RECOGNITION OF SOME CHARACTERISTICALLY SIMPLE GROUPS BY THEIR COMPLEX GROUP ALGEBRAS

MORTEZA BANIASAD AZAD and BEHROOZ KHOSRAVI

Communicated by Lucian Beznea

Abstract

In [20], the following question arose: Which groups can be uniquely determined by the structure of their complex group algebras? In this paper, we prove that the direct product G^{n} of n copies of a group G, where (a) $G \cong A_{5}$ and $n \leq 5$; (b) $G \cong L_{2}(7)$ and $n \leq 7$; (c) $G \cong L_{3}(3)$ and $n \leq 13$; (d) $G \cong L_{2}(17)$ and $n \leq 17$; are uniquely determined by their order and some information on irreducible character degrees. As a consequence of our results, we show that these groups are uniquely determined by the structure of their complex group algebras.

AMS 2010 Subject Classification: 20C15, 20D05, 20D60.
Key words: character degree, order, complex group algebra.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a finite group, $\operatorname{Irr}(G)$ be the set of irreducible characters of G, and denote by $\operatorname{cd}(G)$, the set of irreducible character degrees of G. If n is a natural number, by G^{n} we mean the direct product of n copies of G; that is, $G \times G \times \cdots \times G$.

In [5, Problem 2*], R. Brauer posed the following question: Let G and H are two finite groups. If for all fields \mathbb{F}, two group algebras $\mathbb{F} G$ and $\mathbb{F} H$ are isomorphic, can we get that G and H are isomorphic? In [7], E.C. Dade showed that this is false in general.

It was shown in $[16,21]$ that the symmetric groups are uniquely determined by the structure of their complex group algebras. In [15, 17, 20, 22, 23] it is proved that each nonabelian simple group is uniquely determined by its complex group algebra. In [20], Tong-Viet posed the following question:

Question. Which groups can be uniquely determined by the structure of their complex group algebras?

In $[4,19]$, it is proved that every quasisimple group L is uniquely determined up to isomorphism by the structure of $\mathbb{C} L$, the complex group algebra
of L. In [13] and [14], it is proved that if $q \mid p^{2}$, where $p>3$ is an odd prime, $S=L_{2}(q), M$ is a finite group such that $S<M<\operatorname{Aut}(S), M=\mathbb{Z}_{2} \times L_{2}(q)$ or $M=\mathrm{SL}(2, q)$, then M is uniquely determined by its complex group algebra.

One of the next natural groups to be considered are the characteristically simple groups. Khosravi et al. proved that $L_{2}(p) \times L_{2}(p)$ is uniquely determined by its complex group algebra, where $p \geq 5$ is a prime number (see [12]). In [1], we prove that if M is a simple K_{3}-group, then $M \times M$ is uniquely determined by its order and some information on irreducible character degrees. In [2], we proved that the direct product of non-isomorphic Suzuki groups is uniquely determined by its complex group algebra.

In this paper, we prove that the direct product G^{n} of n copies of a group G, where (a) $G \cong A_{5}$ and $n \leq 5$; (b) $G \cong L_{2}(7)$ and $n \leq 7$; (c) $G \cong L_{3}(3)$ and $n \leq 13$; (d) $G \cong L_{2}(17)$ and $n \leq 17$; are uniquely determined by their order and some information on irreducible character degrees. As a consequence of our results we show that these groups are uniquely determined by the structure of their complex group algebras.

If $N \unlhd G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group of θ in G is $I_{G}(\theta)=$ $\left\{g \in G \mid \theta^{g}=\theta\right\}$. If the character $\chi=\sum_{i=1}^{k} e_{i} \chi_{i}$, where for each $1 \leq i \leq k$, $\chi_{i} \in \operatorname{Irr}(G)$ and e_{i} is a natural number, then each χ_{i} is called an irreducible constituent of χ.

Lemma 1 ([11, Theorems $6.2,6.8,11.29])$. Let $N \unlhd G$ and let $\chi \in \operatorname{Irr}(\mathrm{G})$. Let θ be an irreducible constituent of χ_{N} and suppose $\theta_{1}=\theta, \ldots, \theta_{t}$ are the distinct conjugates of θ in G. Then $\chi_{N}=e \sum_{i=1}^{t} \theta_{i}$, where $e=\left[\chi_{N}, \theta\right]$ and $t=\left|G: I_{G}(\theta)\right|$. Also $\theta(1) \mid \chi(1)$ and $\chi(1) / \theta(1)| | G: N \mid$.

