RECOGNITION OF SOME CHARACTERISTICALLY SIMPLE GROUPS BY THEIR COMPLEX GROUP ALGEBRAS

MORTEZA BANIASAD AZAD and BEHROOZ KHOSRAVI

Communicated by Lucian Beznea

In [20], the following question arose: Which groups can be uniquely determined by the structure of their complex group algebras? In this paper, we prove that the direct product G^n of n copies of a group G, where (a) $G \cong A_5$ and $n \le 5$; (b) $G \cong L_2(7)$ and $n \le 7$; (c) $G \cong L_3(3)$ and $n \le 13$; (d) $G \cong L_2(17)$ and $n \le 17$; are uniquely determined by their order and some information on irreducible character degrees. As a consequence of our results, we show that these groups are uniquely determined by the structure of their complex group algebras.

AMS 2010 Subject Classification: 20C15, 20D05, 20D60.

Key words: character degree, order, complex group algebra.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a finite group, Irr(G) be the set of irreducible characters of G, and denote by cd(G), the set of irreducible character degrees of G. If n is a natural number, by G^n we mean the direct product of n copies of G; that is, $G \times G \times \cdots \times G$.

In [5, Problem 2^{*}], R. Brauer posed the following question: Let G and H are two finite groups. If for all fields \mathbb{F} , two group algebras $\mathbb{F}G$ and $\mathbb{F}H$ are isomorphic, can we get that G and H are isomorphic? In [7], E.C. Dade showed that this is false in general.

It was shown in [16, 21] that the symmetric groups are uniquely determined by the structure of their complex group algebras. In [15, 17, 20, 22, 23]it is proved that each nonabelian simple group is uniquely determined by its complex group algebra. In [20], Tong-Viet posed the following question:

QUESTION. Which groups can be uniquely determined by the structure of their complex group algebras?

In [4, 19], it is proved that every quasisimple group L is uniquely determined up to isomorphism by the structure of $\mathbb{C}L$, the complex group algebra

of L. In [13] and [14], it is proved that if $q \mid p^2$, where p > 3 is an odd prime, $S = L_2(q)$, M is a finite group such that $S < M < \operatorname{Aut}(S)$, $M = \mathbb{Z}_2 \times L_2(q)$ or $M = \operatorname{SL}(2, q)$, then M is uniquely determined by its complex group algebra.

One of the next natural groups to be considered are the characteristically simple groups. Khosravi *et al.* proved that $L_2(p) \times L_2(p)$ is uniquely determined by its complex group algebra, where $p \geq 5$ is a prime number (see [12]). In [1], we prove that if M is a simple K_3 -group, then $M \times M$ is uniquely determined by its order and some information on irreducible character degrees. In [2], we proved that the direct product of non-isomorphic Suzuki groups is uniquely determined by its complex group algebra.

In this paper, we prove that the direct product G^n of n copies of a group G, where (a) $G \cong A_5$ and $n \leq 5$; (b) $G \cong L_2(7)$ and $n \leq 7$; (c) $G \cong L_3(3)$ and $n \leq 13$; (d) $G \cong L_2(17)$ and $n \leq 17$; are uniquely determined by their order and some information on irreducible character degrees. As a consequence of our results we show that these groups are uniquely determined by the structure of their complex group algebras.

If $N \leq G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group of θ in G is $I_G(\theta) = \{g \in G \mid \theta^g = \theta\}$. If the character $\chi = \sum_{i=1}^k e_i \chi_i$, where for each $1 \leq i \leq k$, $\chi_i \in \operatorname{Irr}(G)$ and e_i is a natural number, then each χ_i is called an irreducible constituent of χ .

LEMMA 1 ([11, Theorems 6.2, 6.8, 11.29]). Let $N \leq G$ and let $\chi \in Irr(G)$. Let θ be an irreducible constituent of χ_N and suppose $\theta_1 = \theta, \ldots, \theta_t$ are the distinct conjugates of θ in G. Then $\chi_N = e \sum_{i=1}^t \theta_i$, where $e = [\chi_N, \theta]$ and $t = |G : I_G(\theta)|$. Also $\theta(1) \mid \chi(1)$ and $\chi(1)/\theta(1) \mid |G : N|$.

