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1. INTRODUCTION

In this paper, we study some inequalities of the Gagliardo-Nirenberg
type in both, homogeneous Besov spaces Ḃs

p,q(Rn) and homogeneous Triebel-

Lizorkin spaces Ḟ sp,q(Rn). We denote by Ȧsp,q(Rn) for either Ḃs
p,q(Rn) or Ḟ sp,q(Rn),

and by Asp,q(Rn) for inhomogeneous counterparts that are either Bs
p,q(Rn) or

F sp,q(Rn), when we have no need to distinguish them. These spaces will be
shortened by the initials B and F , respectively. In connection with Gagliardo-
Nirenberg estimates type, we give the following example

(1.1) ‖f‖Lv(Rn) ≤ c‖f‖
p/v

Fβp,∞(Rn)
‖f‖1−p/v

B−α∞,∞(Rn)

with v > p, α > 0 and β := α(v/p−1), in which we cannot replace B−α∞,∞(Rn) or

F βp,∞(Rn) by Ḃ−α∞,∞(Rn) or Ḟ βp,∞(Rn), since ‖f‖Ḃ−α∞,∞(Rn) = ‖f‖
Ḟβp,∞(Rn) = 0 for

all f polynomials on Rn (we note that (1.1) also holds by replacing F βp,∞(Rn) by

Aβp,p(Rn), which is obtained by the embedding property). For this reason, we
give some estimates of type (1.1) with the realized homogeneous Besov spaces
˙̃
Bs
p,q(Rn) and the realized homogeneous Triebel-Lizorkin spaces

˙̃
F sp,q(Rn), since

these spaces are defined by both, tempered distributions and polynomials of
degree less than ν; the parameter ν depends only on n, p, q, s which is characte-

MATH. REPORTS 22(72), 1 (2020), 19–39



20 Mohamed Benallia and Madani Moussai 2

rized by G. Bourdaud [7] (see also Subsection 2.2 below for its definition). Then
owing to nonzero polynomials, we note that there are nontrivial embeddings of
the homogeneous spaces Ȧsp,q(Rn) into the Lebesgue spaces Lp(Rn), and by our
wanted estimates, we hope to obtain some embeddings of the realized spaces
˙̃
Asp,q(Rn) into Lp(Rn). For instance in Section 4, we prove (1.1) in

˙̃
Asp,q(Rn).

We will essentially prove the following result, where we will use the following
notation throughout this work: for every tempered distribution f , we denote
by [f ]P the equivalence class of f modulo polynomials.

Theorem 1.1. Let 0 < p, q < ∞. We put r := min(1, p) in the B-case
and r := 1 in the F -case. Then there exists a constant c > 0 such that the
inequality

(1.2) ‖f‖Lv(Rn) ≤ c v
1−1/q 2n/v ‖[f ]P‖p/vȦ0

p,r(Rn)
‖[f ]P‖1−p/v

Ȧ
n/p
p,q (Rn)

holds, for all v ∈ [p,∞[ and all f ∈ ˙̃
A0
p,r(Rn) ∩ ˙̃

A
n/p
p,q (Rn).

If q ≤ 1 in the B-case or p ≤ 1 in the F -case, we can avoid Ȧ0
p,r(Rn) in the

right-hand side of (1.2) by taking the space Lu(Rn) instead, and the resulting

estimate becomes independent of the
˙̃
A
n/p
p,q (Rn)’s quasi-seminorm, that is the

following statement:

Theorem 1.2. Let 0 < p, q < ∞ with q ≤ 1 in the B-case and p ≤ 1 in
the F -case. Then there exists a constant c > 0 such that the inequality

(1.3) ‖f‖Lv(Rn) ≤ c v
1−1/q 2n/v ‖f‖u/vLu(Rn) ‖[f ]P‖1−u/v

Ȧ
n/p1
p1,q

(Rn)

holds, for all u ∈]0,∞[, all v ∈]0,∞[ such that v ≥ max(p, u), all p1 ∈ [p,∞[

and all f ∈ Lu(Rn) ∩ ˙̃
A
n/p
p,q (Rn).

An immediate consequence of these results concerns the embedding into
the Lp(Rn) spaces.

Corollary 1.3. (i) Let p, q, r and v be given as in Theorem 1.1. Then

it holds
˙̃
A0
p,r(Rn) ∩ ˙̃

A
n/p
p,q (Rn) ↪→ Lv(Rn).

(ii) Let p, q, u and v be given as in Theorem 1.2. Then it holds Lu(Rn) ∩
˙̃
A
n/p
p,q (Rn) ↪→ Lv(Rn).