Lemma 2 ([24, Lemma 1$])$. Let G be a nonsolvable group. Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a direct product of isomorphic nonabelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

Given a natural number n, let $\mathrm{P}(n)$ denote the greatest prime factor of n, and let n_{r}, where r is a prime, denote the r-part of n, i.e., the largest power of r that divides n. For every integer a coprime to n, let $\operatorname{Ord}_{n}(a)$ denote the smallest positive integer e such that $a^{e} \equiv 1(\bmod n)$. If s is a prime number, then we write $s^{k} \| n$, when $s^{k} \mid n$ but $s^{k+1} \nmid n$.

Using [25] we have the following result:
Lemma 3. If $n>2$ and $a>b>0$, then $n+1 \leq \mathrm{P}\left(a^{n}-b^{n}\right)$.
Lemma 4 ([18, Theorems 3.6$])$. Let p be an odd prime, and let $a \neq \pm 1$ be an integer not divisible by p. Let d be the order of a modulo p. Let k_{0} be the largest integer such that $a^{d} \equiv 1\left(\bmod p^{k_{0}}\right)$. Then the order of a modulo p^{k} is d for $k=1, \ldots, k_{0}$ and $d p^{k-k_{0}}$ for $k>k_{0}$.

2. THE MAIN RESULTS

Lemma 5. Let M be a finite group such that $p||M|$. If there exists $\chi \in \operatorname{Irr}(\mathrm{G})$, where $\chi(1)=|M|_{p}$, then $O_{p}(M)=1$.

Proof. Let $|M|_{p}=p^{j}$. Assume on the contrary $L=O_{p}(M) \neq 1$ and $|L|=p^{i}$, where $1 \leq i \leq j$. If $\eta \in \operatorname{Irr}(\mathrm{L})$ such that $\left[\chi_{L}, \eta\right] \neq 0$, then by Lemma $1, p^{j} / \eta(1)$ is a divisor of $|M: L|_{p}=p^{j-i}$. Since $\eta(1)\left||L|\right.$, we get that $\eta(1)=p^{i}$. On the other hand, $\sum_{\nu \in \operatorname{Irr}(\mathrm{L})} \nu^{2}(1)=|L|$, which is a contradiction.

Lemma 6. Let S be a finite nonabelian simple group and let $p_{0}=\mathrm{P}(|S|)$. If G is an extension of S^{m} by S^{n}, where $m+n \leq p_{0}$, then $G \cong S^{m+n}$.

Proof. We claim that $p_{0} \nmid|\mathrm{Out}(\mathrm{S})|$. Obviously, $p_{0} \geq 5$. If S is an alternating group or a sporadic simple group, then by page $i x$ and Table 1 in [6], we get that $|\operatorname{Out}(S)| \leq 4$. Therefore we assume that S is a simple group of Lie type over GF(q), where $q=p^{f}$. By the notations in [6, Page $x v$ and Table $5]$, \mid Out(S) $\mid=d f g$, where d, f and g are the orders of the diagonal, field and graph automorphisms of S, respectively. Let k be the largest integer such that $q^{k}-1$ is a divisor of $|S|$. By Lemma $3, f k+1 \leq \mathrm{P}\left(q^{k}-1\right)$.

Assume that $S \cong L_{l+1}(q)$, where $l \geq 2$. Then $k=l+1$. Hence

$$
\max \{d, f, g\}<l f+f+1 \leq \mathrm{P}\left(p^{(l+1) f}-1\right) \leq p_{0}
$$

Suppose that $S \cong U_{l+1}(q)$, where $l \geq 2$. we know that f is an even number. If l is an even number, then $k=l$. Thus

$$
\max \{d, f, g\}<l f+1 \leq \mathrm{P}\left(p^{l f}-1\right) \leq p_{0}
$$

If l is an odd number, then $k=l+1$. Therefore

$$
\max \{d, f, g\}<l f+f+1 \leq \mathrm{P}\left(p^{(l+1) f}-1\right) \leq p_{0}
$$

Therefore $p_{0} \nmid|\operatorname{Out}(S)|$. For other cases, easily we can check that p_{0} does not divide $|\operatorname{Out}(S)|$. Therefore the claim is proved.

