RECOGNITION OF SOME CHARACTERISTICALLY SIMPLE GROUPS BY THEIR COMPLEX GROUP ALGEBRAS

MORTEZA BANIASAD AZAD and BEHROOZ KHOSRAVI

Communicated by Lucian Beznea

In [20], the following question arose: Which groups can be uniquely determined by the structure of their complex group algebras? In this paper, we prove that the direct product G^n of n copies of a group G, where (a) $G \cong A_5$ and $n \leq 5$; (b) $G \cong L_2(7)$ and $n \leq 7$; (c) $G \cong L_3(3)$ and $n \leq 13$; (d) $G \cong L_2(17)$ and $n \leq 17$; are uniquely determined by their order and some information on irreducible character degrees. As a consequence of our results, we show that these groups are uniquely determined by the structure of their complex group algebras.

AMS 2010 Subject Classification: 20C15, 20D05, 20D60.

Key words: character degree, order, complex group algebra.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a finite group, $\text{Irr}(G)$ be the set of irreducible characters of G, and denote by $\text{cd}(G)$, the set of irreducible character degrees of G. If n is a natural number, by G^n we mean the direct product of n copies of G; that is, $G \times G \times \cdots \times G$.

In [5, Problem 2*], R. Brauer posed the following question: Let G and H are two finite groups. If for all fields \mathbb{F}, two group algebras $\mathbb{F}G$ and $\mathbb{F}H$ are isomorphic, can we get that G and H are isomorphic? In [7], E.C. Dade showed that this is false in general.

It was shown in [16, 21] that the symmetric groups are uniquely determined by the structure of their complex group algebras. In [15, 17, 20, 22, 23] it is proved that each nonabelian simple group is uniquely determined by its complex group algebra. In [20], Tong-Viet posed the following question:

QUESTION. Which groups can be uniquely determined by the structure of their complex group algebras?

In [4, 19], it is proved that every quasisimple group L is uniquely determined up to isomorphism by the structure of $\mathbb{C}L$, the complex group algebra
of L. In [13] and [14], it is proved that if $q \mid p^2$, where $p > 3$ is an odd prime, $S = L_2(q)$, M is a finite group such that $S < M < \text{Aut}(S)$, $M = \mathbb{Z}_2 \times L_2(q)$ or $M = \text{SL}(2, q)$, then M is uniquely determined by its complex group algebra.

One of the next natural groups to be considered are the characteristically simple groups. Khosravi et al. proved that $L_2(p) \times L_2(p)$ is uniquely determined by its complex group algebra, where $p \geq 5$ is a prime number (see [12]). In [1], we prove that if M is a simple K_3-group, then $M \times M$ is uniquely determined by its order and some information on irreducible character degrees. In [2], we proved that the direct product of non-isomorphic Suzuki groups is uniquely determined by its complex group algebra.

In this paper, we prove that the direct product G^n of n copies of a group G, where (a) $G \cong A_5$ and $n \leq 5$; (b) $G \cong L_2(7)$ and $n \leq 7$; (c) $G \cong L_3(3)$ and $n \leq 13$; (d) $G \cong L_2(17)$ and $n \leq 17$; are uniquely determined by their order and some information on irreducible character degrees. As a consequence of our results we show that these groups are uniquely determined by the structure of their complex group algebras.

If $N \leq G$ and $\theta \in \text{Irr}(N)$, then the inertia group of θ in G is $I_G(\theta) = \{g \in G \mid \theta^g = \theta\}$. If the character $\chi = \sum_{i=1}^{k} e_i \chi_i$, where for each $1 \leq i \leq k$, $\chi_i \in \text{Irr}(G)$ and e_i is a natural number, then each χ_i is called an irreducible constituent of χ.

Lemma 1 ([11, Theorems 6.2, 6.8, 11.29]). Let $N \leq G$ and let $\chi \in \text{Irr}(G)$. Let θ be an irreducible constituent of χ_N and suppose $\theta_1 = \theta, \ldots, \theta_t$ are the distinct conjugates of θ in G. Then $\chi_N = e \sum_{i=1}^{t} \theta_i$, where $e = [\chi_N, \theta]$ and $t = |G : I_G(\theta)|$. Also $\theta(1) \mid \chi(1)$ and $\chi(1)/\theta(1) \mid |G : N|$.