LEMMA 2 ([24, Lemma 1]). Let G be a nonsolvable group. Then G has a normal series $1 \leq H \leq K \leq G$ such that K/H is a direct product of isomorphic nonabelian simple groups and $|G/K| | |\operatorname{Out}(K/H)|$.

Given a natural number n, let P(n) denote the greatest prime factor of n, and let n_r , where r is a prime, denote the r-part of n, *i.e.*, the largest power of r that divides n. For every integer a coprime to n, let $Ord_n(a)$ denote the smallest positive integer e such that $a^e \equiv 1 \pmod{n}$. If s is a prime number, then we write $s^k || n$, when $s^k | n$ but $s^{k+1} \nmid n$.

Using [25] we have the following result:

LEMMA 3. If n > 2 and a > b > 0, then $n + 1 \le P(a^n - b^n)$.

LEMMA 4 ([18, Theorems 3.6]). Let p be an odd prime, and let $a \neq \pm 1$ be an integer not divisible by p. Let d be the order of a modulo p. Let k_0 be the largest integer such that $a^d \equiv 1 \pmod{p^{k_0}}$. Then the order of a modulo p^k is d for $k = 1, ..., k_0$ and dp^{k-k_0} for $k > k_0$.

2. THE MAIN RESULTS

LEMMA 5. Let M be a finite group such that $p \mid |M|$. If there exists $\chi \in Irr(G)$, where $\chi(1) = |M|_p$, then $O_p(M) = 1$.

Proof. Let $|M|_p = p^j$. Assume on the contrary $L = O_p(M) \neq 1$ and $|L| = p^i$, where $1 \leq i \leq j$. If $\eta \in \operatorname{Irr}(L)$ such that $[\chi_L, \eta] \neq 0$, then by Lemma 1, $p^j/\eta(1)$ is a divisor of $|M:L|_p = p^{j-i}$. Since $\eta(1) \mid |L|$, we get that $\eta(1) = p^i$. On the other hand, $\sum_{\nu \in \operatorname{Irr}(L)} \nu^2(1) = |L|$, which is a contradiction. \Box

LEMMA 6. Let S be a finite nonabelian simple group and let $p_0 = P(|S|)$. If G is an extension of S^m by S^n , where $m + n \leq p_0$, then $G \cong S^{m+n}$.

Proof. We claim that $p_0 \nmid |\operatorname{Out}(S)|$. Obviously, $p_0 \geq 5$. If S is an alternating group or a sporadic simple group, then by page ix and Table 1 in [6], we get that $|\operatorname{Out}(S)| \leq 4$. Therefore we assume that S is a simple group of Lie type over $\operatorname{GF}(q)$, where $q = p^f$. By the notations in [6, Page xv and Table 5], $|\operatorname{Out}(S)| = dfg$, where d, f and g are the orders of the diagonal, field and graph automorphisms of S, respectively. Let k be the largest integer such that $q^k - 1$ is a divisor of |S|. By Lemma 3, $fk + 1 \leq \operatorname{P}(q^k - 1)$.

Assume that $S \cong L_{l+1}(q)$, where $l \ge 2$. Then k = l + 1. Hence

 $\max\{d, f, g\} < lf + f + 1 \le P(p^{(l+1)f} - 1) \le p_0.$

Suppose that $S \cong U_{l+1}(q)$, where $l \ge 2$. we know that f is an even number. If l is an even number, then k = l. Thus

$$\max\{d, f, g\} < lf + 1 \le P(p^{lf} - 1) \le p_0.$$

If l is an odd number, then k = l + 1. Therefore

$$\max\{d, f, g\} < lf + f + 1 \le P(p^{(l+1)f} - 1) \le p_0.$$

Therefore $p_0 \nmid |\operatorname{Out}(S)|$. For other cases, easily we can check that p_0 does not divide $|\operatorname{Out}(S)|$. Therefore the claim is proved.