By assumptions, there exists a normal subgroup H_{m} of G, which is isomorphic to S^{m}. We know that $\operatorname{Out}\left(H_{m}\right) \cong \frac{\operatorname{Aut}\left(H_{m}\right)}{\operatorname{Inn}\left(H_{m}\right)}$ and $\operatorname{Inn}\left(H_{m}\right) \cong \frac{H_{m}}{Z\left(H_{m}\right)}$. Therefore $\left|\operatorname{Aut}\left(H_{m}\right)\right|=\left|\operatorname{Out}\left(H_{m}\right)\right| \frac{\left|H_{m}\right|}{\left|Z\left(H_{m}\right)\right|}$. Since S is a non-abelian simple group and $H_{m} \cong S^{m}$, we have $Z\left(H_{m}\right)=1$ and $\left|\operatorname{Aut}\left(H_{m}\right)\right|=\left|\operatorname{Out}\left(H_{m}\right)\right|\left|H_{m}\right|$. On the other hand, by [8, Page 131], we have $\operatorname{Out}\left(H_{m}\right) \cong \operatorname{Out}(S)$ 乙 S_{m}. Therefore

$$
\begin{aligned}
\frac{G}{C_{G}\left(H_{m}\right)} \hookrightarrow \operatorname{Aut}\left(H_{m}\right) & \left.\Longrightarrow\left|\frac{G}{C_{G}\left(H_{m}\right)}\right|\left|\left|\operatorname{Aut}\left(H_{m}\right)\right|=\left|\operatorname{Out}\left(H_{m}\right)\right|\right| H_{m} \right\rvert\, \\
& \left.\Longrightarrow \frac{|G|}{\left|C_{G}\left(H_{m}\right)\right|}\left|\left|\operatorname{Out}\left(S^{m}\right)\right|\right| S^{m}\left|=|\operatorname{Out}(S)|^{m} m!\right| S^{m} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Longrightarrow \frac{\left|S^{m}\right|\left|S^{n}\right|}{\left|C_{G}\left(H_{m}\right)\right|}\left||\operatorname{Out}(S)|^{m} m!\right| S^{m} \right\rvert\, \\
& \Longrightarrow \frac{\left|S^{n}\right|}{\left|C_{G}\left(H_{m}\right)\right|}\left||\operatorname{Out}(S)|^{m} m!.\right.
\end{aligned}
$$

Since $p_{0}>m, p_{0}| | S \mid$ and $p_{0} \nmid|\operatorname{Out}(S)|^{m} m$!, we get that $p_{0}| | C_{G}\left(H_{m}\right) \mid$ and so $\left|C_{G}\left(H_{m}\right)\right| \neq 1$. As S is a nonabelian simple group, $H_{m} \cap C_{G}\left(H_{m}\right)=1$ and it follows that $H_{m} C_{G}\left(H_{m}\right) \cong S^{m} \times C_{G}\left(H_{m}\right)$. Since $C_{G}\left(H_{m}\right) \cong H_{m} C_{G}\left(H_{m}\right) / H_{m} \unlhd$ $G / H_{m} \cong S^{n}$, we have $C_{G}\left(H_{m}\right) \cong S^{i}$, where $1 \leq i \leq n$.
Put $L=H_{m} C_{G}\left(H_{m}\right) \cong S^{m+i}$. Now we consider the possibilities for n :

- If $n=1$, then $G \cong S^{m+1}$.
- If $n=2$, then we have two cases. If $C_{G}\left(H_{m}\right) \cong S^{2}$, then $G \cong S^{m+2}$. If $C_{G}\left(H_{m}\right) \cong S$, then we have $G / L \cong\left(G / H_{m}\right) /\left(H_{m} C_{G}\left(H_{m}\right) / H_{m}\right)$ so $G / S^{m+1} \cong$ S and using the case $n=1$, we get that $G \cong S^{m+2}$.
- If $n=3$, then we have three cases. If $C_{G}\left(H_{m}\right) \cong S^{3}$, then $G \cong S^{m+3}$. If $C_{G}\left(H_{m}\right) \cong S^{2}$, then we have $G / L \cong\left(G / H_{m}\right) /\left(H_{m} C_{G}\left(H_{m}\right) / H_{m}\right)$ so $G / S^{m+2} \cong$ S and using the case $n=1$, we get that $G \cong S^{m+3}$. If $C_{G}\left(H_{m}\right) \cong S$, then we have $G / L \cong\left(G / H_{m}\right) /\left(H_{m} C_{G}\left(H_{m}\right) / H_{m}\right)$ so $G / S^{m+1} \cong S^{2}$ and using the case $n=2$, we get that $G \cong S^{m+3}$.

By iterating this process we get that G is isomorphic to S^{m+n}, where $m+n \leq p_{0}$.

Lemma 7. Let G be a finite group. Then the following statements hold:
(a) If $|G|=2^{s} 3^{t} 5^{n}$, where $s+t<16 n / 5$, and $5^{n} \in \operatorname{cd}(G)$, then G is not solvable;
(b) If $|G|=2^{r} 3^{s} 17^{n}$, where $2 r+s<256 n / 17$, and $17^{n} \in \operatorname{cd}(G)$, then G is not solvable.