Lemma 2 ([24, Lemma 1]). Let G be a nonsolvable group. Then G has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic nonabelian simple groups and $|G/K| \mid |\text{Out}(K/H)|$.

Given a natural number n, let $P(n)$ denote the greatest prime factor of n, and let n_r, where r is a prime, denote the r-part of n, i.e., the largest power of r that divides n. For every integer a coprime to n, let $\text{Ord}_n(a)$ denote the smallest positive integer e such that $a^e \equiv 1 \pmod{n}$. If s is a prime number, then we write $s^k \parallel n$, when $s^k \mid n$ but $s^{k+1} \nmid n$.

Using [25] we have the following result:

Lemma 3. If $n > 2$ and $a > b > 0$, then $n + 1 \leq P(a^n - b^n)$.

Lemma 4 ([18, Theorems 3.6]). Let p be an odd prime, and let $a \neq \pm 1$ be an integer not divisible by p. Let d be the order of a modulo p. Let k_0 be the largest integer such that $a^d \equiv 1 \pmod{p^{k_0}}$. Then the order of a modulo p^k is d for $k = 1, \ldots, k_0$ and dp^{k-k_0} for $k > k_0$.

2. THE MAIN RESULTS

Lemma 5. Let M be a finite group such that $p \mid |M|$. If there exists $\chi \in \text{Irr}(G)$, where $\chi(1) = |M|_p$, then $O_p(M) = 1$.

Proof. Let $|M|_p = p^j$. Assume on the contrary $L = O_p(M) \neq 1$ and $|L| = p^i$, where $1 \leq i \leq j$. If $\eta \in \text{Irr}(L)$ such that $[\chi_L, \eta] \neq 0$, then by Lemma 1, $p^j/\eta(1)$ is a divisor of $|M : L| = p^{j-i}$. Since $\eta(1) \mid |L|$, we get that $\eta(1) = p^i$. On the other hand, $\sum_{\nu \in \text{Irr}(L)} \nu^2(1) = |L|$, which is a contradiction. □

Lemma 6. Let S be a finite nonabelian simple group and let $p_0 = \text{P}(|S|)$. If G is an extension of S^m by S^n, where $m + n \leq p_0$, then $G \cong S^{m+n}$.

Proof. We claim that $p_0 \nmid |\text{Out}(S)|$. Obviously, $p_0 \geq 5$. If S is an alternating group or a sporadic simple group, then by page ix and Table 1 in [6], we get that $|\text{Out}(S)| \leq 4$. Therefore we assume that S is a simple group of Lie type over $\text{GF}(q)$, where $q = p^f$. By the notations in [6, Page xiv and Table 5], $|\text{Out}(S)| = dfg$, where d, f and g are the orders of the diagonal, field and graph automorphisms of S, respectively. Let k be the largest integer such that $q^k - 1$ is a divisor of $|S|$. By Lemma 3, $fk + 1 \leq \text{P}(q^k - 1)$.

Assume that $S \cong L_{l+1}(q)$, where $l \geq 2$. Then $k = l + 1$. Hence
\[
\max\{d, f, g\} < lf + f + 1 \leq \text{P}(p^{(l+1)f} - 1) \leq p_0.
\]

Suppose that $S \cong U_{l+1}(q)$, where $l \geq 2$. we know that f is an even number. If l is an even number, then $k = l$. Thus
\[
\max\{d, f, g\} < lf + f + 1 \leq \text{P}(p^{lf} - 1) \leq p_0.
\]

If l is an odd number, then $k = l + 1$. Therefore
\[
\max\{d, f, g\} < lf + f + 1 \leq \text{P}(p^{(l+1)f} - 1) \leq p_0.
\]

Therefore $p_0 \nmid |\text{Out}(S)|$. For other cases, easily we can check that p_0 does not divide $|\text{Out}(S)|$. Therefore the claim is proved.

