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In [20], the following question arose: Which groups can be uniquely determined
by the structure of their complex group algebras? In this paper, we prove that
the direct product Gn of n copies of a group G, where (a) G ∼= A5 and n ≤ 5; (b)
G ∼= L2(7) and n ≤ 7; (c) G ∼= L3(3) and n ≤ 13; (d) G ∼= L2(17) and n ≤ 17;
are uniquely determined by their order and some information on irreducible
character degrees. As a consequence of our results, we show that these groups
are uniquely determined by the structure of their complex group algebras.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a finite group, Irr(G) be the set of irreducible characters of G,
and denote by cd(G), the set of irreducible character degrees of G. If n is a
natural number, by Gn we mean the direct product of n copies of G; that is,
G×G× · · · ×G.

In [5, Problem 2∗], R. Brauer posed the following question: Let G and
H are two finite groups. If for all fields F, two group algebras FG and FH
are isomorphic, can we get that G and H are isomorphic? In [7], E.C. Dade
showed that this is false in general.

It was shown in [16, 21] that the symmetric groups are uniquely deter-
mined by the structure of their complex group algebras. In [15, 17, 20, 22, 23]
it is proved that each nonabelian simple group is uniquely determined by its
complex group algebra. In [20], Tong-Viet posed the following question:

Question. Which groups can be uniquely determined by the structure of
their complex group algebras?

In [4, 19], it is proved that every quasisimple group L is uniquely deter-
mined up to isomorphism by the structure of CL, the complex group algebra
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of L. In [13] and [14], it is proved that if q | p2, where p > 3 is an odd prime,
S = L2(q), M is a finite group such that S < M < Aut(S), M = Z2×L2(q) or
M = SL(2, q), then M is uniquely determined by its complex group algebra.

One of the next natural groups to be considered are the characteristically
simple groups. Khosravi et al. proved that L2(p)×L2(p) is uniquely determined
by its complex group algebra, where p ≥ 5 is a prime number (see [12]). In [1],
we prove that if M is a simple K3-group, then M ×M is uniquely determined
by its order and some information on irreducible character degrees. In [2], we
proved that the direct product of non-isomorphic Suzuki groups is uniquely
determined by its complex group algebra.

In this paper, we prove that the direct product Gn of n copies of a group
G, where (a) G ∼= A5 and n ≤ 5; (b) G ∼= L2(7) and n ≤ 7; (c) G ∼= L3(3) and
n ≤ 13; (d) G ∼= L2(17) and n ≤ 17; are uniquely determined by their order
and some information on irreducible character degrees. As a consequence of
our results we show that these groups are uniquely determined by the structure
of their complex group algebras.

If N E G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ) =
{g ∈ G | θg = θ}. If the character χ =

∑k
i=1 eiχi, where for each 1 ≤ i ≤ k,

χi ∈ Irr(G) and ei is a natural number, then each χi is called an irreducible
constituent of χ.

Lemma 1 ([11, Theorems 6.2, 6.8, 11.29]). Let N EG and let χ ∈ Irr(G).
Let θ be an irreducible constituent of χN and suppose θ1 = θ, . . . , θt are the
distinct conjugates of θ in G. Then χN = e

∑t
i=1 θi, where e = [χN , θ] and

t = |G : IG(θ)|. Also θ(1) | χ(1) and χ(1)/θ(1) | |G : N |.

Lemma 2 ([24, Lemma 1 ]). Let G be a nonsolvable group. Then G has a
normal series 1EH EK EG such that K/H is a direct product of isomorphic
nonabelian simple groups and |G/K| | |Out(K/H)|.

Given a natural number n, let P(n) denote the greatest prime factor of
n, and let nr, where r is a prime, denote the r-part of n, i.e., the largest power
of r that divides n. For every integer a coprime to n, let Ordn(a) denote the
smallest positive integer e such that ae ≡ 1 (mod n). If s is a prime number,
then we write sk‖n, when sk | n but sk+1 - n.

Using [25] we have the following result:

Lemma 3. If n > 2 and a > b > 0, then n+ 1 ≤ P(an − bn).

Lemma 4 ([18, Theorems 3.6 ]). Let p be an odd prime, and let a 6= ±1
be an integer not divisible by p. Let d be the order of a modulo p. Let k0 be the
largest integer such that ad ≡ 1 (mod pk0). Then the order of a modulo pk is
d for k = 1, ..., k0 and dpk−k0 for k > k0.
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2. THE MAIN RESULTS

Lemma 5. Let M be a finite group such that p | |M |. If there exists
χ ∈ Irr(G), where χ(1) = |M |p, then Op(M) = 1.

