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In [20], the following question arose: Which groups can be uniquely determined
by the structure of their complex group algebras? In this paper, we prove that
the direct product G™ of n copies of a group G, where (a) G = As and n < 5; (b)
G Ly(7)andn <7T; (¢) G=Ls3(3) and n < 13; (d) G = L2(17) and n < 17;
are uniquely determined by their order and some information on irreducible
character degrees. As a consequence of our results, we show that these groups
are uniquely determined by the structure of their complex group algebras.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a finite group, Irr(G) be the set of irreducible characters of G,
and denote by cd(G), the set of irreducible character degrees of G. If n is a
natural number, by G we mean the direct product of n copies of G; that is,
GxGx---xG.

In [5, Problem 2*], R. Brauer posed the following question: Let G and
H are two finite groups. If for all fields F, two group algebras FG and FH
are isomorphic, can we get that G and H are isomorphic? In [7], E.C. Dade
showed that this is false in general.

It was shown in [16,21] that the symmetric groups are uniquely deter-
mined by the structure of their complex group algebras. In [15,17,20, 22, 23]
it is proved that each nonabelian simple group is uniquely determined by its
complex group algebra. In [20], Tong-Viet posed the following question:

QUESTION. Which groups can be uniquely determined by the structure of
their complex group algebras?

In [4,19], it is proved that every quasisimple group L is uniquely deter-
mined up to isomorphism by the structure of CL, the complex group algebra
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of L. In [13] and [14], it is proved that if ¢ | p?, where p > 3 is an odd prime,
S = Lo(q), M is a finite group such that S < M < Aut(S), M = Zy x La(q) or
M = SL(2,q), then M is uniquely determined by its complex group algebra.

One of the next natural groups to be considered are the characteristically
simple groups. Khosravi et al. proved that Lo(p)x La(p) is uniquely determined
by its complex group algebra, where p > 5 is a prime number (see [12]). In [1],
we prove that if M is a simple K3-group, then M x M is uniquely determined
by its order and some information on irreducible character degrees. In [2], we
proved that the direct product of non-isomorphic Suzuki groups is uniquely
determined by its complex group algebra.

In this paper, we prove that the direct product G™ of n copies of a group
G, where (a) G = As and n < 5; (b) G = Ly(7) and n < 7; (¢) G = L3(3) and
n < 13; (d) G = Ly(17) and n < 17; are uniquely determined by their order
and some information on irreducible character degrees. As a consequence of
our results we show that these groups are uniquely determined by the structure
of their complex group algebras.

If NG and 0 € Irr(N), then the inertia group of 6 in G is Ig(0) =
{g € G| 69 = 6}. If the character x = 3% | e;x;, where for each 1 < i < F,
Xi € Irr(G) and e; is a natural number, then each y; is called an irreducible
constituent of y.

LEMMA 1 ([11, Theorems 6.2, 6.8, 11.29]). Let N <G and let x € Irr(G).
Let 6 be an irreducible constituent of xy and suppose 01 = 0,...,0; are the
distinct conjugates of 0 in G. Then xy = 625:1 0;, where e = [xn,0] and
t=|G:1z(0)|. Also 6(1) | x(1) and x(1)/6(1) | |G : N|.

LEMMA 2 ([24, Lemma 1 |). Let G be a nonsolvable group. Then G has a
normal series 1 <H I K QG such that K/H is a direct product of isomorphic
nonabelian simple groups and |G /K| | |Out(K/H)|.

Given a natural number n, let P(n) denote the greatest prime factor of
n, and let n,., where r is a prime, denote the r-part of n, i.e., the largest power
of r that divides n. For every integer a coprime to n, let Ord,(a) denote the
smallest positive integer e such that a® =1 (mod n). If s is a prime number,
then we write s*|n, when s* | n but s¥71 4 n.

Using [25] we have the following result:

LEMMA 3. Ifn>2 anda >b> 0, then n+1 < P(a™ —b").