By assumptions, there exists a normal subgroup H_m of G, which is isomorphic to S^m . We know that $\operatorname{Out}(H_m) \cong \frac{\operatorname{Aut}(H_m)}{\operatorname{Inn}(H_m)}$ and $\operatorname{Inn}(H_m) \cong \frac{H_m}{Z(H_m)}$. Therefore $|\operatorname{Aut}(H_m)| = |\operatorname{Out}(H_m)| \frac{|H_m|}{|Z(H_m)|}$. Since S is a non-abelian simple group and $H_m \cong S^m$, we have $Z(H_m) = 1$ and $|\operatorname{Aut}(H_m)| = |\operatorname{Out}(H_m)||H_m|$. On the other hand, by [8, Page 131], we have $\operatorname{Out}(H_m) \cong \operatorname{Out}(S) \wr S_m$. Therefore

$$\frac{G}{C_G(H_m)} \hookrightarrow \operatorname{Aut}(H_m) \Longrightarrow \left| \frac{G}{C_G(H_m)} \right| \left| \left| \operatorname{Aut}(H_m) \right| = \left| \operatorname{Out}(H_m) \right| |H_m|$$
$$\Longrightarrow \frac{|G|}{|C_G(H_m)|} \left| \left| \operatorname{Out}(S^m) \right| |S^m| = \left| \operatorname{Out}(S) \right|^m m! |S^m|$$

3

Since $p_0 > m$, $p_0 \mid |S|$ and $p_0 \nmid |\operatorname{Out}(S)|^m m!$, we get that $p_0 \mid |C_G(H_m)|$ and so $|C_G(H_m)| \neq 1$. As S is a nonabelian simple group, $H_m \cap C_G(H_m) = 1$ and it follows that $H_m C_G(H_m) \cong S^m \times C_G(H_m)$. Since $C_G(H_m) \cong H_m C_G(H_m)/H_m \trianglelefteq G/H_m \cong S^n$, we have $C_G(H_m) \cong S^i$, where $1 \leq i \leq n$.

Put $L = H_m C_G(H_m) \cong S^{m+i}$. Now we consider the possibilities for n: • If n = 1, then $G \cong S^{m+1}$.

• If n = 2, then we have two cases. If $C_G(H_m) \cong S^2$, then $G \cong S^{m+2}$. If $C_G(H_m) \cong S$, then we have $G/L \cong (G/H_m)/(H_m C_G(H_m)/H_m)$ so $G/S^{m+1} \cong S$ and using the case n = 1, we get that $G \cong S^{m+2}$.

• If n = 3, then we have three cases. If $C_G(H_m) \cong S^3$, then $G \cong S^{m+3}$. If $C_G(H_m) \cong S^2$, then we have $G/L \cong (G/H_m)/(H_mC_G(H_m)/H_m)$ so $G/S^{m+2} \cong S$ and using the case n = 1, we get that $G \cong S^{m+3}$. If $C_G(H_m) \cong S$, then we have $G/L \cong (G/H_m)/(H_mC_G(H_m)/H_m)$ so $G/S^{m+1} \cong S^2$ and using the case n = 2, we get that $G \cong S^{m+3}$.

By iterating this process we get that G is isomorphic to S^{m+n} , where $m+n \leq p_0$. \Box

LEMMA 7. Let G be a finite group. Then the following statements hold:

- (a) If $|G| = 2^s 3^t 5^n$, where s + t < 16n/5, and $5^n \in cd(G)$, then G is not solvable;
- (b) If $|G| = 2^r 3^s 17^n$, where 2r + s < 256n/17, and $17^n \in cd(G)$, then G is not solvable.