Proof. Let |M |p = pj . Assume on the contrary L = Op(M) 6= 1 and
|L| = pi, where 1 ≤ i ≤ j. If η ∈ Irr(L) such that [χL, η] 6= 0, then by Lemma
1, pj/η(1) is a divisor of |M : L|p = pj−i. Since η(1) | |L|, we get that η(1) = pi.
On the other hand,

∑
ν∈Irr(L) ν

2(1) = |L|, which is a contradiction. �

Lemma 6. Let S be a finite nonabelian simple group and let p0 = P(|S|).
If G is an extension of Sm by Sn, where m+ n ≤ p0, then G ∼= Sm+n.

Proof. We claim that p0 - |Out(S)|. Obviously, p0 ≥ 5. If S is an alter-
nating group or a sporadic simple group, then by page ix and Table 1 in [6],
we get that |Out(S)| ≤ 4. Therefore we assume that S is a simple group of
Lie type over GF(q), where q = pf . By the notations in [6, Page xv and Table
5], |Out(S)| = dfg, where d, f and g are the orders of the diagonal, field and
graph automorphisms of S, respectively. Let k be the largest integer such that
qk − 1 is a divisor of |S|. By Lemma 3, fk + 1 ≤ P(qk − 1).

Assume that S ∼= Ll+1(q), where l ≥ 2. Then k = l + 1. Hence

max{d, f, g} < lf + f + 1 ≤ P(p(l+1)f − 1) ≤ p0.

Suppose that S ∼= Ul+1(q), where l ≥ 2. we know that f is an even number. If
l is an even number, then k = l. Thus

max{d, f, g} < lf + 1 ≤ P(plf − 1) ≤ p0.

If l is an odd number, then k = l + 1. Therefore

max{d, f, g} < lf + f + 1 ≤ P(p(l+1)f − 1) ≤ p0.

Therefore p0 - |Out(S)|. For other cases, easily we can check that p0 does
not divide |Out(S)|. Therefore the claim is proved.

By assumptions, there exists a normal subgroup Hm of G, which is iso-
morphic to Sm. We know that Out(Hm) ∼= Aut(Hm)

Inn(Hm) and Inn(Hm) ∼= Hm
Z(Hm) .

Therefore |Aut(Hm)| = |Out(Hm)| |Hm|
|Z(Hm)| . Since S is a non-abelian simple

group and Hm
∼= Sm, we have Z(Hm) = 1 and |Aut(Hm)| = |Out(Hm)||Hm|.

On the other hand, by [8, Page 131], we have Out(Hm) ∼= Out(S) oSm. There-
fore

G

CG(Hm)
↪→ Aut(Hm) =⇒ | G

CG(Hm)
|
∣∣ |Aut(Hm)| = |Out(Hm)||Hm|

=⇒ |G|
|CG(Hm)|

∣∣ |Out(Sm)||Sm| = |Out(S)|mm!|Sm|
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=⇒ |Sm||Sn|
|CG(Hm)|

∣∣ |Out(S)|mm!|Sm|

=⇒ |Sn|
|CG(Hm)|

∣∣ |Out(S)|mm!.

Since p0 > m, p0 | |S| and p0 - |Out(S)|mm!, we get that p0 | |CG(Hm)| and so
|CG(Hm)| 6= 1. As S is a nonabelian simple group, Hm∩CG(Hm) = 1 and it fol-
lows that HmCG(Hm) ∼= Sm × CG(Hm). Since CG(Hm) ∼= HmCG(Hm)/Hm E
G/Hm

∼= Sn, we have CG(Hm) ∼= Si, where 1 ≤ i ≤ n.
Put L = HmCG(Hm) ∼= Sm+i. Now we consider the possibilities for n:

• If n = 1, then G ∼= Sm+1.
• If n = 2, then we have two cases. If CG(Hm) ∼= S2, then G ∼= Sm+2. If

CG(Hm) ∼= S, then we have G/L ∼= (G/Hm)/(HmCG(Hm)/Hm) so G/Sm+1 ∼=
S and using the case n = 1, we get that G ∼= Sm+2.

