + §A4(grad | grad f2 2,0) o ¢,
+ A2 f P <0,dcp(grad In \"(=6)) T
(3.21) —(142(n— 1)A2f2)%)

Thus, biharmonicity of ¢,¢ implies that
— div wy, — divtw, — (n+ 2)w,(In \) — 4n | grad In X |?

2
3.22 +2nAInAgrad f2 — - N2grad | grad f2 2= 0,
4
and
1
(3.23) W (H grad In \""=9) 4 ny) =0,

T 14+2(n—1)A2f2
This completes the proof. [

Now, we consider Theorem 3.4, when the map ¢ is conformal between
equidimensional manifolds. Note that, any conformal map ¢ : (M",g) —
(N™, h) between Riemannian manifolds of the same dimension (n > 2) is a
local conformal diffeomorphism, (cf. [3, Theorem 11.4.6]).

COROLLARY 3.5. Let ¢ : (P",0) — (N", h) be a non-harmonic bihar-
monic conformal map between manifolds of the same dimension (n > 2) and xg
be an arbitrary point of M. Then, ¢, defined by (3.1) is never a non-harmonic
biharmonic map.

Proof. Due to the fact that ¢ has no critical points and considering (2.10),
we have

(3.24) w, = grad In \*7"

By using (3.11) and (3.24), the biharmonicity of ¢, implies that grad in\ =
0, but this is in contradiction with that ¢ is a non-harmonic biharmonic map,
and hence completes the proof. [

By Corollary 3.5, we get

COROLLARY 3.6 ([6]). Let xo be an arbitrary point of M. Then, the
inclusion map iz, : (N,h) — (M x§ N,Gy), defined by iz, (y) = (z0,y), is a
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non-harmonic bitharmonic map if and only if
(3.25) grad | grad f* |*= 0,
at xg.

Example 3.7. Let S™ be the m—dimensional unit sphere, R"™ be the
n-dimensional Euclidean space and z be an arbitrary point of R" — {0}. Also,
let f(x) =+/| x|, for x € R™ — {0}. By (3.25), it can be shown that the map

ig, : S™ — R — {0} x; S™
y — (z0,y)

is a non-harmonic biharmonic map.

4. BBHARMONICITY OF ¢ : (M x; N,Gy) —> (P, 0)

Let ¢ : (M™,g) — (PP,p) and ¢ : (N",h) — (QY, p) are biharmonic
semi-conformal maps with dilation A and o, respectively. In this section, we
give the same characterization for

¢1: (M™ xy N*,Gy) — (P, 0)
(4.1) (@,y) — »(z)
and

g2 (M™ x5 N",Gs) — (Q, p)
(4.2) (z,y) — ¥(y)

to be biharmonic. In particular case, biharmonicity of projection maps from
the warped product manifold onto a first (or second) factor are studied.
By using the methods of [3] and [12], we have the following lemma

LEMMA 4.1. Let ¢ : (M™, g) — (N™, h) be a semi-conformal map with
dilation A and f € C*°(M) be a smooth positive function. Then

—J?(d¢(grad In f)) = do(grad (A In f) + 2Ricci™ (grad In f)) + (2A7 In f
—2grad In A(In f) — wye(In X))de(grad InX)
+ (wp(InA) + 2 | H grad In X [*)dé(grad In f)
+ grad In X(In f)dé(wg) + 4dd(Vy grad maH grad In f)
— d6(A(wss grad In f)) — AVdf (ea, €)db(A(eas er)
(4.3) — 2V df(er, e4)dB(T (e, 1))
Proof. By making use of (2.11) and considering the following relation

traceV?(grad Inf) = grad Aln f + Ricci™ (grad n f),
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see ([3], Eq. 3, pp. 406), we have

—J?(dg(grad In f)) = Vo . 7(6) +2 < Vde, Vdln f >
(4.4) + dé(gard Aln f) + 2Ricci™ (gard In f).
First, we calculate the first term of the right hand side of (4.4). By (3.7),

we get
vz)rad lnfT(¢) = vf;rad lnfd¢(w¢)
= dqb(VQﬁad In fWe + grad In f(In Mwy — wg(In A)grad In A
(4.5) +wg(InX)grad In f — A(wg, gradln f)).

