PROVING GOWERS' FIN $_{k}$ THEOREM IN ZF + DC

JESÚs E. NIETO and ORLANDO SILVA

Communicated by Vasile Brînzănescu

Abstract

In this work, we show an alternative proof of Gowers' FIN ${ }_{k}$ Theorem [10] following some ideas from the well known proof of Hindman's Theorem given by Baumgartner [1] and an infinite version of Hales-Jewett Theorem given by Karagiannis [8]. The crucial step in our proof is based upon a finite version of Gowers' FIN $_{k}$ Theorem due to Ojeda-Aristizabal [11] which only uses Peano Arithmetic. Therefore, our proof does not depend upon the existence of non principal ultrafilters, that is to say, it is in $\mathbf{Z F}+\mathbf{D C}$ (Zermelo Fraenkel set theory with the principle of dependent choice).

AMS 2010 Subject Classification: 05D10, 05C55.
Key words: $F I N_{k}$, Gowers' Theorem, combinatorial proof.

1. INTRODUCTION

In 1992, Gowers [10] strenghtened James' distortion Theorem for the Banach space c_{0}. This was done by proving that every unconditional Lipschitz function (and not only every unconditional norm function) from the unit sphere of c_{0} to \mathbb{R} is oscillation stable (cf. [10, Theorem 6], [2, Theorem 13.18, p. 312], [9, Theorem 11]). The proof is based on a pigeon-hole principle that we shall refer to as Gowers' FIN_{k} Theorem. Recall that, for every integer $k \geq 1$, the symbol FIN_{k} denotes the set of functions $p: \mathbb{N} \rightarrow\{0,1, \ldots, k\}$ with $k \in \operatorname{Im}(p)$ (here $\operatorname{Im}(p)$ denotes the image set of the function p). As usual, we denote $a<b$ for $a, b \in \operatorname{FIN}_{k}$ whenever $\max (\operatorname{supp}(a))<\min (\operatorname{supp}(b))$. An infinite sequence $A=\left(a_{0}, a_{1}, \ldots\right)$ contained in FIN_{k} is a block sequence if $a_{i}<a_{i+1}$, for every i. Here $\operatorname{supp}(p)=\{n \in \mathbb{N}: p(n) \neq 0\})$.
$\mathrm{FIN}_{k}^{[\infty]}$ denotes the collection of infinite block sequences contained in FIN_{k}. For $m, n \in \mathbb{N}, \operatorname{FIN}_{k}^{[m]}$ is the set of block sequences with length m and $\operatorname{FIN}_{k}(n)$ is the set of members of FIN_{k} whose support is less than n. The tetris $\operatorname{map} T: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is given by $T(p)(n)=\max \{0, p(n)-1\}$. The combinatorial space of A is the set $[A]$ of members in FIN_{k} having the form

$$
\begin{equation*}
T^{j_{1}} a_{n_{1}}+T^{j_{2}} a_{n_{2}}+\cdots+T^{j_{r}} a_{n_{r}} \tag{1}
\end{equation*}
$$

with $n_{1}<n_{2}<\cdots<n_{r}$, every j_{i} is in $\{0,1, \ldots, k-1\}$ and $\min \left\{j_{i}: i \leq r\right\}=0$. For $m \in \mathbb{N},[A \upharpoonright m]$ is the set whose members in FIN_{k} having the form (1) with $n_{r}<m$.

As a particular case, we have FIN_{1} can be identified with FIN, the set of finite non empty subsets of \mathbb{N}, via characteristic functions. For an infinite block sequence A in $F I N$, the combinatorial space $[A]$ is formed by finite unions of members of A. With this notation, Gowers' FIN $_{k}$ Theorem reads as follows (cf. [10, Theorem 1]):

Theorem 1 (Gowers). Given a positive integer r and

$$
f: F I N_{k} \rightarrow\{1,2, \ldots, r\}
$$

there exists $A \in F I N_{k}^{[\infty]}$ such that f is constant on $[A]$.
By a compactness argument the following finite version of Theorem 1 can be proved:

Theorem 2. Given $m, k, r \in \mathbb{N}$ there exists $n=G(m, k, r) \in \mathbb{N}$ such that for every $f: \operatorname{FIN}_{k}(n) \rightarrow\{1,2, \ldots, r\}$ there exists $s=\left(s_{0}, s_{1}, \ldots, s_{m-1}\right)$ in $F I N_{k}^{[m]}$ with $s_{m-1} \in \operatorname{FIN}_{k}(n)$, such that f is constant on $[s]$.

