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In this work, we show an alternative proof of Gowers’ FINk Theorem [10] fol-
lowing some ideas from the well known proof of Hindman’s Theorem given by
Baumgartner [1] and an infinite version of Hales-Jewett Theorem given by Kara-
giannis [8]. The crucial step in our proof is based upon a finite version of Gowers’
FINk Theorem due to Ojeda-Aristizabal [11] which only uses Peano Arithmetic.
Therefore, our proof does not depend upon the existence of non principal ultra-
filters, that is to say, it is in ZF+DC (Zermelo Fraenkel set theory with the
principle of dependent choice).
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1. INTRODUCTION

In 1992, Gowers [10] strenghtened James’ distortion Theorem for the
Banach space c0. This was done by proving that every unconditional Lipschitz
function (and not only every unconditional norm function) from the unit sphere
of c0 to R is oscillation stable (cf. [10, Theorem 6], [2, Theorem 13.18, p. 312],
[9, Theorem 11]). The proof is based on a pigeon-hole principle that we shall
refer to as Gowers’ FINk Theorem. Recall that, for every integer k ≥ 1, the
symbol FINk denotes the set of functions p : N→ {0, 1, . . . , k} with k ∈ Im(p)
(here Im(p) denotes the image set of the function p). As usual, we denote a < b
for a, b ∈ FINk whenever max(supp(a)) < min(supp(b)). An infinite sequence
A = (a0, a1, . . . ) contained in FINk is a block sequence if ai < ai+1, for every i.
Here supp(p) = {n ∈ N : p(n) 6= 0}).

FIN
[∞]
k denotes the collection of infinite block sequences contained in

FINk. For m,n ∈ N, FIN
[m]
k is the set of block sequences with length m and

FINk(n) is the set of members of FINk whose support is less than n. The tetris
map T : NN → NN is given by T (p)(n) = max{0, p(n)− 1}. The combinatorial
space of A is the set [A] of members in FINk having the form

(1) T j1an1 + T j2an2 + · · ·+ T jranr
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with n1 < n2 < · · · < nr, every ji is in {0, 1, . . . , k−1} and min{ji : i ≤ r} = 0.
For m ∈ N, [A � m] is the set whose members in FINk having the form (1)
with nr < m.

As a particular case, we have FIN1 can be identified with FIN, the set of
finite non empty subsets of N, via characteristic functions. For an infinite block
sequence A in FIN , the combinatorial space [A] is formed by finite unions of
members of A. With this notation, Gowers’ FINk Theorem reads as follows
(cf. [10, Theorem 1]):

Theorem 1 (Gowers). Given a positive integer r and

f : FINk → {1, 2, . . . , r}

there exists A ∈ FIN
[∞]
k such that f is constant on [A].

By a compactness argument the following finite version of Theorem 1 can
be proved:

Theorem 2. Given m, k, r ∈ N there exists n = G(m, k, r) ∈ N such
that for every f : FINk(n)→ {1, 2, . . . , r} there exists s = (s0, s1, . . . , sm−1) in

FIN
[m]
k with sm−1 ∈ FINk(n), such that f is constant on [s].

As far as we know, each proof of Theorem 1 is based upon the existence
of certain non principal ultrafilters, thus some set theoretic hypothesis (the
Ultrafilter Theorem UF) must be assumed in this case (see [13] and [9]). For
k = 1, Theorem 1 is Hindman’s Theorem for finite unions (see [6]) whose proof
was simplified by Baumgartner (see [1] or [4]). Based on Baumgartner’s proof
of Hindman’s Theorem, Karagiannis [8] proved infinite versions of the well
known Hales-Jewett Theorem. The crucial step in Karagiannis’ proof uses the
(finite) Hales-Jewett Theorem. Recently, D. Ojeda-Aristizabal gave a proof of
Theorem 2 in Peano Arithmetic. In this work, we follow an approach similar
to that of Baumgartner and Karagiannis, and use Theorem 2 to give a proof
of Theorem 1 for which ultrafilters are not needed. Hence, our proof is in ZF
+ DC.

2. GOWERS’ FINk THEOREM IN ZF+DC

For n ∈ N, a ∈ FINk and A = (a0, a1, . . . ) in FINk, denote

A/n = (aj , aj+1, . . . )

with j = min{i : n < min(supp(ai))}.