Proof. (a) On the contrary, let G be a solvable group. Since $5^{n} \in \operatorname{cd}(G)$, by Lemma $5, O_{5}(G)=1$ and so $\operatorname{Fit}(G) \cong O_{2}(G) \times O_{3}(G) \neq 1$. Then $G / C_{G}(\operatorname{Fit}(G)) \hookrightarrow \operatorname{Aut}(\operatorname{Fit}(G))$ and since G is a solvable group, $C_{G}(\operatorname{Fit}(G)) \leq$ $\operatorname{Fit}(G)$. Hence $|G|||\operatorname{Fit}(G)| \cdot| \operatorname{Aut}(\operatorname{Fit}(G)) \mid$. On the other hand, $\operatorname{Aut}(\operatorname{Fit}(G)) \cong$ $\operatorname{Aut}\left(O_{2}(G) \times O_{3}(G)\right) \cong \operatorname{Aut}\left(O_{2}(G)\right) \times \operatorname{Aut}\left(O_{3}(G)\right)$. Also, according to [10, Section 1.3] we obtain that

$$
\left|\operatorname{Aut}\left(O_{2}(G)\right)\right|\left||\mathrm{GL}(s, 2)|=\left(2^{s}-1\right)\left(2^{s}-2\right) \cdots\left(2^{s}-2^{s-1}\right)\right.
$$

and

$$
\left|\operatorname{Aut}\left(O_{3}(G)\right)\right|\left||\operatorname{GL}(t, 3)|=\left(3^{t}-1\right)\left(3^{t}-3\right) \cdots\left(3^{t}-3^{t-1}\right)\right.
$$

Hence $|G|||\operatorname{Fit}(G)| \cdot| \mathrm{GL}(s, 2)|\cdot| \mathrm{GL}(t, 3)\left|=\left|O_{2}(G)\right| \cdot\right| O_{3}(G)|\cdot| \operatorname{GL}(s, 2) \mid$. $|\mathrm{GL}(t, 3)|$. Therefore $5^{n}| | \mathrm{GL}(s, 2)|\cdot| \mathrm{GL}(t, 3) \mid$. Consequently the power of 5 in 5^{n} is less than or equal to the power of 5 in $|\mathrm{GL}(s, 2)| \cdot|\mathrm{GL}(t, 3)|$.

First, we calculate the multiplicity of the prime 5 in the number
$|\mathrm{GL}(s, 2)|=\left(2^{s}-1\right)\left(2^{s}-2\right) \cdots\left(2^{s}-2^{s-1}\right)=2^{s(s-1 / 2)}\left(2^{s}-1\right)\left(2^{s-1}-1\right) \cdots(2-1)$.
We can start counting:

* The number of $\left(2^{l}-1\right)$, where $1 \leq l \leq s$ such that $5 \mid\left(2^{l}-1\right)$ is equal to the number of multiples of $\operatorname{Ord}_{5}(2)$ which are less than or equal to s, i.e. $\left[s / \operatorname{Ord}_{5}(2)\right]$.
* The number of $\left(2^{l}-1\right)$, where $1 \leq l \leq s$ such that $5^{2} \mid\left(2^{l}-1\right)$ is equal to the number of multiples of $\operatorname{Ord}_{5^{2}}(2)$ which are less than or equal to s, i.e. $\left[s / \operatorname{Ord}_{5^{2}}(2)\right]$.
* The number of $\left(2^{l}-1\right)$, where $1 \leq l \leq s$ such that $5^{m} \mid\left(2^{l}-1\right)$ is equal to the number of multiples of $\operatorname{Ord}_{5^{m}}(2)$ which are less than or equal to s, i.e. $\left[s / \operatorname{Ord}_{5^{m}}(2)\right]$.
Putting this all together, the multiplicity of the prime 5 in $|\mathrm{GL}(s, 2)|$ is

$$
\left[\frac{s}{\operatorname{Ord}_{5}(2)}\right]+\left[\frac{s}{\operatorname{Ord}_{5^{2}}(2)}\right]+\left[\frac{s}{\operatorname{Ord}_{5^{3}}(2)}\right]+\cdots
$$

Similarly, the multiplicity of the prime 5 in $|\mathrm{GL}(t, 3)|$ is

$$
\left[\frac{t}{\operatorname{Ord}_{5}(3)}\right]+\left[\frac{t}{\operatorname{Ord}_{5^{2}}(3)}\right]+\left[\frac{t}{\operatorname{Ord}_{5^{3}}(3)}\right]+\cdots
$$