Now, we calculate the second term of the right hand side of (4.4). Taking
an arbitrary point of zg € M and fix it. Let {e;} = {eq, e, } be an orthonormal
frame at xg, as in proof of Lemma 3.2, we get

< Vde, Vdf > = Vdeg(eq, ep)Vdf(eq, e5) + (Vdf(eq, er)
(4.6) + Vdf(er, €a))VPdd(ea €r) + VOd(er, 5)Vdf (er, €5),
By making use of (3.6), it follows that
V2dg(eq, ey)Vdf(ea, ep) = 2H grad In Xeq(In £))do(eq) — eq(eq(In £))
dé(grad In N+ | H grad In X |? grad In f
(4.7) + (n —2)grad In X(In f)d¢(gradln ).
By (3.6), at g, we have

AM Inf= _ea(ea(ln f)) + dlnf(veaea)
(4.8) = —eq4(eq(In f)) + (n — 1)grad In A\(In f),

V;Z grad mad@(Hgrad Inf) = ey(In Ney(eq(In f))do(eq)
+ ep(In Neg(In f)VE do(e,)
= Hgrad In A(eq(In f))deo(eq)
(4.9) + | Hgrad In X |2 dg(grad In f)
By (4.7),(4.8) and (4.9) we get
Vdg(eq, e)Vdf(eq, ep) = A In fdo(grad In )
+ | H grad In X |* d¢(grad 1n f)
—grad In A(In f)d¢(grad In )
(4.10) +2dd(Vugradin A M grad In f)
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Since Vdg(e;, e;) = —d¢p(Ve,e,), we have
—V?dg(eq, e,)Vdf(er, eq)) = VOdd(eq, €,)(Vdf(€q, er)

(4.11) +2Vdf(eq, er)dp(A(eq, €r)),
and
(4.12) Vdg(e,, es)Vdf(er, es) = —Vdf(er, es)T(er, es).

Substitute (4.10), (4.11), (4.12) into (4.7), we have
< Vde,Vdf > = (A In f — grad In X(In £))d¢(grad In )
+ | # grad In X |? d¢(grad In f)
+2dd(Vu grad maH grad In f)
(4.13) — 2Vdf(ea, er)db(Aleas ) — VA F (er, €5)T(er €5),

By substituting (4.5) and (4.13) in (4.4), we obtain (4.3). This completes
the proof. [

THEOREM 4.2. Let ¢ : (M™,g) — (PP, 0) be a biharmonic semi-con-
formal submersion map with dilation \.Then, ¢1 defined by (4.1) is a non-
harmonic biharmonic map if and only if

0 =Hgrad A In f + 2HRicci™ (grad In f) + (n/2)Hgrad | grad In f |2
+ 4"V grad m Hgrad In X + (2AH In f — 2grad In A(In f) — wy(In f)
—wy(InX) —n | grad In f |*)Hgrad In X + HV grad 1 fwe
+ 2wp(InN) + 2 | Hgrad In X > +2n grad In A(In f))Hgrad In f
+ 2grad In A(In flwy —4Vdf(eq, er)A(eq, er) — 2Vdf(er, es)T (er, €s)

(4.14)
—2nA(Hgradln f,Vgrad In f) — nT(Vgrad In f,Vgrad ln f)

Proof. Take an arbitrary point of (xg,y0) € M x N and fix it. Let
{U; = (€;,0), Up+a = (0, %ea); 1<i<m,1<a<n} bea local orthonormal
frame around (zo,yo), where {e;} = {eq, e, } is the local orthonormal frame in
a neighbourhood of xy € M, as in proof of Lemma (3.3) and {es}1<a<n be an
arbitrary local orthonormal frame in a neighbourhood of yg € N. By definition
of tension field, we have

m
T(¢1) = {vzzdem(m) - d@(%Ui)}

=1
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Z {V(z)iruka m+a) d(;S]. (@Um-‘ra Um+a)}

= T(¢) +n dé(grad In f)
(4.15) = d¢(we) + ndo(grad In f)