A/a = A/max(supp(a))
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If F ⊆ FINk is finite denote

A/F =
⋂
b∈F

A/b

For B ∈ FIN
[∞]
k , denote B ≤ A if [B] ⊆ [A]. Notice that ≤ is reflexive

and transitive.

Remark 1. It is well known that there exists an isomorphism between

FINk and [B] (as well as between [B �n] and FINk(n)) for every B ∈ FIN [∞]
k .

Hence Theorem 1 and Theorem 2 are still true for finite partitions of a given
[B].

Definition 1. X ⊆ FINk is large in A ∈ FIN
[∞]
k if [B] ∩X 6= ∅ for every

B ≤ A.

It is readily verified from Definition 1 the following facts:

(1) If X is large in A and B ≤ A then X is large in B.

(2) For every A ∈ FIN
[∞]
k , [A] is large in A.

(3) If X is large in A then X/n is large in A, for every n ∈ N.

(4) If X is large in A and X ⊆ Y then Y is large in A.

(5) X is large in A iff X ∩ [A] is large in A.

(6) Given n ∈ N, if X is large in A and X = X1 ∪X2 ∪ · · · ∪Xn then there
exist B ≤ A and j ∈ {1, 2, . . . , n} such that Xj is large in B.

Notation. For a, b ∈ FINk with a < b, denote

〈a, b〉 = {T ia+ T jb : i, j ∈ {0, 1, . . . , k − 1}, min{i, j} = 0}

Lemma 1. If X is large in A then there exists a finite subset F ⊆ [A]
such that for every x ∈ [A/F ] there exists b ∈ F such that 〈b, x〉 ⊆ X.

Proof. Let A = (a0, a1, . . . ). Assume on the contrary that for every finite
subset F ⊆ [A] there exists some x ∈ [A/F ] for which 〈b, x〉 is not contained
in X for any b ∈ F . We will construct a sequence B′ such that B′ ≤ A
and X ∩ [B′] = ∅, contradicting the assumption that X is large in A. Put
b0 = a0. For every b ∈ [A/b0], let Y 1

b = 〈b0, b〉. Notice that |Y 1
b | = 2k − 1 and

in particular, it does not depend on b. Let m1 = 2k − 1. By Remark 1, we
can use Theorem 2, in order to choose N1 = G(2, k, 2m1) such that for every
f : [A/b0 �N1]→ 2m1 there exists a 2-block sequence s in [A/b0 �N1] such that
f is constant on [s]. So, consider the correspondence

Φ1 : [A/b0 �N1]→ 2m1
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given by

Φ1(b)(T
ib0 + T jb) =

{
1 if T ib0 + T jb ∈ X
0 if T ib0 + T jb 6∈ X

By the choice ofN1 and the assumption about the finite subset {b0} ⊆ [A],
there exists a 2-block sequence s = (s1, s2) in [A/b0 �N1] such that 〈b0, b〉 ∩
X = ∅ for every b ∈ [s]. Let b1 = s2. Assume that we have defined b0,
b1, . . . , bn−1. For every b ∈ [A/bn−1] let Y n

b =
⋃

x∈[(b0,b1...,bn−1)]
〈x, b〉. Since

|[(b0, b1 . . . , bn−1)]| = kn − (k − 1)n, we have that

mn = |Y n
b | = (2k − 1)(kn − (k − 1)n)

which does not depend on b. Let Nn = G(2, k, 2mn) as in Theorem 2. As
before, define

Φn : [A/bn−1 �Nn]→ 2mn

by

Φn(b)(T ix+ T jb) =

{
1 if T ix+ T jb ∈ X
0 if T ix+ T jb 6∈ X

By the choice of Nn and the assumption about the finite subset

[(b0, b1 . . . , bn−1)] ⊆ [A]

there exists a 2-block sequence u = (u1, u2) in [A/bn−1 �Nn] such that 〈x, b〉 ∩
X = ∅ for every x ∈ [(b0, b1 . . . , bn−1)] and every b ∈ [u]. Let bn = u2.
This concludes the construction of b0, b1, . . . Now define B′ = (b′0, b

′
1, . . . ) by

b′j = b2j + b2j+1. Then B′ ≤ A and, by construction, X ∩ [B′] = ∅, which
contradicts that X is large in A. �

Lemma 2. If X is large in A then there exist b ∈ [A] and B ≤ A such
that Xb = {x ∈ X/b : 〈b, x〉 ⊆ X} is large in B.