By assumptions, there exists a normal subgroup H_m of G, which is isomorphic to S^m. We know that $\text{Out}(H_m) \cong \frac{\text{Aut}(H_m)}{\text{Inn}(H_m)}$ and $\text{Inn}(H_m) \cong \frac{H_m}{Z(H_m)}$. Therefore $|\text{Aut}(H_m)| = |\text{Out}(H_m)| \frac{|H_m|}{|Z(H_m)|}$. Since S is a non-abelian simple group and $H_m \cong S^m$, we have $Z(H_m) = 1$ and $|\text{Aut}(H_m)| = |\text{Out}(H_m)||H_m|$. On the other hand, by [8, Page 131], we have $\text{Out}(H_m) \cong \text{Out}(S) \wr S_m$. Therefore
\[
\frac{G}{C_G(H_m)} \hookrightarrow \text{Aut}(H_m) \implies \frac{G}{C_G(H_m)} \mid |\text{Aut}(H_m)| = |\text{Out}(H_m)||H_m|
\]
\[
\implies \frac{|G|}{|C_G(H_m)|} \mid |\text{Out}(S^m)||S^m| = |\text{Out}(S)|^m m!|S^m|}
\]
Since $p_0 > m$, $p_0 \mid |S|$ and $p_0 \nmid |\text{Out}(S)|m^m!$, we get that $p_0 \mid |C_G(H_m)|$ and so $|C_G(H_m)| \neq 1$. As S is a nonabelian simple group, $H_m \cap C_G(H_m) = 1$ and it follows that $H_m C_G(H_m) \cong S^m \times C_G(H_m)$. Since $C_G(H_m) \cong H_m C_G(H_m) / H_m \leq G / H_m \cong S^n$, we have $C_G(H_m) \cong S^i$, where $1 \leq i \leq n$. Put $L = H_m C_G(H_m) \cong S^{m+i}$. Now we consider the possibilities for n:
- If $n = 1$, then $G \cong S^{m+1}$.
- If $n = 2$, then we have two cases. If $C_G(H_m) \cong S^2$, then $G \cong S^{m+2}$. If $C_G(H_m) \cong S$, then we have $G / L \cong (G / H_m) / (H_m C_G(H_m) / H_m)$ so $G / S^{m+1} \cong S$ and using the case $n = 1$, we get that $G \cong S^{m+2}$.
- If $n = 3$, then we have three cases. If $C_G(H_m) \cong S^3$, then $G \cong S^{m+3}$. If $C_G(H_m) \cong S^2$, then we have $G / L \cong (G / H_m) / (H_m C_G(H_m) / H_m)$ so $G / S^{m+2} \cong S$ and using the case $n = 1$, we get that $G \cong S^{m+3}$. If $C_G(H_m) \cong S$, then we have $G / L \cong (G / H_m) / (H_m C_G(H_m) / H_m)$ so $G / S^{m+1} \cong S^2$ and using the case $n = 2$, we get that $G \cong S^{m+3}$.

By iterating this process we get that G is isomorphic to S^{m+n}, where $m + n \leq p_0$. □

Lemma 7. Let G be a finite group. Then the following statements hold:
(a) If $|G| = 2^s 3^t 5^n$, where $s + t < 16n/5$, and $5^n \in \text{cd}(G)$, then G is not solvable;
(b) If $|G| = 2^r 3^s 17^n$, where $2r + s < 256n/17$, and $17^n \in \text{cd}(G)$, then G is not solvable.