As far as we know, each proof of Theorem 1 is based upon the existence of certain non principal ultrafilters, thus some set theoretic hypothesis (the Ultrafilter Theorem UF) must be assumed in this case (see [13] and [9]). For $k=1$, Theorem 1 is Hindman's Theorem for finite unions (see [6]) whose proof was simplified by Baumgartner (see [1] or [4]). Based on Baumgartner's proof of Hindman's Theorem, Karagiannis [8] proved infinite versions of the well known Hales-Jewett Theorem. The crucial step in Karagiannis' proof uses the (finite) Hales-Jewett Theorem. Recently, D. Ojeda-Aristizabal gave a proof of Theorem 2 in Peano Arithmetic. In this work, we follow an approach similar to that of Baumgartner and Karagiannis, and use Theorem 2 to give a proof of Theorem 1 for which ultrafilters are not needed. Hence, our proof is in ZF +DC .

2. GOWERS' ${ }^{\prime}$ FIN $_{k}$ THEOREM IN ZF + DC

For $n \in \mathbb{N}, a \in \operatorname{FIN}_{k}$ and $A=\left(a_{0}, a_{1}, \ldots\right)$ in FIN_{k}, denote

$$
A / n=\left(a_{j}, a_{j+1}, \ldots\right)
$$

with $j=\min \left\{i: n<\min \left(\operatorname{supp}\left(a_{i}\right)\right)\right\}$.

$$
A / a=A / \max (\operatorname{supp}(a))
$$

If $F \subseteq \mathrm{FIN}_{k}$ is finite denote

$$
A / F=\bigcap_{b \in F} A / b
$$

For $B \in \operatorname{FIN}_{k}^{[\infty]}$, denote $B \leq A$ if $[B] \subseteq[A]$. Notice that \leq is reflexive and transitive.

Remark 1. It is well known that there exists an isomorphism between $F I N_{k}$ and $[B]$ (as well as between $[B \upharpoonright n]$ and $\operatorname{FIN}_{k}(n)$) for every $B \in F I N_{k}^{[\infty]}$. Hence Theorem 1 and Theorem 2 are still true for finite partitions of a given [B].

Definition 1. $X \subseteq \operatorname{FIN}_{k}$ is large in $A \in \operatorname{FIN}_{k}^{[\infty]}$ if $[B] \cap X \neq \emptyset$ for every $B \leq A$.

It is readily verified from Definition 1 the following facts:
(1) If X is large in A and $B \leq A$ then X is large in B.
(2) For every $A \in \operatorname{FIN}_{k}^{[\infty]},[A]$ is large in A.
(3) If X is large in A then X / n is large in A, for every $n \in \mathbb{N}$.
(4) If X is large in A and $X \subseteq Y$ then Y is large in A.
(5) X is large in A iff $X \cap[A]$ is large in A.
(6) Given $n \in \mathbb{N}$, if X is large in A and $X=X_{1} \cup X_{2} \cup \cdots \cup X_{n}$ then there exist $B \leq A$ and $j \in\{1,2, \ldots, n\}$ such that X_{j} is large in B.

Notation. For $a, b \in \operatorname{FIN}_{k}$ with $a<b$, denote

$$
\langle a, b\rangle=\left\{T^{i} a+T^{j} b: i, j \in\{0,1, \ldots, k-1\}, \min \{i, j\}=0\right\}
$$

Lemma 1. If X is large in A then there exists a finite subset $F \subseteq[A]$ such that for every $x \in[A / F]$ there exists $b \in F$ such that $\langle b, x\rangle \subseteq X$.