LEMMA 4 ([18, Theorems 3.6 |). Let p be an odd prime, and let a # £1
be an integer not divisible by p. Let d be the order of a modulo p. Let ko be the

largest integer such that a® = 1 (mod p*). Then the order of a modulo p* is
d fork=1,...,ky and dp*=" for k > kq.
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2. THE MAIN RESULTS

LEMMA 5. Let M be a finite group such that p | |M|. If there ezists
x € Irr(G), where x(1) = | M|y, then Op(M) = 1.

Proof. Let |M|, = p/. Assume on the contrary L = O,(M) # 1 and
|L| = p*, where 1 < i < j. If n € Irr(L) such that [xz,n] # 0, then by Lemma
1, p/ /n(1) is a divisor of |M : L|, = p?~*. Since n(1) | |L|, we get that n(1) = p'.
On the other hand, }_, cp, 1, v%(1) = |L|, which is a contradiction. [

LEMMA 6. Let S be a finite nonabelian simple group and let po = P(]S]).
If G is an extension of S™ by S™, where m +n < pg, then G =2 §™*",

Proof. We claim that po 1 |Out(S)|. Obviously, pg > 5. If S is an alter-
nating group or a sporadic simple group, then by page iz and Table 1 in [6],
we get that |Out(S)| < 4. Therefore we assume that S is a simple group of
Lie type over GF(q), where ¢ = p/. By the notations in [6, Page 2v and Table
5], |Out(S)| = dfg, where d, f and g are the orders of the diagonal, field and
graph automorphisms of S, respectively. Let k be the largest integer such that
¢® — 1 is a divisor of |S|. By Lemma 3, fk+ 1 < P(¢F —1).

Assume that S = L;;11(q), where [ > 2. Then k = [+ 1. Hence

max{d, f,g} <I1f + f+1 <P —1) < py.

Suppose that S = U;y1(q), where [ > 2. we know that f is an even number. If
[ is an even number, then £ = [. Thus

max{d, fvg} < lf +1< P(plf — 1) < 0.
If [ is an odd number, then k = [ + 1. Therefore
max{d, f,g} <1f + f+1<PEDF —1) < p,.

Therefore pg 1 |Out(S)|. For other cases, easily we can check that pg does
not divide |Out(S)|. Therefore the claim is proved.
By assumptions, there exists a normal subgroup H,, of GG, which is iso-

morphic to S™. We know that Out(H,,) = ’I*n“rf((ﬁ;”)) and Inn(Hp,) = zfﬁ”)

Therefore |Aut(Hy,)| = |Out(H, )||Z|h]r{ |)| Since S is a non-abelian simple
group and H,, = S™, we have Z(H,,) = 1 and |[Aut(H,,)| = |Out(Hp,)||Hpm|.
On the other hand, by [8, Page 131], we have Out(H,,) = Out(S)?S,,. There-
fore

G G
———— = Aut(H,,) = | 5—F5—| | |Aut(H,,)| = |Out(Hp,)||Hpy,
Cotiy = AutHn) = | e | AR | = (Out(Hy) [
lq

:7 Out(S™)||S™| = |Out(S)|"m!|S™
Co(H ,H IS™[ = [Out(S)["m!]S™]
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|S™].5™
——— | |Out(S)|"m!|S™
15|
= ———— | |Out(9)|"™m/!.

Since pg > m, po | |S| and pg 1 |Out(S)|™m!, we get that po | |Cq(Hy)| and so
|Cq(Hp,)| # 1. As S is a nonabelian simple group, H,,NC¢(H,,) = 1 and it fol-
lows that Hp,Cq(Hnm) = S™ x Cq(Hy,). Since Cq(Hy,) = HCo(Hpy,)/Hpm <9
G/H,, = S™ we have Cg(H,,) = S*, where 1 < i < n.