Proof. (a) On the contrary, let G be a solvable group. Since $5^n \in \text{cd}(G)$, by Lemma 5, $O_5(G) = 1$ and so $\text{Fit}(G) \cong O_2(G) \times O_3(G) \neq 1$. Then $G / C_G(\text{Fit}(G)) \hookrightarrow \text{Aut}(\text{Fit}(G))$ and since G is a solvable group, $C_G(\text{Fit}(G)) \leq \text{Fit}(G)$. Hence $|G| = |\text{Fit}(G)| \cdot |\text{Aut}(\text{Fit}(G))|$. On the other hand, $\text{Aut}(\text{Fit}(G)) \cong \text{Aut}(O_2(G) \times O_3(G)) \cong \text{Aut}(O_2(G)) \times \text{Aut}(O_3(G))$. Also, according to [10, Section 1.3] we obtain that

$$|\text{Aut}(O_2(G))| \cdot |\text{GL}(s, 2)| = (2^s - 1)(2^s - 2) \cdots (2^s - 2^{s-1})$$

and

$$|\text{Aut}(O_3(G))| \cdot |\text{GL}(t, 3)| = (3^t - 1)(3^t - 3) \cdots (3^t - 3^{t-1})$$

Hence $|G| = |\text{Fit}(G)| \cdot |\text{GL}(s, 2)| \cdot |\text{GL}(t, 3)| = |O_2(G)| \cdot |O_3(G)| \cdot |\text{GL}(s, 2)| \cdot |\text{GL}(t, 3)|$. Therefore $5^n \mid |\text{GL}(s, 2)| \cdot |\text{GL}(t, 3)|$. Consequently the power of 5 in 5^n is less than or equal to the power of 5 in $|\text{GL}(s, 2)| \cdot |\text{GL}(t, 3)|$.
First, we calculate the multiplicity of the prime 5 in the number
\[|\text{GL}(s, 2)| = (2^s - 1)(2^s - 2) \cdots (2^s - 2^{s-1}) = 2^{s(s-1)/2}(2^s - 1)(2^{s-1} - 1) \cdots (2-1). \]

We can start counting:

- The number of \((2^l - 1)\), where \(1 \leq l \leq s\) such that \(5 \mid (2^l - 1)\) is equal to the number of multiples of \(\text{Ord}_5(2)\) which are less than or equal to \(s\), i.e. \([s/\text{Ord}_5(2)]\).
- The number of \((2^l - 1)\), where \(1 \leq l \leq s\) such that \(5^2 \mid (2^l - 1)\) is equal to the number of multiples of \(\text{Ord}_{5^2}(2)\) which are less than or equal to \(s\), i.e. \([s/\text{Ord}_{5^2}(2)]\).
- The number of \((2^l - 1)\), where \(1 \leq l \leq s\) such that \(5^m \mid (2^l - 1)\) is equal to the number of multiples of \(\text{Ord}_{5^m}(2)\) which are less than or equal to \(s\), i.e. \([s/\text{Ord}_{5^m}(2)]\).

Putting this all together, the multiplicity of the prime 5 in \(|\text{GL}(s, 2)|\) is
\[
\left[\frac{s}{\text{Ord}_5(2)} \right] + \left[\frac{s}{\text{Ord}_{5^2}(2)} \right] + \left[\frac{s}{\text{Ord}_{5^3}(2)} \right] + \cdots.
\]

Similarly, the multiplicity of the prime 5 in \(|\text{GL}(t, 3)|\) is
\[
\left[\frac{t}{\text{Ord}_5(3)} \right] + \left[\frac{t}{\text{Ord}_{5^2}(3)} \right] + \left[\frac{t}{\text{Ord}_{5^3}(3)} \right] + \cdots.
\]

By Lemma 4, we obtain that \(\text{Ord}_{5^k}(2) = \text{Ord}_5(2) \cdot 5^{k-1}\) and \(\text{Ord}_{5^k}(3) = \text{Ord}_5(3) \cdot 5^{k-1}\), for every \(k \in \mathbb{N}\). Hence
\[
n \leq \left[\frac{s}{\text{Ord}_5(2)} \right] + \left[\frac{s}{\text{Ord}_{5^2}(2)} \right] + \cdots + \left[\frac{t}{\text{Ord}_5(3)} \right] + \left[\frac{t}{\text{Ord}_{5^2}(3)} \right] + \cdots
\]
\[
= \frac{s}{4} + \frac{s}{20} + \cdots + \frac{t}{4} + \frac{t}{20} + \cdots \leq \frac{s}{4} + \frac{s}{20} + \cdots + \frac{t}{4} + \frac{t}{20} + \cdots
\]
\[
= \frac{s}{4}(1 + 1/5 + 1/5^2 + \cdots) + \frac{t}{4}(1 + 1/5 + 1/5^2 + \cdots) \leq \frac{s + t}{4} \cdot \frac{5}{4} < n,
\]
which is a contradiction.