Proof. Let $A=\left(a_{0}, a_{1}, \ldots\right)$. Assume on the contrary that for every finite subset $F \subseteq[A]$ there exists some $x \in[A / F]$ for which $\langle b, x\rangle$ is not contained in X for any $b \in F$. We will construct a sequence B^{\prime} such that $B^{\prime} \leq A$ and $X \cap\left[B^{\prime}\right]=\emptyset$, contradicting the assumption that X is large in A. Put $b_{0}=a_{0}$. For every $b \in\left[A / b_{0}\right]$, let $Y_{b}^{1}=\left\langle b_{0}, b\right\rangle$. Notice that $\left|Y_{b}^{1}\right|=2 k-1$ and in particular, it does not depend on b. Let $m_{1}=2 k-1$. By Remark 1, we can use Theorem 2, in order to choose $N_{1}=G\left(2, k, 2^{m_{1}}\right)$ such that for every $f:\left[A / b_{0} \upharpoonright N_{1}\right] \rightarrow 2^{m_{1}}$ there exists a 2-block sequence s in $\left[A / b_{0} \upharpoonright N_{1}\right]$ such that f is constant on $[s]$. So, consider the correspondence

$$
\Phi_{1}:\left[A / b_{0} \upharpoonright N_{1}\right] \rightarrow 2^{m_{1}}
$$

given by

$$
\Phi_{1}(b)\left(T^{i} b_{0}+T^{j} b\right)=\left\{\begin{array}{lll}
1 & \text { if } & T^{i} b_{0}+T^{j} b \in X \\
0 & \text { if } & T^{i} b_{0}+T^{j} b \notin X
\end{array}\right.
$$

By the choice of N_{1} and the assumption about the finite subset $\left\{b_{0}\right\} \subseteq[A]$, there exists a 2-block sequence $s=\left(s_{1}, s_{2}\right)$ in $\left[A / b_{0} \upharpoonright N_{1}\right]$ such that $\left\langle b_{0}, b\right\rangle \cap$ $X=\emptyset$ for every $b \in[s]$. Let $b_{1}=s_{2}$. Assume that we have defined b_{0}, b_{1}, \ldots, b_{n-1}. For every $b \in\left[A / b_{n-1}\right]$ let $Y_{b}^{n}=\bigcup_{x \in\left[\left(b_{0}, b_{1} \ldots, b_{n-1}\right)\right]}\langle x, b\rangle$. Since $\left|\left[\left(b_{0}, b_{1} \ldots, b_{n-1}\right)\right]\right|=k^{n}-(k-1)^{n}$, we have that

$$
m_{n}=\left|Y_{b}^{n}\right|=(2 k-1)\left(k^{n}-(k-1)^{n}\right)
$$

which does not depend on b. Let $N_{n}=G\left(2, k, 2^{m_{n}}\right)$ as in Theorem 2. As before, define

$$
\Phi_{n}:\left[A / b_{n-1} \upharpoonright N_{n}\right] \rightarrow 2^{m_{n}}
$$

by

$$
\Phi_{n}(b)\left(T^{i} x+T^{j} b\right)=\left\{\begin{array}{lll}
1 & \text { if } & T^{i} x+T^{j} b \in X \\
0 & \text { if } & T^{i} x+T^{j} b \notin X
\end{array}\right.
$$

By the choice of N_{n} and the assumption about the finite subset

$$
\left[\left(b_{0}, b_{1} \ldots, b_{n-1}\right)\right] \subseteq[A]
$$

there exists a 2-block sequence $u=\left(u_{1}, u_{2}\right)$ in $\left[A / b_{n-1} \upharpoonright N_{n}\right]$ such that $\langle x, b\rangle \cap$ $X=\emptyset$ for every $x \in\left[\left(b_{0}, b_{1} \ldots, b_{n-1}\right)\right]$ and every $b \in[u]$. Let $b_{n}=u_{2}$. This concludes the construction of b_{0}, b_{1}, \ldots Now define $B^{\prime}=\left(b_{0}^{\prime}, b_{1}^{\prime}, \ldots\right)$ by $b_{j}^{\prime}=b_{2 j}+b_{2 j+1}$. Then $B^{\prime} \leq A$ and, by construction, $X \cap\left[B^{\prime}\right]=\emptyset$, which contradicts that X is large in A.