By Lemma 4, we obtain that $\operatorname{Ord}_{5^{k}}(2)=\operatorname{Ord}_{5}(2) \cdot 5^{k-1}$ and $\operatorname{Ord}_{5^{k}}(3)=$ $\operatorname{Ord}_{5}(3) \cdot 5^{k-1}$, for every $k \in \mathbb{N}$. Hence

$$
\begin{aligned}
n & \leq\left[\frac{s}{\operatorname{Ord}_{5}(2)}\right]+\left[\frac{s}{\operatorname{Ord}_{5^{2}}(2)}\right]+\cdots+\left[\frac{t}{\operatorname{Ord}_{5}(3)}\right]+\left[\frac{t}{\operatorname{Ord}_{5^{2}}(3)}\right]+\cdots \\
& \leq\left[\frac{s}{4}\right]+\left[\frac{s}{20}\right]+\cdots+\left[\frac{t}{4}\right]+\left[\frac{t}{20}\right]+\cdots \leq \frac{s}{4}+\frac{s}{20}+\cdots+\frac{t}{4}+\frac{t}{20}+\cdots \\
& =\frac{s}{4}\left(1+1 / 5+1 / 5^{2}+\cdots\right)+\frac{t}{4}\left(1+1 / 5+1 / 5^{2}+\cdots\right) \leq \frac{s+t}{4} \cdot \frac{5}{4}<n,
\end{aligned}
$$

which is a contradiction.
(b) We know that $\operatorname{Ord}_{17}(2)=8, \operatorname{Ord}_{17}(3)=16$. Now using Lemma 4, we obtain that $\operatorname{Ord}_{17^{k}}(2)=\operatorname{Ord}_{17}(2) \cdot 17^{k-1}$ and $\operatorname{Ord}_{17^{k}}(3)=\operatorname{Ord}_{17}(3) \cdot 17^{k-1}$, for every $k \in \mathbb{N}$. So similarly to the above argument, we get the result.

Theorem 8. Let G be a finite group and $\alpha \leq 5$. Then $G \cong A_{5}^{\alpha}$ if and only if $|G|=\left|A_{5}\right|^{\alpha}$ and $5^{\alpha} \in \operatorname{cd}(G)$.

Proof. We put $H_{0}=G$. By Lemma 7, it follows that G is not solvable. According to Lemma 2, $G=H_{0}$ has a normal series $1 \unlhd H_{1} \unlhd K_{1} \unlhd H_{0}=G$ such that K_{1} / H_{1} is a direct product of isomorphic nonabelian simple groups and $\left|H_{0} / K_{1}\right|\left|\left|\operatorname{Out}\left(K_{1} / H_{1}\right)\right|\right.$. If H_{1} is not a solvable group, we can proceed
similarly to the above and get a normal series $1 \unlhd H_{2} \unlhd K_{2} \unlhd H_{1}$ such that K_{2} / H_{2} is a nonabelian characteristically simple group and $\left|H_{1} / K_{2}\right|\left|\left|\operatorname{Out}\left(K_{2} / H_{2}\right)\right|\right.$. If H_{2} is not a solvable group, we continue this process and finally we have a subnormal series

$$
\begin{equation*}
1 \unlhd H_{m} \unlhd K_{m} \unlhd H_{m-1} \unlhd K_{m-1} \cdots \unlhd H_{2} \unlhd K_{2} \unlhd H_{1} \unlhd K_{1} \unlhd H_{0}=G \tag{1}
\end{equation*}
$$

of G such that m is the smallest number, where H_{m} is solvable. Hence

$$
|G|=\prod_{i=1}^{m}\left|K_{i} / H_{i}\right| \cdot \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right| \cdot\left|H_{m}\right| .
$$

By assumptions, $\alpha \leq 5$ and K_{i} / H_{i} is a direct product of α_{i} copies of a nonabelian simple group S_{i} such that $\left|H_{i-1} / K_{i}\right|\left|\left|\operatorname{Out}\left(K_{i} / H_{i}\right)\right|\right.$. Also $\left|\operatorname{Out}\left(S_{i}{ }^{\alpha_{i}}\right)\right|=\left|\operatorname{Out}\left(S_{i}\right)\right|^{\alpha_{i}}\left(\alpha_{i}!\right)$ and $5=\mathrm{P}\left(\left|S_{i}\right|\right) \nmid\left|\operatorname{Out}\left(S_{i}\right)\right|$. Therefore we get that $5 \nmid \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right|$.