Proof. (a) On the contrary, let G be a solvable group. Since $5^n \in cd(G)$, by Lemma 5, $O_5(G) = 1$ and so $Fit(G) \cong O_2(G) \times O_3(G) \neq 1$. Then $G/C_G(Fit(G)) \hookrightarrow Aut(Fit(G))$ and since G is a solvable group, $C_G(Fit(G)) \leq$ Fit(G). Hence $|G| \mid |Fit(G)| \cdot |Aut(Fit(G))|$. On the other hand, $Aut(Fit(G)) \cong$ $Aut(O_2(G) \times O_3(G)) \cong Aut(O_2(G)) \times Aut(O_3(G))$. Also, according to [10, Section 1.3] we obtain that

$$|\operatorname{Aut}(O_2(G))| | |\operatorname{GL}(s,2)| = (2^s - 1)(2^s - 2) \cdots (2^s - 2^{s-1})$$

and

Aut
$$(O_3(G))$$
 | |GL $(t,3)$ | = $(3^t - 1)(3^t - 3) \cdots (3^t - 3^{t-1}).$

Hence $|G| | |\operatorname{Fit}(G)| \cdot |\operatorname{GL}(s,2)| \cdot |\operatorname{GL}(t,3)| = |O_2(G)| \cdot |O_3(G)| \cdot |\operatorname{GL}(s,2)| \cdot |\operatorname{GL}(t,3)|$. Therefore $5^n | |\operatorname{GL}(s,2)| \cdot |\operatorname{GL}(t,3)|$. Consequently the power of 5 in 5^n is less than or equal to the power of 5 in $|\operatorname{GL}(s,2)| \cdot |\operatorname{GL}(t,3)|$.

First, we calculate the multiplicity of the prime 5 in the number

$$|\operatorname{GL}(s,2)| = (2^{s}-1)(2^{s}-2)\cdots(2^{s}-2^{s-1}) = 2^{s(s-1/2)}(2^{s}-1)(2^{s-1}-1)\cdots(2-1).$$

We can start counting:

* The number of $(2^{l} - 1)$, where $1 \leq l \leq s$ such that $5 \mid (2^{l} - 1)$ is equal to the number of multiples of $\operatorname{Ord}_{5}(2)$ which are less than or equal to s, *i.e.* $[s/\operatorname{Ord}_{5}(2)]$.

* The number of $(2^{l} - 1)$, where $1 \leq l \leq s$ such that $5^{2} | (2^{l} - 1)$ is equal to the number of multiples of $\operatorname{Ord}_{5^{2}}(2)$ which are less than or equal to s, *i.e.* $[s/\operatorname{Ord}_{5^{2}}(2)]$.

* The number of $(2^{l} - 1)$, where $1 \leq l \leq s$ such that $5^{m} | (2^{l} - 1)$ is equal to the number of multiples of $\operatorname{Ord}_{5^{m}}(2)$ which are less than or equal to s, i.e. $[s/\operatorname{Ord}_{5^{m}}(2)].$

Putting this all together, the multiplicity of the prime 5 in |GL(s, 2)| is

$$\left[\frac{s}{\operatorname{Ord}_5(2)}\right] + \left[\frac{s}{\operatorname{Ord}_{5^2}(2)}\right] + \left[\frac{s}{\operatorname{Ord}_{5^3}(2)}\right] + \cdots$$

Similarly, the multiplicity of the prime 5 in |GL(t,3)| is

$$\left[\frac{t}{\operatorname{Ord}_5(3)}\right] + \left[\frac{t}{\operatorname{Ord}_{5^2}(3)}\right] + \left[\frac{t}{\operatorname{Ord}_{5^3}(3)}\right] + \cdots$$

By Lemma 4, we obtain that $\operatorname{Ord}_{5^k}(2) = \operatorname{Ord}_5(2) \cdot 5^{k-1}$ and $\operatorname{Ord}_{5^k}(3) = \operatorname{Ord}_5(3) \cdot 5^{k-1}$, for every $k \in \mathbb{N}$. Hence

$$n \leq \left[\frac{s}{\operatorname{Ord}_{5}(2)}\right] + \left[\frac{s}{\operatorname{Ord}_{5^{2}}(2)}\right] + \dots + \left[\frac{t}{\operatorname{Ord}_{5}(3)}\right] + \left[\frac{t}{\operatorname{Ord}_{5^{2}}(3)}\right] + \dots$$
$$\leq \left[\frac{s}{4}\right] + \left[\frac{s}{20}\right] + \dots + \left[\frac{t}{4}\right] + \left[\frac{t}{20}\right] + \dots \leq \frac{s}{4} + \frac{s}{20} + \dots + \frac{t}{4} + \frac{t}{20} + \dots$$
$$= \frac{s}{4}(1 + 1/5 + 1/5^{2} + \dots) + \frac{t}{4}(1 + 1/5 + 1/5^{2} + \dots) \leq \frac{s+t}{4} \cdot \frac{5}{4} < n,$$

which is a contradiction.