• If n = 3, then we have three cases. If CG(Hm) ∼= S3, then G ∼= Sm+3. If
CG(Hm) ∼= S2, then we haveG/L ∼= (G/Hm)/(HmCG(Hm)/Hm) soG/Sm+2 ∼=
S and using the case n = 1, we get that G ∼= Sm+3. If CG(Hm) ∼= S, then we
have G/L ∼= (G/Hm)/(HmCG(Hm)/Hm) so G/Sm+1 ∼= S2 and using the case
n = 2, we get that G ∼= Sm+3.

By iterating this process we get that G is isomorphic to Sm+n, where
m+ n ≤ p0. �

Lemma 7. Let G be a finite group. Then the following statements hold:

(a) If |G| = 2s3t5n, where s + t < 16n/5, and 5n ∈ cd(G), then G is not
solvable;

(b) If |G| = 2r3s17n, where 2r + s < 256n/17, and 17n ∈ cd(G), then G is
not solvable.

Proof. (a) On the contrary, let G be a solvable group. Since 5n ∈ cd(G),
by Lemma 5, O5(G) = 1 and so Fit(G) ∼= O2(G) × O3(G) 6= 1. Then
G/CG(Fit(G)) ↪→ Aut(Fit(G)) and since G is a solvable group, CG(Fit(G)) ≤
Fit(G). Hence |G| | |Fit(G)|·|Aut(Fit(G))|. On the other hand, Aut(Fit(G)) ∼=
Aut(O2(G)×O3(G)) ∼= Aut(O2(G))×Aut(O3(G)). Also, according to [10, Sec-
tion 1.3] we obtain that

|Aut(O2(G))| | |GL(s, 2)| = (2s − 1)(2s − 2) · · · (2s − 2s−1)

and

|Aut(O3(G))| | |GL(t, 3)| = (3t − 1)(3t − 3) · · · (3t − 3t−1).

Hence |G| | |Fit(G)| · |GL(s, 2)| · |GL(t, 3)| = |O2(G)| · |O3(G)| · |GL(s, 2)| ·
|GL(t, 3)|. Therefore 5n | |GL(s, 2)| · |GL(t, 3)|. Consequently the power of 5
in 5n is less than or equal to the power of 5 in |GL(s, 2)| · |GL(t, 3)|.
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First, we calculate the multiplicity of the prime 5 in the number

|GL(s, 2)| = (2s−1)(2s−2) · · · (2s−2s−1) = 2s(s−1/2)(2s−1)(2s−1−1) · · · (2−1).

We can start counting:
∗ The number of (2l − 1), where 1 ≤ l ≤ s such that 5 | (2l − 1) is equal
to the number of multiples of Ord5(2) which are less than or equal to s, i.e.
[s/Ord5(2)].
∗ The number of (2l − 1), where 1 ≤ l ≤ s such that 52 | (2l − 1) is equal
to the number of multiples of Ord52(2) which are less than or equal to s, i.e.
[s/Ord52(2)].
∗ The number of (2l − 1), where 1 ≤ l ≤ s such that 5m | (2l − 1) is equal
to the number of multiples of Ord5m(2) which are less than or equal to s, i.e.
[s/Ord5m(2)].
Putting this all together, the multiplicity of the prime 5 in |GL(s, 2)| is[

s

Ord5(2)

]
+

[
s

Ord52(2)

]
+

[
s

Ord53(2)

]
+ · · · .

Similarly, the multiplicity of the prime 5 in |GL(t, 3)| is[
t

Ord5(3)

]
+

[
t

Ord52(3)

]
+

[
t

Ord53(3)

]
+ · · · .

By Lemma 4, we obtain that Ord5k(2) = Ord5(2) · 5k−1 and Ord5k(3) =
Ord5(3) · 5k−1, for every k ∈ N. Hence

n ≤ [
s

Ord5(2)
] + [

s

Ord52(2)
] + · · ·+ [

t

Ord5(3)
] + [

t

Ord52(3)
] + · · ·

≤ [
s

4
] + [

s

20
] + · · ·+ [

t

4
] + [

t

20
] + · · · ≤ s

4
+

s

20
+ · · ·+ t

4
+

t

20
+ · · ·

=
s

4
(1 + 1/5 + 1/52 + · · · ) +

t

4
(1 + 1/5 + 1/52 + · · · ) ≤ s+ t

4
· 5

4
< n,

which is a contradiction.