We show that $5 \nmid\left|H_{m}\right|$. Otherwise, if $5\left|\left|H_{m}\right|\right.$, let $5^{\beta} \|\left|H_{m}\right|$. Then 5^{β} is a divisor of

$$
t=\left|H_{m}\right| \cdot \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right|=\frac{|G|}{\prod_{i=1}^{m}\left|K_{i} / H_{i}\right|}
$$

On the other hand, t is a divisor of $\left|A_{5}\right|^{\alpha} /\left|A_{5}\right|^{\gamma}$, where $5^{\gamma} \| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$. Hence $\alpha=\beta+\gamma$. Therefore $\left|H_{m}\right|\left|\left|A_{5}\right|^{\beta}\right.$ and so $| H_{m} \mid=2^{\sigma} 3^{\tau} 5^{\beta}$, where $\sigma \leq 2 \beta, \tau \leq \beta$. Also, by successively applying Lemma 1 at every extension, we get that $5^{\beta} \in \operatorname{cd}\left(H_{m}\right)$ and by Lemma $7, H_{m}$ is not solvable, which is a contradiction. Thus $5 \nmid\left|H_{m}\right|$. Hence $5^{\alpha} \| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$. Therefore

$$
|G|_{5}=\left(\prod_{i=1}^{m}\left|K_{i} / H_{i}\right| \cdot \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right| \cdot\left|H_{m}\right|\right)_{5}=\left(\prod_{i=1}^{m}\left|K_{i} / H_{i}\right|\right)_{5}
$$

Since G is a $\{2,3,5\}$-group, S_{i} is a $\{2,3,5\}$-group. If there exists i such that $S_{i} \not \not A_{5}$, then $|G|_{2}<\left(\prod_{i=1}^{m}\left|K_{i} / H_{i}\right|\right)_{2}$, which is a contradiction. Therefore $K_{i} / H_{i} \cong A_{5}^{\alpha_{i}}$. Now we have

$$
\begin{equation*}
|G|=\prod_{i=1}^{m}\left|A_{5}\right|^{\alpha_{i}} \cdot \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right| \cdot\left|H_{m}\right| . \tag{2}
\end{equation*}
$$

By eliminating $\left|A_{5}\right|$ from both sides of (2), we have

$$
\left|A_{5}\right|^{\alpha-1}=\left|A_{5}\right|^{\alpha_{j}-1} \prod_{\substack{i=1 \\ i \neq j}}^{m}\left|A_{5}\right|^{\alpha_{i}} \cdot \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right| \cdot\left|H_{m}\right| .
$$

Since $|G|_{5}=\left(\prod_{i=1}^{m}\left|K_{i} / H_{i}\right|\right)_{5}$, by iterating this process, we get that

$$
\prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right| \cdot\left|H_{m}\right|=1
$$

We get that $H_{m}=1$, and for each $1 \leq i \leq m, H_{i-1}=K_{i}$ and $K_{i} / H_{i} \cong A_{5}^{\alpha_{i}}$, where $\alpha_{1}+\cdots+\alpha_{m}=\alpha$. Therefore

$$
1=H_{m} \unlhd H_{m-1} \unlhd H_{m-2} \cdots \unlhd H_{2} \unlhd H_{1} \unlhd H_{0}=G
$$

such that $K_{i}=H_{i-1}$ and $H_{i-1} / H_{i} \cong A_{5}^{\alpha_{i}}$. Applying Lemma 6, we obtain that $H_{m-1} \cong A_{5}^{\alpha_{m}}, H_{m-2} \cong A_{5}^{\alpha_{m}+\alpha_{m-1}}$ and finally $G \cong A_{5}^{\alpha_{m}+\alpha_{m-1}+\cdots+\alpha_{1}}=$ A_{5}^{α}.

Similarly to the above, we have the following theorem and for convenience we omit the proof.

Theorem 9. Let G be a finite group and $\alpha \leq 17$. Then $G \cong L_{2}(17)^{\alpha}$ if and only if $|G|=\left|L_{2}(17)\right|^{\alpha}$ and $17^{\alpha} \in \operatorname{cd}(G)$.

Remark 10. In [24, Theorem A], Xu et al. proved that $L_{2}(7)$ is characterizable by $|G|$ and $7 \in \operatorname{cd}(G)$.

Using the notations of GAP [9], if $A=\operatorname{SmallGroup}(56,11)$ and $H=$ $A^{2} \times \mathbb{Z}_{9}$, then $|H|=\left|L_{2}(7)\right|^{2}$ and H has an irreducible character of degree 7^{2}. Therefore $L_{2}(7)^{\alpha}$, where $\alpha \geq 2$, is not characterizable by $|G|$ and $7^{\alpha} \in \operatorname{cd}(G)$.

If $C=\operatorname{SmallGroup}\left(3^{3} 13,11\right)$ and $H=C \times \mathbb{Z}_{16}$, then $|H|=\left|L_{3}(3)\right|$ and H has an irreducible character of degree 13 . Thus $L_{3}(3)^{\alpha}$, where $\alpha \geq 1$, is not characterizable by $|G|$ and $13^{\alpha} \in \operatorname{cd}(G)$.