(b) We know that $\operatorname{Ord}_{17}(2) = 8$, $\operatorname{Ord}_{17}(3) = 16$. Now using Lemma 4, we obtain that $\operatorname{Ord}_{17^k}(2) = \operatorname{Ord}_{17}(2) \cdot 17^{k-1}$ and $\operatorname{Ord}_{17^k}(3) = \operatorname{Ord}_{17}(3) \cdot 17^{k-1}$, for every $k \in \mathbb{N}$. So similarly to the above argument, we get the result. \Box

THEOREM 8. Let G be a finite group and $\alpha \leq 5$. Then $G \cong A_5^{\alpha}$ if and only if $|G| = |A_5|^{\alpha}$ and $5^{\alpha} \in cd(G)$.

Proof. We put $H_0 = G$. By Lemma 7, it follows that G is not solvable. According to Lemma 2, $G = H_0$ has a normal series $1 \leq H_1 \leq K_1 \leq H_0 = G$ such that K_1/H_1 is a direct product of isomorphic nonabelian simple groups and $|H_0/K_1| \mid |\operatorname{Out}(K_1/H_1)|$. If H_1 is not a solvable group, we can proceed similarly to the above and get a normal series $1 \leq H_2 \leq K_2 \leq H_1$ such that K_2/H_2 is a nonabelian characteristically simple group and $|H_1/K_2| | |\operatorname{Out}(K_2/H_2)|$. If H_2 is not a solvable group, we continue this process and finally we have a subnormal series

(1)
$$1 \leq H_m \leq K_m \leq H_{m-1} \leq K_{m-1} \cdots \leq H_2 \leq K_2 \leq H_1 \leq K_1 \leq H_0 = G$$

of G such that m is the smallest number, where H_m is solvable. Hence

$$|G| = \prod_{i=1}^{m} |K_i/H_i| \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m|.$$

By assumptions, $\alpha \leq 5$ and K_i/H_i is a direct product of α_i copies of a nonabelian simple group S_i such that $|H_{i-1}/K_i| \mid |\operatorname{Out}(K_i/H_i)|$. Also $|\operatorname{Out}(S_i^{\alpha_i})| = |\operatorname{Out}(S_i)|^{\alpha_i}(\alpha_i!)$ and $5 = \operatorname{P}(|S_i|) \nmid |\operatorname{Out}(S_i)|$. Therefore we get that $5 \nmid \prod_{i=1}^m |H_{i-1}/K_i|$.

We show that $5 \nmid |H_m|$. Otherwise, if $5 \mid |H_m|$, let $5^{\beta} |||H_m|$. Then 5^{β} is a divisor of

$$t = |H_m| \cdot \prod_{i=1}^m |H_{i-1}/K_i| = \frac{|G|}{\prod_{i=1}^m |K_i/H_i|}.$$

On the other hand, t is a divisor of $|A_5|^{\alpha}/|A_5|^{\gamma}$, where $5^{\gamma} \parallel \prod_{i=1}^m |K_i/H_i|$. Hence $\alpha = \beta + \gamma$. Therefore $|H_m| \mid |A_5|^{\beta}$ and so $|H_m| = 2^{\sigma}3^{\tau}5^{\beta}$, where $\sigma \leq 2\beta, \tau \leq \beta$. Also, by successively applying Lemma 1 at every extension, we get that $5^{\beta} \in \operatorname{cd}(H_m)$ and by Lemma 7, H_m is not solvable, which is a contradiction. Thus $5 \nmid |H_m|$. Hence $5^{\alpha} \parallel \prod_{i=1}^m |K_i/H_i|$. Therefore

$$|G|_{5} = (\prod_{i=1}^{m} |K_{i}/H_{i}| \cdot \prod_{i=1}^{m} |H_{i-1}/K_{i}| \cdot |H_{m}|)_{5} = (\prod_{i=1}^{m} |K_{i}/H_{i}|)_{5}$$