Lemma 2. If X is large in A then there exist $b \in[A]$ and $B \leq A$ such that $X_{b}=\{x \in X / b:\langle b, x\rangle \subseteq X\}$ is large in B.

Proof. Let F be as in Lemma 1 and $B_{0}=A / F$. Then, if $x \in X \cap\left[B_{0}\right]$ there exists $b \in F$ such that $\langle b, x\rangle \subseteq X$. That is to say, $x \in X_{b}$. Therefore $X \cap\left[B_{0}\right] \subseteq \bigcup_{b \in F} X_{b}$. By Properties 4, 5 and 6 from Definition 1, there exist $B \leq B_{0}$ and $b \in F$ such that X_{b} is large in B.

Lemma 3. If X is large in A then there exists $B \leq A$ such that $[B] \subseteq X$.
Proof. By using Lemma 2 we can obtain $B^{\prime}=\left(a_{n}\right)_{n \in \mathbb{N}} \in \operatorname{FIN}_{k}^{[\infty]},\left(X_{n}\right)_{n \in \mathbb{N}}$ and $\left(A_{n}\right)_{n \in \mathbb{N}}$ such that $A_{0}=A, X_{0}=X$ an for every n :
(1) $X_{n+1} \subseteq X_{n}$ and $A_{n+1} \leq A_{n}$.
(2) $a_{n} \in\left[A_{n}\right]$.
(3) X_{n} is large in A_{n}.
(4) If $x \in X_{n+1}$ then $\left\langle a_{n}, x\right\rangle \subseteq X_{n}$.

Now, we build $B=\left(x_{0}, x_{1}, \ldots\right)$ in the following way: Let $x_{0} \in\left[B^{\prime}\right] \cap X$. If we already have $x_{0}, x_{1}, \ldots, x_{n-1}$, define $k_{n}=\min \left\{j: x_{n-1} \in\left[\left(a_{0}, a_{1}, \ldots, a_{j}\right)\right]\right\}$ and pick any $x_{n} \in X_{k_{n}+1} \cap\left[B^{\prime}\right] / k_{n}$. Then B is as required. In fact, if $x \in[B]$, say

$$
x=T^{j_{1}} x_{i_{1}}+T^{j_{2}} x_{i_{2}}+\cdots+T^{j_{n}} x_{i_{n}}+T^{j_{l}} x_{l}
$$

with $i_{1}<i_{2}<\cdots<i_{n}<l$, let $b=T^{j_{1}} x_{i_{1}}+T^{j_{2}} x_{i_{2}}+\cdots+T^{j_{n}} x_{i_{n}}$. Assume that

$$
b=T^{r_{1}} a_{m_{1}}+T^{r_{2}} a_{m_{2}}+\cdots+T^{r_{t}} a_{m_{t}}
$$

with $m_{1}<m_{2}<\cdots<m_{t}$. Then $m_{t}<k_{l}$ and, since $x_{l} \in X_{k_{l}+1}$, we have that $x_{l} \in X_{m_{t}+1}$. Hence, by (4), $T^{r_{m_{t}}} a_{m_{t}}+T^{j_{l}} x_{l} \in X_{m_{t}} \subseteq X_{m_{t-1}+1}$. Again, by (4), $T^{r_{m_{t-1}}} a_{m_{t-1}}+T^{r_{m}} a_{m_{t}}+T^{j_{l}} x_{l} \in X_{m_{t-1}}$. And so on. Finally, we have $x \in X_{m_{1}} \subseteq X_{0}=X$.

Proof of Theorem 1. Let $E=\left(e_{0}, e_{1}, \ldots\right) \in \operatorname{FIN}_{k}^{[\infty]}$, with $e_{j}=k \chi_{\{j\}}$ for every $j \in \mathbb{N}$ (here $\chi_{\{j\}}$ denotes the characteristic function of $\{j\}$). Then FIN_{k} is large in E. By property (6) from Definition 1, there exist $B \leq E$ and $j \in\{1,2, \ldots, m\}$ such that X_{j} is large in B. By Lemma 3 , there exists $A \leq B$ such that $[A] \subseteq X_{j}$.