(b) We know that Ord17(2) = 8,Ord17(3) = 16. Now using Lemma 4, we
obtain that Ord17k(2) = Ord17(2) ·17k−1 and Ord17k(3) = Ord17(3) ·17k−1, for
every k ∈ N. So similarly to the above argument, we get the result. �

Theorem 8. Let G be a finite group and α ≤ 5. Then G ∼= Aα5 if and
only if |G| = |A5|α and 5α ∈ cd(G).

Proof. We put H0 = G. By Lemma 7, it follows that G is not solvable.
According to Lemma 2, G = H0 has a normal series 1 E H1 EK1 E H0 = G
such that K1/H1 is a direct product of isomorphic nonabelian simple groups
and |H0/K1| | |Out(K1/H1)|. If H1 is not a solvable group, we can proceed
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similarly to the above and get a normal series 1EH2EK2EH1 such that K2/H2

is a nonabelian characteristically simple group and |H1/K2| | |Out(K2/H2)|.
If H2 is not a solvable group, we continue this process and finally we have a
subnormal series

1EHm EKm EHm−1 EKm−1 · · ·EH2 EK2 EH1 EK1 EH0 = G(1)

of G such that m is the smallest number, where Hm is solvable. Hence

|G| =
m∏
i=1

|Ki/Hi| ·
m∏
i=1

|Hi−1/Ki| · |Hm|.

By assumptions, α ≤ 5 and Ki/Hi is a direct product of αi copies of a
nonabelian simple group Si such that |Hi−1/Ki| | |Out(Ki/Hi)|. Also
|Out(Si

αi)| = |Out(Si)|αi(αi!) and 5 = P(|Si|) - |Out(Si)|. Therefore we get
that 5 -

∏m
i=1 |Hi−1/Ki|.

We show that 5 - |Hm|. Otherwise, if 5 | |Hm|, let 5β‖|Hm|. Then 5β is a
divisor of

t = |Hm| ·
m∏
i=1

|Hi−1/Ki| =
|G|∏m

i=1 |Ki/Hi|
.

On the other hand, t is a divisor of |A5|α/|A5|γ , where 5γ ‖
∏m
i=1 |Ki/Hi|.

Hence α = β + γ. Therefore |Hm| | |A5|β and so |Hm| = 2σ3τ5β, where
σ ≤ 2β, τ ≤ β. Also, by successively applying Lemma 1 at every extension,
we get that 5β ∈ cd(Hm) and by Lemma 7, Hm is not solvable, which is a
contradiction. Thus 5 - |Hm|. Hence 5α ‖

∏m
i=1 |Ki/Hi|. Therefore

|G|5 = (

m∏
i=1

|Ki/Hi| ·
m∏
i=1

|Hi−1/Ki| · |Hm|)5 = (

m∏
i=1

|Ki/Hi|)5.

Since G is a {2, 3, 5}-group, Si is a {2, 3, 5}-group. If there exists i such that
Si � A5, then |G|2 < (

∏m
i=1 |Ki/Hi|)2, which is a contradiction. Therefore

Ki/Hi
∼= Aαi

5 . Now we have

|G| =
m∏
i=1

|A5|αi ·
m∏
i=1

|Hi−1/Ki| · |Hm|.(2)

By eliminating |A5| from both sides of (2), we have

|A5|α−1 = |A5|αj−1
m∏
i=1
i 6=j

|A5|αi ·
m∏
i=1

|Hi−1/Ki| · |Hm|.
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Since |G|5 = (
∏m
i=1 |Ki/Hi|)5, by iterating this process, we get that

m∏
i=1

|Hi−1/Ki| · |Hm| = 1.

We get that Hm = 1, and for each 1 ≤ i ≤ m, Hi−1 = Ki and Ki/Hi
∼= Aαi

5 ,
where α1 + · · ·+ αm = α. Therefore

1 = Hm EHm−1 EHm−2 · · ·EH2 EH1 EH0 = G,

such that Ki = Hi−1 and Hi−1/Hi
∼= Aαi

5 . Applying Lemma 6, we obtain

that Hm−1 ∼= Aαm
5 , Hm−2 ∼= A

αm+αm−1

5 and finally G ∼= A
αm+αm−1+···+α1

5 =
Aα5 . �

Similarly to the above, we have the following theorem and for convenience
we omit the proof.

Theorem 9. Let G be a finite group and α ≤ 17. Then G ∼= L2(17)α if
and only if |G| = |L2(17)|α and 17α ∈ cd(G).