Since G is a $\{2,3,5\}$ -group, S_i is a $\{2,3,5\}$ -group. If there exists *i* such that $S_i \not\cong A_5$, then $|G|_2 < (\prod_{i=1}^m |K_i/H_i|)_2$, which is a contradiction. Therefore $K_i/H_i \cong A_5^{\alpha_i}$. Now we have

(2)
$$|G| = \prod_{i=1}^{m} |A_5|^{\alpha_i} \cdot \prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m|.$$

By eliminating $|A_5|$ from both sides of (2), we have

$$|A_5|^{\alpha-1} = |A_5|^{\alpha_j-1} \prod_{\substack{i=1\\i\neq j}}^m |A_5|^{\alpha_i} \cdot \prod_{i=1}^m |H_{i-1}/K_i| \cdot |H_m|.$$

Since $|G|_5 = (\prod_{i=1}^m |K_i/H_i|)_5$, by iterating this process, we get that

$$\prod_{i=1}^{m} |H_{i-1}/K_i| \cdot |H_m| = 1.$$

We get that $H_m = 1$, and for each $1 \le i \le m$, $H_{i-1} = K_i$ and $K_i/H_i \cong A_5^{\alpha_i}$, where $\alpha_1 + \cdots + \alpha_m = \alpha$. Therefore

$$1 = H_m \trianglelefteq H_{m-1} \trianglelefteq H_{m-2} \cdots \trianglelefteq H_2 \trianglelefteq H_1 \trianglelefteq H_0 = G,$$

such that $K_i = H_{i-1}$ and $H_{i-1}/H_i \cong A_5^{\alpha_i}$. Applying Lemma 6, we obtain that $H_{m-1} \cong A_5^{\alpha_m}$, $H_{m-2} \cong A_5^{\alpha_m + \alpha_{m-1}}$ and finally $G \cong A_5^{\alpha_m + \alpha_{m-1} + \dots + \alpha_1} = A_5^{\alpha_s}$. \Box

Similarly to the above, we have the following theorem and for convenience we omit the proof.

THEOREM 9. Let G be a finite group and $\alpha \leq 17$. Then $G \cong L_2(17)^{\alpha}$ if and only if $|G| = |L_2(17)|^{\alpha}$ and $17^{\alpha} \in cd(G)$.

Remark 10. In [24, Theorem A], Xu *et al.* proved that $L_2(7)$ is characterizable by |G| and $7 \in cd(G)$.

Using the notations of GAP [9], if A = SmallGroup(56, 11) and $H = A^2 \times \mathbb{Z}_9$, then $|H| = |L_2(7)|^2$ and H has an irreducible character of degree 7^2 . Therefore $L_2(7)^{\alpha}$, where $\alpha \geq 2$, is not characterizable by |G| and $7^{\alpha} \in \text{cd}(G)$.

If $C = \text{SmallGroup}(3^313, 11)$ and $H = C \times \mathbb{Z}_{16}$, then $|H| = |L_3(3)|$ and H has an irreducible character of degree 13. Thus $L_3(3)^{\alpha}$, where $\alpha \geq 1$, is not characterizable by |G| and $13^{\alpha} \in \text{cd}(G)$.

So we need more assumptions to characterize $L_2(7)^{\alpha}$, where $2 \leq \alpha \leq 7$ and $L_3(3)^{\alpha}$, where $\alpha \leq 13$.

LEMMA 11. Let G be a finite group. Then the following statements hold:

- (a) If $|G| = 2^r 3^s 7^n$, where s < 36n/7, and $2^r, 7^n \in cd(G)$, then G is not solvable;
- (b) If $|G| = 2^r 3^s 13^n$, where r < 144n/13, and $3^s, 13^n \in cd(G)$, then G is not solvable.