Proof. Let F be as in Lemma 1 and B0 = A/F . Then, if x ∈ X ∩ [B0]
there exists b ∈ F such that 〈b, x〉 ⊆ X. That is to say, x ∈ Xb. Therefore
X ∩ [B0] ⊆

⋃
b∈F Xb. By Properties 4, 5 and 6 from Definition 1, there exist

B ≤ B0 and b ∈ F such that Xb is large in B. �

Lemma 3. If X is large in A then there exists B ≤ A such that [B] ⊆ X.

Proof. By using Lemma 2 we can obtain B′ = (an)n∈N ∈ FIN
[∞]
k , (Xn)n∈N

and (An)n∈N such that A0 = A, X0 = X an for every n:

(1) Xn+1 ⊆ Xn and An+1 ≤ An.

(2) an ∈ [An].

(3) Xn is large in An.

(4) If x ∈ Xn+1 then 〈an, x〉 ⊆ Xn.
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Now, we build B = (x0, x1, . . . ) in the following way: Let x0 ∈ [B′]∩X. If
we already have x0, x1, . . . , xn−1, define kn = min{j : xn−1 ∈ [(a0, a1, . . . , aj)]}
and pick any xn ∈ Xkn+1 ∩ [B′]/kn. Then B is as required. In fact, if x ∈ [B],
say

x = T j1xi1 + T j2xi2 + · · ·+ T jnxin + T jlxl
with i1 < i2 < · · · < in < l, let b = T j1xi1 + T j2xi2 + · · · + T jnxin . Assume
that

b = T r1am1 + T r2am2 + · · ·+ T rtamt

with m1 < m2 < · · · < mt. Then mt < kl and, since xl ∈ Xkl+1, we have
that xl ∈ Xmt+1. Hence, by (4), T rmtamt + T jlxl ∈ Xmt ⊆ Xmt−1+1. Again,
by (4), T rmt−1amt−1 + T rmtamt + T jlxl ∈ Xmt−1 . And so on. Finally, we have
x ∈ Xm1 ⊆ X0 = X. �

Proof of Theorem 1. Let E = (e0, e1, . . . ) ∈ FIN
[∞]
k , with ej = kχ{j}

for every j ∈ N (here χ{j} denotes the characteristic function of {j}). Then
FINk is large in E. By property (6) from Definition 1, there exist B ≤ E and
j ∈ {1, 2, . . . ,m} such that Xj is large in B. By Lemma 3, there exists A ≤ B
such that [A] ⊆ Xj . �

3. CONCLUDING REMARKS

Recall that the principle of dependent choice is (cf. [7]):

DC: If R is a binary relation on a nonempty set X , and if for
every x ∈ X there exists y ∈ X such that yRx, then there exists a
sequence

x0, x1, . . . , xn, . . .

in X such that xn+1Rxn for every n ∈ N.

This is a necessary axiom in order to construct the theory of Banach
spaces, because it is equivalent to the Baire category theorem (cf. [12, p. 95]).
Also, the topological dual of c0 is the separable Banach space `1, so there is no
need of ultrafilters in order to construct linear functionals on c0. Notice that
we only use DC in the proof given above, with X = FIN

[∞]
k and R = ≤. Since

our proof only uses DC, and Theorem 2 is in Peano Arithmetic, it is clear that

ZF + DC ` Gowers’ FINk Theorem

This conclusion was to be expected in view of the works of Baumgartner
and Karagiannis. Moreover, these results suggest that a finite version of the
pigeon hole principle in the context of Topological Ramsey Spaces (see [13]) is
sufficient to obtain the corresponding infinite version.
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On the other hand, Feferman built a model of DC + ¬UF (see [5]).
Thus Gowers’ FINk Theorem is weaker than UF and, in particular, it is a
principle of choice weaker than AC.
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