Put L = H,,Cq(H,,) = S™. Now we consider the possibilities for n:

o If n =1, then G = §™+!,

e If n = 2, then we have two cases. If Cg(H,,) = S?, then G = S™+2. If
Cg(Hp) =2 S, then we have G/L = (G/H,,)/(HynCq(Hy)/Hpy) so G/S™T! =
S and using the case n = 1, we get that G = S™+2,

e If n = 3, then we have three cases. If Cq(H,,) = S3, then G = S 3. If
Ca(H,,) = S?, then we have G/L = (G/H,,)/(HnCq(Hy)/Hy) so G/ S™F2 =
S and using the case n = 1, we get that G = S™*3. If Cq(H,,) = S, then we
have G/L = (G/Hp,)/(HnCaq(Hp)/Hpy) so G/S™ = 52 and using the case
n = 2, we get that G = §™+3,

By iterating this process we get that G is isomorphic to S™*", where
m+n<py U

LEMMA 7. Let G be a finite group. Then the following statements hold:
(a) If |G| = 253'5", where s +t < 16n/5, and 5" € cd(G), then G is not
solvable;
(b) If |G| = 2"3°17", where 2r + s < 256n/17, and 17" € c¢d(G), then G is
not solvable.

Proof. (a) On the contrary, let G be a solvable group. Since 5" € c¢d(G),
by Lemma 5, O5(G) = 1 and so Fit(G) = O2(G) x O3(G) # 1. Then
G/Cq(Fit(G)) — Aut(Fit(G)) and since G is a solvable group, Cq(Fit(G)) <
Fit(G). Hence |G| | |[Fit(G)|-|Aut(Fit(G))|. On the other hand, Aut(Fit(G)) =
Aut(02(G) x O3(G)) = Aut(O2(G)) x Aut(O3(G)). Also, according to [10, Sec-
tion 1.3] we obtain that

Aut(0a(G)] | [GL(s,2)] = (2° — 1)(2° — 2)- -~ (2* — 271

and

[Aut(03(G))] | |GL(£,3)] = (3" = 1)(3' = 3) --- (3" = 371).
Hence |G| | [Fit(G)] - [GL(s,2)| - [GL(1,3)| = [0(G)] - |05(G)] - |GL(5,2)| -
|GL(t,3)|. Therefore 5" | |GL(s,2)| - |GL(¢,3)|. Consequently the power of 5
in 5" is less than or equal to the power of 5 in |GL(s,2)| - |GL(¢, 3)|.
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First, we calculate the multiplicity of the prime 5 in the number
IGL(s,2)| = (2°—1)(2°—2) --- (2°—25"1) = 256~ 1/ (25 1) (2571 1) ... (2—1).

We can start counting:

* The number of (2! — 1), where 1 < I < s such that 5 | (2! — 1) is equal
to the number of multiples of Ords(2) which are less than or equal to s, i.e.
[s/Ords(2)].

% The number of (2 — 1), where 1 < I < s such that 5% | (2! — 1) is equal
to the number of multiples of Ords2(2) which are less than or equal to s, i.e.
[s/Ords2(2)].

* The number of (2 — 1), where 1 < 1 < s such that 5™ | (2! — 1) is equal
to the number of multiples of Ordsm (2) which are less than or equal to s, i.e.
[s/Ordsm (2)].

Putting this all together, the multiplicity of the prime 5 in |GL(s,2)| is

[Od5<2>} " {Ord;<2>] i {Ord§3<2>] T

Similarly, the multiplicity of the prime 5 in |GL(¢, 3)] is

[oai@] i {Ord;@)] i {Ord;@)] T

By Lemma 4, we obtain that Ords(2) = Ords(2) - 57! and Ords(3) =
Ords(3) - 5871, for every k € N. Hence

< S S t t
"= [Ord5(2)] + [Ord52(2)} teot [Ordg,( )] [Ord52(3)]
S S t t t
<Gl lggl -+ g+ gl + —+%+ tytog T
:2(1—1—1/54—1/524—-~-)—|—§(1+1/5+1/52+---)S Sit-2<n,

which is a contradiction.