Proof. (a) Let G be a solvable group. By Lemma 5, $O_2(G) = 1$ and $O_7(G) = 1$. Therefore $\operatorname{Fit}(G) \cong O_3(G) \neq 1$. Since G is a solvable group, $C_G(\operatorname{Fit}(G)) \leq \operatorname{Fit}(G)$. Hence |G| divides $|\operatorname{Fit}(G)| \cdot |\operatorname{Aut}(\operatorname{Fit}(G))|$. So $7^n | |\operatorname{GL}(t,3)|$ and by Lemma 4, $\operatorname{Ord}_{7^k}(3) = \operatorname{Ord}_7(3) \cdot 7^{k-1}$. Hence

$$n \le \left[\frac{s}{\operatorname{Ord}_7(3)}\right] + \left[\frac{s}{\operatorname{Ord}_{7^2}(3)}\right] + \dots \le \frac{s}{6}(1 + 1/7 + 1/7^2 + \dots) \le \frac{s}{6} \cdot \frac{7}{6} < n_1$$

which is a contradiction.

(b) Similarly to the above, the result holds. \Box

THEOREM 12. Let G be a finite group and $\alpha \leq 7$. Then $G \cong L_2(7)^{\alpha}$ if and only if $|G| = |L_2(7)|^{\alpha}$ and $2^{3\alpha}, 7^{\alpha} \in cd(G)$.

Proof. By Lemma 11, it follows that G is not solvable. So, similarly to the proof of Theorem 8, we get that a subnormal series, like (1), where K_i/H_i is a direct product of α_i copies of a nonabelian simple group S_i . Also $|H_{i-1}/K_i| | |\operatorname{Out}(K_i/H_i)|$ and m is the smallest number where H_m is solvable. We show that $7 \nmid |H_m|$. On the contrary, let $7^{\beta} ||H_m|$. Then 7^{β} is a divisor of

$$t = |H_m| \cdot \prod_{i=1}^m |H_{i-1}/K_i| = \frac{|G|}{\prod_{i=1}^m |K_i/H_i|}.$$

On the other hand, t is a divisor of $|L_2(7)|^{\alpha}/|L_2(7)|^{\gamma}$, where $7^{\gamma} \parallel \prod_{i=1}^m |K_i/H_i|$. By Lemma 1, $7^{\beta} \in \operatorname{cd}(H_m)$ and using Lemma 11, H_m is not solvable which is a contradiction. Thus $7 \nmid |H_m|$. We conclude that $7^{\alpha} \parallel \prod_{i=1}^m |K_i/H_i|$. As $K_i/H_i \cong S_i^{\alpha_i}$, where S_i is a nonabelian simple $\{2, 3, 7\}$ -group, it must hold that $H_m = 1$ and for each $i, H_{i-1} = K_i$. We obtain that $|G| = \prod_{i=1}^m |K_i/H_i|$, therefore for each $i, K_i/H_i \cong L_2(7)^{\alpha_i}$, where $\alpha_1 + \cdots + \alpha_m = \alpha$. Applying Lemma 6, we get that $G \cong L_2(7)^{\alpha}$. \Box

Remark 13. Theorems 8, 9 and 12 are generalizations of Theorem 2.4 in [12], for special cases p = 5, 7 and 17.

Similarly to the above theorem we have the following theorem:

THEOREM 14. Let G be a finite group and $\alpha \leq 13$. Then $G \cong L_3(3)^{\alpha}$ if and only if $|G| = |L_3(3)|^{\alpha}$ and $3^{3\alpha}, 13^{\alpha} \in cd(G)$.

As a consequence of the above theorems, by [3, Theorem 2.13] we have the following result which is a partial answer to the question arose in [20].

COROLLARY 15. Let $M \in \{A_5^n | n \leq 5\} \cup \{L_2(7)^n | n \leq 7\} \cup \{L_3(3)^n | n \leq 13 \cup \{L_2(17)^n | n \leq 17\}$. If G is a group such that $\mathbb{C}G \cong \mathbb{C}M$, then $G \cong M$. Thus M is uniquely determined by the structure of its complex group algebra.

Acknowledgements. The authors would like to thank the referee for valuable comments and suggestions.