3. CONCLUDING REMARKS

Recall that the principle of dependent choice is (cf. [7]):
DC: If R is a binary relation on a nonempty set \mathcal{X}, and if for every $x \in \mathcal{X}$ there exists $y \in \mathcal{X}$ such that $y R x$, then there exists a sequence

$$
x_{0}, x_{1}, \ldots, x_{n}, \ldots
$$

in \mathcal{X} such that $x_{n+1} R x_{n}$ for every $n \in \mathbb{N}$.
This is a necessary axiom in order to construct the theory of Banach spaces, because it is equivalent to the Baire category theorem (cf. [12, p. 95]). Also, the topological dual of c_{0} is the separable Banach space ℓ_{1}, so there is no need of ultrafilters in order to construct linear functionals on c_{0}. Notice that we only use $\mathbf{D C}$ in the proof given above, with $\mathcal{X}=\mathrm{FIN}_{k}^{[\infty]}$ and $R=\leq$. Since our proof only uses DC, and Theorem 2 is in Peano Arithmetic, it is clear that

$$
\mathbf{Z F}+\mathbf{D C} \vdash \text { Gowers' } \mathrm{FIN}_{k} \text { Theorem }
$$

This conclusion was to be expected in view of the works of Baumgartner and Karagiannis. Moreover, these results suggest that a finite version of the pigeon hole principle in the context of Topological Ramsey Spaces (see [13]) is sufficient to obtain the corresponding infinite version.

On the other hand, Feferman built a model of $\mathbf{D C}+\neg \mathbf{U F}$ (see [5]). Thus Gowers' FIN_{k} Theorem is weaker than UF and, in particular, it is a principle of choice weaker than AC.

Acknowledgements. The authors wish to express their gratitude to Franklin Galindo for pointing out reference [5], and Marcos J. González for pointing out reference [12]. We have also received valuable remarks from both of them.

REFERENCES

[1] J. Baumgartner, A short proof of Hindman's theorem. J. Combin. Theory Ser. A 17 (1974), 384-386.
[2] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. I. Amer. Math. Soc. Colloq. Publ. 48, Providence, RI: American Mathematical Society (AMS), 2000.
[3] T.J. Carlson and S.G. Simpson, Topological Ramsey theory. In: Mathematics of Ramsey Theory, Algorithms Combin. 5 (1990), 172-183.
[4] C.A. Di Prisco, Combinatoria. Un panorama de la teoría de Ramsey. Editorial Equinoccio, Universidad Simón Bolívar, 2009.
[5] S. Feferman, Some applications of the notions of forcing and generic sets. Fund. Math. 56 (1964/65), 352-345.
[6] N. Hindman, The existence of certain ultrafilters on \mathbb{N} and a conjecture of Graham and Rothschild. Proc. Amer. Math. Soc. 36 (1973), 341-346.
[7] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded. Springer Monogr. Math., Berlin: Springer, 2003.
[8] N. Karagiannis, A combinatorial proof of an infinite version of the Hales-Jewett theorem. J. Comb. 4 (2013), 2, 273-291.
[9] J. López-Abad and S. Todorcevic, Positional graphs and conditional structure of weakly null sequences. Adv. Math. 242 (2013), 163-186.
[10] W.T. Gowers, Lipschitz functions on classical spaces. European J. Combin. 13 (1992), 141-151.
[11] D. Ojeda-Aristizabal, Finite forms of Gowers' theorem on the oscillation stability of C_{0}. Combinatorica 37 (2017), 2, 143-155.
[12] J.C. Oxtoby, Measure and Category. Second Edition. Grad. Texts in Math. 2, New York - Heidelberg - Berlin: Springer-Verlag, 1980.
[13] S. Todorcevic, Introduction to Ramsey space. Ann. of Math. Stud. 174, Princeton, NJ: Princeton Univ. Press, 2010.

Departamento de Matemáticas Puras y Aplicadas, Universidad Simón Bolívar jnieto@usb.ve

Universidad Simón Bolívar
Departamento de Matemáticas Puras y Aplicadas, osilva@usb.ve