(b) We know that \(\text{Ord}_{17}(2) = 8\), \(\text{Ord}_{17}(3) = 16\). Now using Lemma 4, we obtain that \(\text{Ord}_{17^k}(2) = \text{Ord}_{17}(2) \cdot 17^{k-1}\) and \(\text{Ord}_{17^k}(3) = \text{Ord}_{17}(3) \cdot 17^{k-1}\), for every \(k \in \mathbb{N}\). So similarly to the above argument, we get the result. □

Theorem 8. Let \(G\) be a finite group and \(\alpha \leq 5\). Then \(G \cong A_5^\alpha\) if and only if \(|G| = |A_5|^\alpha\) and \(5^\alpha \in \text{cd}(G)\).

Proof. We put \(H_0 = G\). By Lemma 7, it follows that \(G\) is not solvable. According to Lemma 2, \(G = H_0\) has a normal series \(1 \leq H_1 \leq K_1 \leq H_0 = G\) such that \(K_1/H_1\) is a direct product of isomorphic nonabelian simple groups and \(|H_0/K_1| = |\text{Out}(K_1/H_1)|\). If \(H_1\) is not a solvable group, we can proceed
similarly to the above and get a normal series $1 \trianglelefteq H_2 \trianglelefteq K_2 \trianglelefteq H_1$ such that K_2/H_2 is a nonabelian characteristically simple group and $|H_1/K_2| \mid |\text{Out}(K_2/H_2)|$. If H_2 is not a solvable group, we continue this process and finally we have a subnormal series

$$(1) \quad 1 \trianglelefteq H_m \trianglelefteq K_m \trianglelefteq H_{m-1} \trianglelefteq K_{m-1} \cdots \trianglelefteq H_2 \trianglelefteq K_2 \trianglelefteq H_1 \trianglelefteq K_1 \trianglelefteq H_0 = G$$

of G such that m is the smallest number, where H_m is solvable. Hence

$$|G| = \prod_{i=1}^{m} |K_i/H_i| \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m|.$$

By assumptions, $\alpha \leq 5$ and K_i/H_i is a direct product of α_i copies of a nonabelian simple group S_i such that $|H_{i-1}/K_i| \mid |\text{Out}(K_i/H_i)|$. Also $|\text{Out}(S_i^{\alpha_i})| = |\text{Out}(S_i)|^{\alpha_i(\alpha_i!)}$ and $5 = P(|S_i|) \nmid |\text{Out}(S_i)|$. Therefore we get that $5 \nmid \prod_{i=1}^{m} |H_{i-1}/K_i|$.

We show that $5 \nmid |H_m|$. Otherwise, if $5 \mid |H_m|$, let $5\beta \mid |H_m|$. Then 5β is a divisor of

$$t = |H_m| \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| = \frac{|G|}{\prod_{i=1}^{m} |K_i/H_i|}.$$

On the other hand, t is a divisor of $|A_5|^{\alpha}/|A_5|^\gamma$, where $5^\gamma \mid \prod_{i=1}^{m} |K_i/H_i|$. Hence $\alpha = \beta + \gamma$. Therefore $|H_m| \mid |A_5|^\beta$ and so $|H_m| = 2^\sigma 3^\tau 5^\beta$, where $\sigma \leq 2\beta, \tau \leq \beta$. Also, by successively applying Lemma 1 at every extension, we get that $5^\beta \in \text{cd}(H_m)$ and by Lemma 7, H_m is not solvable, which is a contradiction. Thus $5 \nmid |H_m|$. Hence $5^\alpha \mid \prod_{i=1}^{m} |K_i/H_i|$. Therefore

$$|G|_5 = \left(\prod_{i=1}^{m} |K_i/H_i| \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m|\right)_5 = \left(\prod_{i=1}^{m} |K_i/H_i|\right)_5.$$