REFERENCES

[1] M. Baniasad Azad and B. Khosravi, Recognition of $M \times M$ by its complex group algebra where M is a simple K_3 -group. Mathematics **6(7)** (2018), 107.

- [2] M. Baniasad Azad and B. Khosravi, Complex group algebras of the direct product of non-isomorphic Suzuki groups. J. Algebra Appl. (2019), 2050036 (8 pages).
- [3] Y.G. Berkovich and E.M. Zhmud', *Characters of Finite Groups.* Part 1. Transl. Math. Monogr., American Mathematical Society, Rhode Island, 1998.
- [4] C. Bessenrodt, H. Nguyen, J. Olsson and H. Tong-Viet, Complex group algebras of the double covers of the symmetric and alternating groups. Algebra Number Theory 9 (2015), 3, 601–628.
- [5] R. Brauer, *Representations of finite groups*. Vol. I. Lectures on Modern Mathematics, 133–175, 1963.
- [6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups. Oxford Univ. Press, Oxford, 1985.
- [7] E.C. Dade, Deux groupes finis distincts ayant la meme algèbre de groupe sur tout corps. Math. Z. 119 (1971), 345–348.
- [8] J.D. Dixon and B. Mortimer, *Permutation Groups*. Grad. Texts in Math. 163, Springer, New York, 1996.
- [9] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.12, 2008. http://www.gap-system.org/gap.
- [10] P. Hall, A contribution to the theory of groups of prime power order. Proc. London Math. Soc. 36 (1933), 29–95.
- [11] I.M. Isaacs, *Character theory of finite groups*. Pure Appl. Math. 69, Academic Press, New York, 1976.
- [12] B. Khosravi, B. Khosravi, B. Khosravi and Z. Momen, *Recognition of* $PSL(2, p) \times PSL(2, p)$ by its complex group Algebra. J. Algebra Appl. **16** (2017), 1, 1750036 (9 pages).
- [13] B. Khosravi, B. Khosravi and B. Khosravi, Some extensions of PSL(2, p²) are uniquely determined by their complex group algebras. Comm. Algebra. 43 (2015), 8, 3330–3341.
- [14] B. Khosravi, B. Khosravi and B. Khosravi, A new characterization for some extensions of PSL(2,q) for some q by some character degrees. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 1, 49–59.
- [15] W. Kimmerle, Group rings of finite simple groups. Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo 5 (2002), 4, 261–278.
- [16] M. Nagl, Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra. Stuttgarter Mathematische Berichte 2011. http://www.mathematik.unistuttgart.de/preprints/downloads/2011/2011-007.pdf
- [17] M. Nagl, Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen. PhD Diplomarbeit, Universität Stuttgart, 2008.
- [18] M.B. Nathanson, *Elementary Methods in Number Theory*. Grad. Texts in Math. 195, Springer, New York, 2000.
- [19] H.N. Nguyen and H.P. Tong-Viet, Characterizing finite quasisimple groups by their complex group algebras. Algebr. Represent. Theory 17 (2014), 1, 305–320.
- [20] H.P. Tong-Viet, Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357 (2012), 61–68.
- [21] H.P. Tong-Viet, Symmetric groups are determined by their character degrees. J. Algebra 334 (2011), 1, 275–284.
- [22] H.P. Tong-Viet, Alternating and sporadic simple groups are determined by their character degrees. Algebr. Represent. Theory 15 (2012), 2, 379–389.

- [23] H.P. Tong-Viet, Simple exceptional groups of Lie type are determined by their character degrees. Monatsh. Math. 166 (2012), 559–577.
- [24] H. Xu, G.Y. Chen and Y. Yan, A new characterization of simple K_3 -groups by their orders and large degrees of their irreducible characters. Comm. Algebra 42 (2014), 5374–5380.
- [25] K. Zsigmondy, Zur Theorie der Potenzreste. Montash. Math. 3 (1892), 265–284.

Received 27 February 2017

Amirkabir University of Technology (Tehran Polytechnic), Faculty of Math. and Computer Sci., Dept. of Pure Math., 424, Hafez Ave., Tehran 15914, Iran baniasad84@gmail.com

khosravibbb@yahoo.com