So we need more assumptions to characterize $L_{2}(7)^{\alpha}$, where $2 \leq \alpha \leq 7$ and $L_{3}(3)^{\alpha}$, where $\alpha \leq 13$.

Lemma 11. Let G be a finite group. Then the following statements hold:
(a) If $|G|=2^{r} 3^{s} 7^{n}$, where $s<36 n / 7$, and $2^{r}, 7^{n} \in \operatorname{cd}(G)$, then G is not solvable;
(b) If $|G|=2^{r} 3^{s} 13^{n}$, where $r<144 n / 13$, and $3^{s}, 13^{n} \in \operatorname{cd}(G)$, then G is not solvable.

Proof. (a) Let G be a solvable group. By Lemma 5, $O_{2}(G)=1$ and $O_{7}(G)=1$. Therefore $\operatorname{Fit}(G) \cong O_{3}(G) \neq 1$. Since G is a solvable group, $C_{G}(\operatorname{Fit}(G)) \leq \operatorname{Fit}(G)$. Hence $|G|$ divides $|\operatorname{Fit}(G)| \cdot|\operatorname{Aut}(\operatorname{Fit}(G))|$. So $7^{n} \mid$ $|\mathrm{GL}(t, 3)|$ and by Lemma $4, \operatorname{Ord}_{7^{k}}(3)=\operatorname{Ord}_{7}(3) \cdot 7^{k-1}$. Hence

$$
n \leq\left[\frac{s}{\operatorname{Ord}_{7}(3)}\right]+\left[\frac{s}{\operatorname{Ord}_{7^{2}}(3)}\right]+\cdots \leq \frac{s}{6}\left(1+1 / 7+1 / 7^{2}+\cdots\right) \leq \frac{s}{6} \cdot \frac{7}{6}<n
$$

which is a contradiction.
(b) Similarly to the above, the result holds.

Theorem 12. Let G be a finite group and $\alpha \leq 7$. Then $G \cong L_{2}(7)^{\alpha}$ if and only if $|G|=\left|L_{2}(7)\right|^{\alpha}$ and $2^{3 \alpha}, 7^{\alpha} \in \operatorname{cd}(G)$.

Proof. By Lemma 11, it follows that G is not solvable. So, similarly to the proof of Theorem 8, we get that a subnormal series, like (1), where K_{i} / H_{i} is a direct product of α_{i} copies of a nonabelian simple group S_{i}. Also $\left|H_{i-1} / K_{i}\right|\left|\left|\operatorname{Out}\left(K_{i} / H_{i}\right)\right|\right.$ and m is the smallest number where H_{m} is solvable. We show that $7 \nmid\left|H_{m}\right|$. On the contrary, let $7^{\beta} \|\left|H_{m}\right|$. Then 7^{β} is a divisor of

$$
t=\left|H_{m}\right| \cdot \prod_{i=1}^{m}\left|H_{i-1} / K_{i}\right|=\frac{|G|}{\prod_{i=1}^{m}\left|K_{i} / H_{i}\right|}
$$

On the other hand, t is a divisor of $\left|L_{2}(7)\right|^{\alpha} /\left|L_{2}(7)\right|^{\gamma}$, where $7^{\gamma} \| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$. By Lemma $1,7^{\beta} \in \operatorname{cd}\left(H_{m}\right)$ and using Lemma 11, H_{m} is not solvable which is a contradiction. Thus $7 \nmid\left|H_{m}\right|$. We conclude that $7^{\alpha} \| \prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$. As $K_{i} / H_{i} \cong S_{i}^{\alpha_{i}}$, where S_{i} is a nonabelian simple $\{2,3,7\}$-group, it must hold that $H_{m}=1$ and for each $i, H_{i-1}=K_{i}$. We obtain that $|G|=\prod_{i=1}^{m}\left|K_{i} / H_{i}\right|$, therefore for each $i, K_{i} / H_{i} \cong L_{2}(7)^{\alpha_{i}}$, where $\alpha_{1}+\cdots+\alpha_{m}=\alpha$. Applying Lemma 6 , we get that $G \cong L_{2}(7)^{\alpha}$.

Remark 13. Theorems 8, 9 and 12 are generalizations of Theorem 2.4 in [12], for special cases $p=5,7$ and 17 .

Similarly to the above theorem we have the following theorem:
Theorem 14. Let G be a finite group and $\alpha \leq 13$. Then $G \cong L_{3}(3)^{\alpha}$ if and only if $|G|=\left|L_{3}(3)\right|^{\alpha}$ and $3^{3 \alpha}, 13^{\alpha} \in \operatorname{cd}(G)$.

As a consequence of the above theorems, by [3, Theorem 2.13] we have the following result which is a partial answer to the question arose in [20].