According to the biharmonic equation, we get
—J%(1(d1)) = =A% 7(¢y) — traceg, R (d¢1, 7(¢1))do1
= 72(¢) — nJ?(d(grad In f)) + nVY, . 1, ;db(wy)
(4.16) +n°V0 1 pdd(grad In f)

By Lemma (3.3), we have

nvgrad In f dgb(wfﬁ) = ndqﬁ(vgjy\{ad In fwd)) + anf)(ln )‘)d(p(grad In f)
— nwe(In f)de(gradln X) + ngradIn A(In f)de(wge)
(4.17) +nA(wg,V gradln f)

and

2
nQVg)rad lnfd¢(grad In f) = %dqb(grad | grad lnf ‘2)
+ 2n2grad In f(In \)dé(grad In f)
—n? | grad In f |*> d¢(grad In \)
- n2d¢>(T(grad In f,grad In f)
(4.18) +2A(grad In f,grad In f))

Substituting (4.17) and (4.18) into (4.16), we obtain (4.14) and hence
completes the proof. 0

By Theorem 4.2, we have the following result

COROLLARY 4.3. Let ¢ : (M",g) — (P", 0)be a biharmonic conformal
map between Riemannian manifolds of the same dimension n > 3. Then, ¢1
defined by (4.1) is biharmonic if and only if

0 = grad A In f 4+ 2Ricci™ (grad In f) + (n/2)grad | grad In f |?
+ 4V grad magrad In XA + V44 10 pgradln AP
+ (2AIn f —2gradln A(In f) — (2 — p)gradIn A(In f)
— (2 =p)gradln \(In\) —n | grad In f |*)grad In X
+2((2 = p)gradIn \(In \)+ | grad In X |?
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+ngrad In X(In f))grad In f
(4.19) + (2 — p)grad In A(In f)gradln .
By Corollary 4.3, it can be easily seen that

COROLLARY 4.4. The projection map of a warped product manifold onto
its first factor is biharmonic if and only if

gard Aln f + Ricci™ (gard In f) + ggmd | grad In f |?= 0.
Similarly to the proof of Theorem 4.2, we get

THEOREM 4.5. Let ¢ : (N™, h) — (Q%,p) be a biharmonic semi-con-
formal map with dilation X\ and let M be a non-compact manifold. Then, the
map ¢z : (M™ x5 N",Gy) — (Q4,p), defined by (4.2) is biharmonic if and
only if

(4.20) Af2 - g | gard f~2 2= 0.
Proof. By calculating similar to (4.2), we have
(4.21) ma(62) = (A2 = 2 | grad f 72 [P)dp(wy),

Since 1) is a non-harmonic biharmonic map then di(wy) # 0. Therefore,
the biharmonicity of ¢; implies that

(4.22) Af2 - g | gard {2 2= 0.
This completes the proof. [
According to the proof of Theorem 4.5, we have

COROLLARY 4.6. The projection map mo : (M™ x¢ N",G¢) — (N™, h),
of a warped product manifold onto it’s second factor is harmonic.

Remark 4.7. The biharmonicity conditions of projection maps from a war-
ped product manifolds are studied in [6].

5. PRODUCT MAPS

In this section, we study the biharmonicity conditions of the product
maps between warped product manifolds. Let ¢ : (M™,g9) — (PP, ) and
¥ (N" h) — (Q9,p) are biharmonic maps. It can be easily seen that
the product map ¢ = ¢ x ¢ : (M x N,g® h) — (M x N,g ® h) between
direct product manifolds is biharmonic if and only if ¢ and v are biharmonic.
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If the product metric (either as the domain or target) is modified, then the
biharmonicity of product map may be failed. First, we consider the product
map

¢ (M™ %y N",Gy) — (PP x Q% 0® p)
(5.1) (@, ) — (p(2), ¥(y))
where ¢ : (M, g) — (P,0) and ¢ : (N, h) — (Q, p) are semi-conformal maps.

THEOREM b5.1. Let ¢ : (M™,g) — (PP,0) and ¢ : (N",h) — (Q4,p)
are semi-conformal maps with dilation X\ and o, respectively. Then, ¢, defined
by (5.1), is biharmonic if and only if ¢1 and ¢y defined by (4.1)—(4.2) are
biharmonic.