(b) We know that Ord;7(2) = 8,0rd;7(3) = 16. Now using Lemma 4, we
obtain that Ord;»(2) = Ordy7(2)- 177! and Ord,;(3) = Ordy7(3) - 17571, for
every k € N. So similarly to the above argument, we get the result. [

THEOREM 8. Let G be a finite group and o < 5. Then G = A if and
only if |G| = |As]® and 5% € c¢d(G).

Proof. We put Hy = G. By Lemma 7, it follows that G is not solvable.
According to Lemma 2, G = Hy has a normal series 1 < Hy < Ky <Hy =G
such that K;/H; is a direct product of isomorphic nonabelian simple groups
and |Ho/K1| | |Out(K1/Hy)|. If Hy is not a solvable group, we can proceed
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similarly to the above and get a normal series 1<<Hy<IK><1H; such that Ko/Hs
is a nonabelian characteristically simple group and |H;/K>s| | |Out(K2/H2)|.
If Hy is not a solvable group, we continue this process and finally we have a
subnormal series

(1) 1<4H, <K, QAHy, 19K, 1---JH QK AH K dHy =G

of GG such that m is the smallest number, where H,, is solvable. Hence
m m
G| =T 1K:/Hil - [] |1 Hi1/ Kil - | Homl-
i=1 i=1

By assumptions, a < 5 and K;/H; is a direct product of «a; copies of a
nonabelian simple group S; such that |H;,—i/K;| | |Out(K;/H;)|. Also
|Out(S;%)| = |Out(S;)|%(ay!) and 5 = P(]S;]) 1 |Out(S;)|. Therefore we get
that 5TH7;1 ‘Hzfl/Kl‘

We show that 5 { |H,,|. Otherwise, if 5 | |H,,|, let 5°|||H,,|. Then 5° is a
divisor of

el

On the other hand, t is a divisor of |A5|*/|As|?, where 57 || T[%, |K;/H;l.
Hence a = 3 + 7. Therefore |H,,| | |As|® and so |H,,| = 27375°, where
o < 26,7 < B. Also, by successively applying Lemma 1 at every extension,
we get that 5 € cd(H,,) and by Lemma 7, H,, is not solvable, which is a
contradiction. Thus 5 { |H,,|. Hence 5% || [[~, |K;/H;|. Therefore

m
t=|Hp| []1Hi-1/Kil =
i=1

Gls = (T 1K/ Hil - T 1 Hio1/Kil - 1Hinl)s = (] ] 1K/ Hil)s.
i=1 i=1 i=1
Since G is a {2,3,5}-group, S; is a {2, 3,5}-group. If there exists i such that

Si 2 As, then |Gla < ([T~ |Ki/H;|)2, which is a contradiction. Therefore
K;/H; = A3". Now we have

m m

(2) Gl =TT 14s1% - T] 1 Hi-r/ Kl - [ Hunl-
i=1 i=1

By eliminating |As| from both sides of (2), we have

m m

|As|°71 = A5 [ ] 1451 - [ [ [ Hio1 /Kol - | Himl.
! i=1
i#j
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Since |G|s = (I~ |Ki/Hil)s, by iterating this process, we get that
m
[11H /K| - [Hp| = 1.
i=1

We get that H,, = 1, and for each 1 < ¢ <m, H;_1 = K, and K;/H; = AZ",

where a1 + - - - + ayy, = a. Therefore

1=H, dH, 1<Hy o---<1HyJH 4Hy =G,

such that K; = Hi—y and H;1/H; = Ag'. Applying Lemma 6, we obtain
that Hm—l =t Ag’"’ Hm—2 oS g‘m+o‘m—1 and ﬁnany G = Agém+am—l+"‘+061 _
Ag. O

Similarly to the above, we have the following theorem and for convenience
we omit the proof.

THEOREM 9. Let G be a finite group and o < 17. Then G = Lo(17)% if
and only if |G| = |L2(17)|* and 17% € cd(G).