Corollary 15. Let $M \in\left\{A_{5}^{n} \mid n \leq 5\right\} \cup\left\{L_{2}(7)^{n} \mid n \leq 7\right\} \cup\left\{L_{3}(3)^{n} \mid n \leq\right.$ $13 \cup\left\{L_{2}(17)^{n} \mid n \leq 17\right\}$. If G is a group such that $\mathbb{C} G \cong \mathbb{C} M$, then $G \cong M$. Thus M is uniquely determined by the structure of its complex group algebra.

Acknowledgements. The authors would like to thank the referee for valuable comments and suggestions.

REFERENCES

[1] M. Baniasad Azad and B. Khosravi, Recognition of $M \times M$ by its complex group algebra where M is a simple K_{3}-group. Mathematics $\mathbf{6 (7)}$ (2018), 107.
[2] M. Baniasad Azad and B. Khosravi, Complex group algebras of the direct product of non-isomorphic Suzuki groups. J. Algebra Appl. (2019), 2050036 (8 pages).
[3] Y.G. Berkovich and E.M. Zhmud', Characters of Finite Groups. Part 1. Transl. Math. Monogr., American Mathematical Society, Rhode Island, 1998.
[4] C. Bessenrodt, H. Nguyen, J. Olsson and H. Tong-Viet, Complex group algebras of the double covers of the symmetric and alternating groups. Algebra Number Theory 9 (2015), 3, 601-628.
[5] R. Brauer, Representations of finite groups. Vol. I. Lectures on Modern Mathematics, 133-175, 1963.
[6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups. Oxford Univ. Press, Oxford, 1985.
[7] E.C. Dade, Deux groupes finis distincts ayant la meme algèbre de groupe sur tout corps. Math. Z. 119 (1971), 345-348.
[8] J.D. Dixon and B. Mortimer, Permutation Groups. Grad. Texts in Math. 163, Springer, New York, 1996.
[9] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12, 2008. http:www.gap-system.org/gap.
[10] P. Hall, A contribution to the theory of groups of prime power order. Proc. London Math. Soc. 36 (1933), 29-95.
[11] I.M. Isaacs, Character theory of finite groups. Pure Appl. Math. 69, Academic Press, New York, 1976.
[12] B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen, Recognition of PSL $(2, p) \times$ PSL $(2, p)$ by its complex group Algebra. J. Algebra Appl. 16 (2017), 1, 1750036 (9 pages).
[13] B. Khosravi, B. Khosravi and B. Khosravi, Some extensions of $\operatorname{PSL}\left(2, p^{2}\right)$ are uniquely determined by their complex group algebras. Comm. Algebra. 43 (2015), 8, 3330-3341.
[14] B. Khosravi, B. Khosravi and B. Khosravi, A new characterization for some extensions of $\operatorname{PSL}(2, q)$ for some q by some character degrees. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 1, 49-59.
[15] W. Kimmerle, Group rings of finite simple groups. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo 5 (2002), 4, 261-278.
[16] M. Nagl, Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra. Stuttgarter Mathematische Berichte 2011. http://www.mathematik.uni-stuttgart.de/preprints/downloads/2011/2011-007.pdf
[17] M. Nagl, Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. PhD Diplomarbeit, Universität Stuttgart, 2008.
[18] M.B. Nathanson, Elementary Methods in Number Theory. Grad. Texts in Math. 195, Springer, New York, 2000.
[19] H.N. Nguyen and H.P. Tong-Viet, Characterizing finite quasisimple groups by their complex group algebras. Algebr. Represent. Theory 17 (2014), 1, 305-320.
[20] H.P. Tong-Viet, Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357 (2012), 61-68.
[21] H.P. Tong-Viet, Symmetric groups are determined by their character degrees. J. Algebra 334 (2011), 1, 275-284.
[22] H.P. Tong-Viet, Alternating and sporadic simple groups are determined by their character degrees. Algebr. Represent. Theory 15 (2012), 2, 379-389.
[23] H.P. Tong-Viet, Simple exceptional groups of Lie type are determined by their character degrees. Monatsh. Math. 166 (2012), 559-577.
[24] H. Xu, G.Y. Chen and Y. Yan, A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters. Comm. Algebra 42 (2014), 5374-5380.
[25] K. Zsigmondy, Zur Theorie der Potenzreste. Montash. Math. 3 (1892), 265-284.

Received 27 February 2017

> Amirkabir University of Technology (Tehran Polytechnic),
> Faculty of Math. and Computer Sci., Dept. of Pure Math.,
> 424, Hafez Ave., Tehran 15914, Iran
> baniasad84@gmail.com
> khosravibbb@yahoo.com