As mentioned before, the estimate (1.2) fails to hold if
˙̃
A0
p,r(Rn)∩ ˙̃

A
n/p
p,q (Rn)

is replaced by Ȧ0
p,r(Rn) ∩ Ȧn/pp,q (Rn). Contrary to the homogeneous spaces,

Theorems 1.1 and 1.2 cover the case of inhomogeneous ones; in other words,

we can take A0
p,r(Rn)∩An/pp,q (Rn) and Lu(Rn)∩An/pp,q (Rn) instead of

˙̃
A0
p,r(Rn)∩

˙̃
A
n/p
p,q (Rn) and Lu(Rn) ∩ ˙̃

A
n/p
p,q (Rn), respectively, in both theorems.
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In Theorem 1.1, the right-hand side of (1.2) is given by the quasi-
seminorms of elements in spaces defined, in the tempered distributions space
S ′(Rn), from the homogeneous ones, using the notion of realization, see e.g.,
[3, 7, 14]. In this context and in the B-case, we can see [24] where it was
considered the homogeneous spaces defined in S ′(Rn), not in spaces defined
modulo polynomials of a certain degree, also with other conditions on the
parameters.

In the B-case, Theorem 1.2 is an extension, to the case max(p, u) ≤ v < 1,
of a result obtained in [23, Theorem 4.14(i)]. Note that in the right-hand side
of (1.3) we find the term ‖[f ]P‖Ȧn/p1p1,q

(Rn) in improving ‖[f ]P‖Ȧn/pp,q (Rn) (recall

that p ≤ p1).
Of course, the constants in (1.2) or (1.3) can be restricted to cv1−1/q if

p ≥ 1 or u ≥ 1, respectively, since 2n/v ≤ 2n. Also, in that case we have in
(1.2) the optimality of the growth rate v1−1/q as v →∞ in the B-case and at
least if q ≤ p in the F -case (see Subsection 4.1 below). However, the proofs
of the above results are based on some classical inequalities as Bernstein-type
((2.1) below) and an approximation method by suitable smooth functions.

Finally, we recall that these type of estimates on homogeneous Sobolev,
Besov and Triebel-Lizorkin spaces, defined as function spaces excluding polyno-
mials or as tempered distributions modulo all polynomials, have been studied
in several works e.g., [12, 13,16,24,25].

The paper is organized as follows. In Section 2, we collect definitions
and basic properties of the considered function spaces. Section 3 is devoted to
the proofs of our main results. In Section 4, we discuss the optimality of the
estimates and some extensions.

2. NOTATIONS AND PRELIMINARIES

As usual, N denotes the set of natural numbers, N0 = {0} ∪ N, Z the
set of integers and R the set of real numbers. All function spaces occurring in
this work are defined on Euclidean space Rn, then we omit Rn in notations.
For a ∈ R we put a+ := max(0, a). For t ∈ R, [t] denotes the greatest integer
less than or equal to t. The symbol ↪→ indicates a continuous embedding.
S denotes the Schwartz space and S ′ its topological dual. For 0 < p ≤ ∞
we denote by ‖ · ‖p the quasi-norm of the Lebesgue space Lp. Corresponding
to this, Llocp means the set of functions satisfying

∫
K |f(x)|pdx < ∞ for all

compact sets K of Rn. For f ∈ L1, we denote by f̂(ξ) :=
∫
Rn e−ix·ξf(x)dx

the Fourier transform and by F−1f(x) := (2π)−nf̂(−x) the inverse Fourier
transform. They are extended to the whole space S ′ in the usual way.
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We denote by P∞ the set of all polynomials on Rn. We denote by S∞ the
set of all ϕ ∈ S such that 〈u, ϕ〉 = 0 for all u ∈ P∞ and by S ′∞ its topological
dual, which can identified to the quotient space S ′/P∞. For all f ∈ S ′, we
denote by [f ]P the equivalence class of f modulo P∞; this notation has been
given before. The mapping which takes any [f ]P to the restriction of f to S∞
turns out to be an isomorphism of S ′/P∞ onto S ′∞. Then S ′∞ is called the
space of distributions modulo polynomials.

Finally, the constants c, c′, c1, . . . are positives and depend only on the
fixed parameters n, s, p, q, . . ., their values probably change from line to line.

Throughout the paper, we will make use of the following well known
inequalities:

• For all aj ≥ 0 and all 0 < d ≤ 1 it holds
(∑

j∈Z aj
)d ≤∑j∈Z a

d
j .

• Let 0 < p ≤ q ≤ ∞. There exists a constant c > 0 such that

(2.1) ‖f‖q ≤ cR
n(1/p−1/q) ‖f‖p

holds, for all R > 0 and all f ∈ Lp satisfying f̂ is supported by the ball
|ξ| ≤ R. The constant c can be given explicitly, cf. [15, Theorem 4]; in this

paper, c = p
n(1/p−1/q)
0 where p0 is the smallest integer not less than p/2.