Proof. Take an arbitrary point of (xg,y9) € M x N and fix it. Let
{Ui,Unta;i = 1,--+ ;mya = 1,--- ,n} be the local orthonormal frame, as
in proof of Theorem (4.2). By definition of tension field, we have

m

@) =3 { Vuaa(w) - ao(vu.0 |

1=1

T N R AR LAY
a=1

(5.2) — (r(9),0) + JL<0,T<w>> + n(de(grad In £),0)

by (1.1) and (5.2), we have

—79(r()) = ~I7(d3(wn)) = I 550(un)) ~ nI*(Adgrad In )
= (). 0) + 750,72 (4) - n<m’<dso<gmd In )

+ Riccip(dgp(grad In f)),()) + (Af_2 — gf2 | grad f~2 |?)

(0, dip(w2)) + (V7 g 10 pdp(wi), 0) + nQ(V‘;md m pde(grad In f), 0>

(5.3) = (7(1),0) + (0, 7(¢2))

Thus, biharmonicity of ¢ implies ¢; and ¢, are biharmonic and hence
completes the proof . O

Finally, we study the biharmonicity conditions of gZ; defined as follows

¢ =idy x o:(MxP,geh) — (M x; N,Gy)
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where idy; 0 (M, g) — (M, g) is an identity map and ¢ : (PP, ) — (N", h)

is a surjective semi-conformal map with dilation A.

THEOREM 5.2. Let ¢ : (PP, 0) — (QY, p) be a biharmonic semi-conformal
map with dilation \. Then, ¢ defined by (5.4), is biharmonic if and only if

0 = (—div wy, — divtw, — (n+ 2)wy(In\) — 4n | grad In X |2
2

(5.5) + 2nAln \grad f* — T; 2grad | grad f? |? —n Ricci™ grad f?
and

0=\ |gradf > (14+2(n—1DNf?)+ A Inf+grad In f)w,
(5.6) — 22| grad f |* (Hgrad In "5 4 nT),

Proof. Taking an arbitrary point of (zg,yo) € M x P. Let {U; = (e;,0),

Un+j = (0,f;),1 <i < m,1 <j < p}is a local orthonormal frame in a
neighborhood of (xg,yo), where {e;} and {f;} be local orthonormal frames

around xg and yg, respectively. By definition of tension field, we have

m

. P .
T(d) = {V&d&(Un — dé(vmw} +> {V&.dé(%) — dg(Vy, Uj>}

i=1 j=1
= —Z\(grad 2,0) + (0,7(¢))
(5.7) = —nA2f3(grad In f,0) + dqg(ww)
By calculating bitension field, we get

m

n(6) = 3 { VETE,7(0) - VE,,0,7(8) + Rr(). 46000601

+ {98, 98, 710) ~ T8, 1,706 + R(r(@), a0()a(0) |

j=
= (Aln f+ grad In f)(0,dp(w,)) — g)\2(trace(VM)Qgrad 12,0

2)\ (Ricci™ grad f2,0)

+ 3 {VE,90,7(0) - V8,0, 700) + Rir(d). ab()ad(0) |
j=1

2
= ?(div wy — divtw, — (n+ 2)w,(In \) — 4n | grad In X |?
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2
+ 2nAln \)(grad f2,0) o ODao + %)\4(grad | grad f* |*,0) o Do
— g)\Q(RiCCngTad £2,0) + A% | grad f | (0,d¢(grad In \"*=4)

+nT)) — (N | grad f > (14 2(n — DN2f2) + A Inf
(5.8) +grad In f)(0,dp(w,))

Thus, biharmonicity of qAS implies that

0 = (—div w, — divtw, — (n + 2)wy(In X) — 4n | grad In X |?
2
(5.9) +2nAln N)grad f? — nZ/\ngd | grad f? |* —nRicci™ grad f?

and
0=(\|gradf|* (1+2(n—1)Nf?) + Aln f + grad In f)w,
(5.10) — X2 grad f |? (H grad In X""=%) 4 nT),

This completes the proof. [
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