Since G is a $\{2, 3, 5\}$-group, S_i is a $\{2, 3, 5\}$-group. If there exists i such that $S_i \not\cong A_5$, then $|G|_2 < (\prod_{i=1}^{m} |K_i/H_i|)_2$, which is a contradiction. Therefore $K_i/H_i \cong A_5^{\alpha_i}$. Now we have

$$(2) \quad |G| = \prod_{i=1}^{m} |A_5|^{\alpha_i} \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m|.$$

By eliminating $|A_5|$ from both sides of (2), we have

$$|A_5|^{\alpha - 1} = |A_5|^{\alpha - 1} \prod_{i=1}^{m} |A_5|^{\alpha_i} \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m|.$$
Since $|G|_5 = (\prod_{i=1}^{m} |K_i/H_i|)_5$, by iterating this process, we get that

$$\prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m| = 1.$$

We get that $H_m = 1$, and for each $1 \leq i \leq m$, $H_{i-1} = K_i$ and $K_i/H_i \cong A_5^{\alpha_i}$, where $\alpha_1 + \cdots + \alpha_m = \alpha$. Therefore

$$1 = H_m \leq H_{m-1} \leq H_{m-2} \cdots \leq H_2 \leq H_1 \leq H_0 = G,$$

such that $K_i = H_{i-1}$ and $H_{i-1}/H_i \cong A_5^{\alpha_i}$. Applying Lemma 6, we obtain that $H_{m-1} \cong A_5^{\alpha_m}$, $H_{m-2} \cong A_5^{\alpha_m + \alpha_{m-1}}$ and finally $G \cong A_5^{\alpha_m + \alpha_{m-1} + \cdots + \alpha_1} = A_5^\alpha$. \square

Similarly to the above, we have the following theorem and for convenience we omit the proof.

Theorem 9. Let G be a finite group and $\alpha \leq 17$. Then $G \cong L_2(17)^\alpha$ if and only if $|G| = |L_2(17)|^\alpha$ and $17^\alpha \in \text{cd}(G)$.

Remark 10. In [24, Theorem A], Xu et al. proved that $L_2(7)$ is characterizable by $|G|$ and $7 \in \text{cd}(G)$.

Using the notations of GAP [9], if $A = \text{SmallGroup}(56,11)$ and $H = A^2 \times \mathbb{Z}_9$, then $|H| = |L_2(7)^2|$ and H has an irreducible character of degree 7^2. Therefore $L_2(7)^\alpha$, where $\alpha \geq 2$, is not characterizable by $|G|$ and $7^\alpha \in \text{cd}(G)$.

If $C = \text{SmallGroup}(3^313,11)$ and $H = C \times \mathbb{Z}_{16}$, then $|H| = |L_3(3)|$ and H has an irreducible character of degree 13. Thus $L_3(3)^\alpha$, where $\alpha \geq 1$, is not characterizable by $|G|$ and $13^\alpha \in \text{cd}(G)$.

So we need more assumptions to characterize $L_2(7)^\alpha$, where $2 \leq \alpha \leq 7$ and $L_3(3)^\alpha$, where $\alpha \leq 13$.

Lemma 11. Let G be a finite group. Then the following statements hold:

(a) If $|G| = 2^r3^s7^n$, where $s < 36n/7$, and $2^r, 7^n \in \text{cd}(G)$, then G is not solvable;

(b) If $|G| = 2^r3^s13^n$, where $r < 144n/13$, and $3^s, 13^n \in \text{cd}(G)$, then G is not solvable.