Remark 10. In [24, Theorem A], Xu et al. proved that L2(7) is charac-
terizable by |G| and 7 ∈ cd(G).

Using the notations of GAP [9], if A = SmallGroup(56, 11) and H =
A2 × Z9, then |H| = |L2(7)|2 and H has an irreducible character of degree 72.
Therefore L2(7)α, where α ≥ 2, is not characterizable by |G| and 7α ∈ cd(G).

If C = SmallGroup(3313, 11) and H = C × Z16, then |H| = |L3(3)| and
H has an irreducible character of degree 13. Thus L3(3)α, where α ≥ 1, is not
characterizable by |G| and 13α ∈ cd(G).

So we need more assumptions to characterize L2(7)α, where 2 ≤ α ≤ 7
and L3(3)α, where α ≤ 13.

Lemma 11. Let G be a finite group. Then the following statements hold:

(a) If |G| = 2r3s7n, where s < 36n/7, and 2r, 7n ∈ cd(G), then G is not
solvable;

(b) If |G| = 2r3s13n, where r < 144n/13, and 3s, 13n ∈ cd(G), then G is not
solvable.

Proof. (a) Let G be a solvable group. By Lemma 5, O2(G) = 1 and
O7(G) = 1. Therefore Fit(G) ∼= O3(G) 6= 1. Since G is a solvable group,
CG(Fit(G)) ≤ Fit(G). Hence |G| divides |Fit(G)| · |Aut(Fit(G))|. So 7n |
|GL(t, 3)| and by Lemma 4, Ord7k(3) = Ord7(3) · 7k−1. Hence

n ≤ [
s

Ord7(3)
] + [

s

Ord72(3)
] + · · · ≤ s

6
(1 + 1/7 + 1/72 + · · · ) ≤ s

6
· 7

6
< n,
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which is a contradiction.
(b) Similarly to the above, the result holds. �

Theorem 12. Let G be a finite group and α ≤ 7. Then G ∼= L2(7)α if
and only if |G| = |L2(7)|α and 23α, 7α ∈ cd(G).

Proof. By Lemma 11, it follows that G is not solvable. So, similarly
to the proof of Theorem 8, we get that a subnormal series, like (1), where
Ki/Hi is a direct product of αi copies of a nonabelian simple group Si. Also
|Hi−1/Ki| | |Out(Ki/Hi)| and m is the smallest number where Hm is solvable.
We show that 7 - |Hm|. On the contrary, let 7β‖|Hm|. Then 7β is a divisor of

t = |Hm| ·
m∏
i=1

|Hi−1/Ki| =
|G|∏m

i=1 |Ki/Hi|
.

On the other hand, t is a divisor of |L2(7)|α/|L2(7)|γ , where 7γ ‖
∏m
i=1 |Ki/Hi|.

By Lemma 1, 7β ∈ cd(Hm) and using Lemma 11, Hm is not solvable which
is a contradiction. Thus 7 - |Hm|. We conclude that 7α ‖

∏m
i=1 |Ki/Hi|. As

Ki/Hi
∼= Si

αi , where Si is a nonabelian simple {2, 3, 7}-group, it must hold
that Hm = 1 and for each i, Hi−1 = Ki. We obtain that |G| =

∏m
i=1 |Ki/Hi|,

therefore for each i, Ki/Hi
∼= L2(7)αi , where α1 + · · · + αm = α. Applying

Lemma 6, we get that G ∼= L2(7)α. �

Remark 13. Theorems 8, 9 and 12 are generalizations of Theorem 2.4
in [12], for special cases p = 5, 7 and 17.

Similarly to the above theorem we have the following theorem:

Theorem 14. Let G be a finite group and α ≤ 13. Then G ∼= L3(3)α if
and only if |G| = |L3(3)|α and 33α, 13α ∈ cd(G).

As a consequence of the above theorems, by [3, Theorem 2.13] we have
the following result which is a partial answer to the question arose in [20].

Corollary 15. Let M ∈ {An5 |n ≤ 5} ∪ {L2(7)n|n ≤ 7} ∪ {L3(3)n|n ≤
13 ∪ {L2(17)n|n ≤ 17}. If G is a group such that CG ∼= CM , then G ∼= M .
Thus M is uniquely determined by the structure of its complex group algebra.

Acknowledgements. The authors would like to thank the referee for valuable com-
ments and suggestions.
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