Remark 10. In [24, Theorem A], Xu et al. proved that Lo(7) is charac-
terizable by |G| and 7 € cd(G).

Using the notations of GAP [9], if A = SmallGroup(56,11) and H =
A% x Zg, then |H| = |L2(7)|? and H has an irreducible character of degree 7.
Therefore Lo(7)%, where a > 2, is not characterizable by |G| and 7* € cd(G).

If C = SmallGroup(3213,11) and H = C x Zg, then |H| = |L3(3)| and
H has an irreducible character of degree 13. Thus L3(3)®, where o > 1, is not
characterizable by |G| and 13 € cd(G).

So we need more assumptions to characterize Lo(7)%, where 2 < a < 7
and L3(3)“, where a < 13.

LEMMA 11. Let G be a finite group. Then the following statements hold:
(a) If |G| = 2"3°7", where s < 36n/7, and 2",7" € cd(G), then G is not
solvable;
(b) If |G| = 2"3°13", where r < 144n/13, and 3°,13" € c¢d(G), then G is not
solvable.

Proof. (a) Let G be a solvable group. By Lemma 5, O2(G) = 1 and
O7(G) = 1. Therefore Fit(G) = O3(G) # 1. Since G is a solvable group,
Cs(Fit(G)) < Fit(G). Hence |G| divides |[Fit(G)| - |Aut(Fit(G))|. So 7" |
|GL(t,3)| and by Lemma 4, Ord«(3) = Ord;(3) - 7*~1. Hence

S S

ord3) [ Orda(3)

n <

[N

(1+1/7+1/7%4--) <

+o < <n,

bl
6

[« RV
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which is a contradiction.
(b) Similarly to the above, the result holds. O

THEOREM 12. Let G be a finite group and o < 7. Then G = Lo(T)” if
and only if |G| = |La(7)|* and 23%,7% € cd(G).

Proof. By Lemma 11, it follows that G is not solvable. So, similarly
to the proof of Theorem 8, we get that a subnormal series, like (1), where
K;/H; is a direct product of «; copies of a nonabelian simple group S;. Also
|Hi—1/K;| | |Out(K;/H;)| and m is the smallest number where H,, is solvable.
We show that 71 |H,,|. On the contrary, let 78|||H,,|. Then 7% is a divisor of

Gl

On the other hand, ¢ is a divisor of | Ly (7)|*/|La(7)|7, where 77 || [\~ |K;/H;|.
By Lemma 1, 7% € cd(H,,) and using Lemma 11, H,, is not solvable which
is a contradiction. Thus 7 { |H,,|. We conclude that 7% || T[T, |Ki/H;|. As
K;/H; = S;*, where S; is a nonabelian simple {2, 3, 7}-group, it must hold
that H,, =1 and for each i, H;_; = K;. We obtain that |G| = [, |Ki/H,|,
therefore for each i, K;/H; = Lo(7)%*, where ay + -+ + o, = . Applying
Lemma 6, we get that G = Ly(7)*. O

m
t=|Hp|- []1Hi-1/Kil =
=1

Remark 13. Theorems 8, 9 and 12 are generalizations of Theorem 2.4
n [12], for special cases p = 5,7 and 17.

Similarly to the above theorem we have the following theorem:

THEOREM 14. Let G be a finite group and o < 13. Then G = L3(3)” if
and only if |G| = |L3(3)|* and 33%,13% € cd(G).
As a consequence of the above theorems, by [3, Theorem 2.13] we have

the following result which is a partial answer to the question arose in [20].

COROLLARY 15. Let M € {AZn < 5} U{Lo(7)"|n < 7} U{L3(3)"|n <
13U {La(17)"|n < 17}. If G is a group such that CG = CM, then G = M.
Thus M is uniquely determined by the structure of its complex group algebra.

Acknowledgements. The authors would like to thank the referee for valuable com-
ments and suggestions.
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