Proof. (a) Let G be a solvable group. By Lemma 5, $O_2(G) = 1$ and $O_7(G) = 1$. Therefore $\text{Fit}(G) \cong O_3(G) \neq 1$. Since G is a solvable group, $C_G(\text{Fit}(G)) \leq \text{Fit}(G)$. Hence $|G|$ divides $|\text{Fit}(G)| \cdot |\text{Aut(Fit}(G))|$. So $7^n \mid |\text{GL}(t,3)|$ and by Lemma 4, $\text{Ord}_{7^k}(3) = \text{Ord}_7(3) \cdot 7^{k-1}$. Hence

$$n \leq \left[\frac{s}{\text{Ord}_7(3)} \right] + \left[\frac{s}{\text{Ord}_{7^2}(3)} \right] + \cdots \leq \frac{s}{6} \left(1 + \frac{1}{7} + \frac{1}{7^2} + \cdots \right) \leq \frac{s}{6} \cdot \frac{7}{6} < n,$$
which is a contradiction.

(b) Similarly to the above, the result holds. □

Theorem 12. Let G be a finite group and $\alpha \leq 7$. Then $G \cong L_2(7)^\alpha$ if and only if $|G| = |L_2(7)|^\alpha$ and $2^{3\alpha}, 7^\alpha \in \text{cd}(G)$.

Proof. By Lemma 11, it follows that G is not solvable. So, similarly to the proof of Theorem 8, we get that a subnormal series, like (1), where K_i/H_i is a direct product of α_i copies of a nonabelian simple group S_i. Also $|H_{i-1}/K_i| \cdot |\text{Out}(K_i/H_i)|$ and m is the smallest number where H_m is solvable. We show that $7 \nmid |H_m|$. On the contrary, let $7^\beta \mid |H_m|$. Then 7^β is a divisor of $t = |H_m| \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| = \frac{|G| \cdot \prod_{i=1}^{m} |K_i/H_i|}{|H_m|}$. On the other hand, t is a divisor of $|L_2(7)|^\alpha / |L_2(7)|^\gamma$, where $7^\gamma \mid \prod_{i=1}^{m} |K_i/H_i|$. By Lemma 1, $7^\beta \in \text{cd}(H_m)$ and using Lemma 11, H_m is not solvable which is a contradiction. Thus $7 \nmid |H_m|$. We conclude that $7^\alpha \mid \prod_{i=1}^{m} |K_i/H_i|$. As $K_i/H_i \cong S_i^{\alpha_i}$, where S_i is a nonabelian simple $\{2, 3, 7\}$-group, it must hold that $H_m = 1$ and for each i, $H_{i-1} = K_i$. We obtain that $|G| = \prod_{i=1}^{m} |K_i/H_i|$, therefore for each i, $K_i/H_i \cong L_2(7)^{\alpha_i}$, where $\alpha_1 + \cdots + \alpha_m = \alpha$. Applying Lemma 6, we get that $G \cong L_2(7)^\alpha$. □

Remark 13. Theorems 8, 9 and 12 are generalizations of Theorem 2.4 in [12], for special cases $p = 5, 7$ and 17.

Similarly to the above theorem we have the following theorem:

Theorem 14. Let G be a finite group and $\alpha \leq 13$. Then $G \cong L_3(3)^\alpha$ if and only if $|G| = |L_3(3)|^\alpha$ and $3^{3\alpha}, 13^\alpha \in \text{cd}(G)$.

As a consequence of the above theorems, by [3, Theorem 2.13] we have the following result which is a partial answer to the question arose in [20].

Corollary 15. Let $M \in \{A_n^n | n \leq 5\} \cup \{L_2(7)^n | n \leq 7\} \cup \{L_3(3)^n | n \leq 13\} \cup \{L_2(17)^n | n \leq 17\}$. If G is a group such that $\mathbb{C}G \cong \mathbb{C}M$, then $G \cong M$. Thus M is uniquely determined by the structure of its complex group algebra.

Acknowledgements. The authors would like to thank the referee for valuable comments and suggestions.

REFERENCES

Received 27 February 2017

Amirkabir University of Technology (Tehran Polytechnic),
Faculty of Math. and Computer Sci.,
Dept. of Pure Math.,
424, Hafez Ave., Tehran 15914, Iran
baniasad84@gmail.com
khosravibbb@yahoo.com