2.1. THE LITTLEWOOD-PALEY DECOMPOSITION

The Littlewood-Paley setting is useful for the definition of Besov and
Triebel-Lizorkin spaces. This setting has been initiated by e.g., Bergh and
Löfström [2], Peetre [17] and Triebel [20, 21]. We will recall: let ρ be a C∞,
radial function such that 0 ≤ ρ ≤ 1, with ρ(ξ) = 1 if |ξ| ≤ 1 and ρ(ξ) = 0
if |ξ| ≥ 3/2. We put γ(ξ) := ρ(ξ) − ρ(2ξ) which is supported by the annulus
1/2 ≤ |ξ| ≤ 3/2, and the following identities hold∑

j∈Z
γ(2jξ) = 1 (∀ξ ∈ Rn \ {0}),

ρ(2−kξ) +
∑
j≥k+1

γ(2−jξ) = 1 (∀k ∈ Z, ∀ξ ∈ Rn).

The functions ρ and γ will be fixed once and for all. We define the
pseudodifferential operators (Sj)j∈Z and (Qj)j∈Z by Ŝjf(ξ) := ρ

(
2−jξ

)
f̂ (ξ)

and Q̂jf(ξ) := γ
(
2−jξ

)
f̂ (ξ). We also define the operators (Q̃j)j∈N0 by Q̃0 :=

S0 and Q̃j := Qj for j ≥ 1. The operators Sj and Qj take values in the
space of analytical functions of exponential type, see Paley-Wiener theorem,
in [19, Theorem 29.2, p. 311] or [20, Remark 2.3.1/2, p. 45].
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It is clear that Sj is defined on S ′ and that Qj is defined on S ′∞ since
Qjf (x) = 0 if, and only if, f is a polynomial. We make use of the following
convention:

If f ∈ S ′∞ we define Qjf := Qjf1 for all f1 such that [f1]P = f .

The convergence of the Littlewood-Paley decomposition of any function
is given by: for every f ∈ S∞ (S ′∞, respectively) one has f =

∑
j∈ZQjf with a

convergence in S∞ (S ′∞, respectively), also, for every f ∈ S (S ′, respectively)
and every k ∈ Z, one has f = Skf +

∑
j>kQjf with a convergence in S (S ′,

respectively). For the proof of these facts we refer to [14, Proposition 2.7].

2.2. THE BESOV AND TRIEBEL-LIZORKIN SPACES

The basic definitions of Ȧsp,q and Asp,q are given via the Littlewood-Paley
decomposition, see e.g. [2, 11,20].

Definition 2.1. Let s ∈ R and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. The homogeneous Besov space Ḃs
p,q is the set of

f ∈ S ′∞ such that

‖f‖Ḃsp,q :=
(∑
j∈Z

2jsq
∥∥Qjf∥∥qp)1/q <∞.

(ii) Let 0 < p < ∞. The homogeneous Triebel-Lizorkin space Ḟ sp,q is the
set of f ∈ S ′∞ such that

‖f‖Ḟ sp,q :=
∥∥∥(∑

j∈Z
2jsq

∣∣Qjf ∣∣q)1/q∥∥∥
p
<∞.

Definition 2.2. Let s ∈ R and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. The inhomogeneous Besov space Bs
p,q is the set of

f ∈ S ′ such that

‖f‖Bsp,q :=
(∑
j≥0

2jsq
∥∥Q̃jf∥∥qp)1/q <∞.

(ii) Let 0 < p < ∞. The inhomogeneous Triebel-Lizorkin space F sp,q is
the set of f ∈ S ′ such that

‖f‖F sp,q :=
∥∥∥(∑

j≥0
2jsq

∣∣Q̃jf ∣∣q)1/q∥∥∥
p
<∞.
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The spaces Ȧsp,q and Asp,q are quasi-Banach spaces for the above defined
quasi-seminorms and quasi-norms (Definitions 2.1 and 2.2, respectively), which
do not depend on the function ρ, see e.g., [10] or [20]. For characterizations
and properties of Asp,q we refer to [2, 18, 20, 21], however for Ȧsp,q we recall the
following assertions:

• S∞ ↪→ Ȧsp,q ↪→ S ′∞,

• Ȧsp,q1 ↪→ Ȧsp,q2 if q1 < q2 and Ḃs
p,min(p,q) ↪→ Ḟ sp,q ↪→ Ḃs

p,max(p,q),

• if s1 > s2, 0 < p1 < p2 <∞, 0 < q, r ≤ ∞ and s1−n/p1 = s2−n/p2 then

it holds Ḃs1
p1,q ↪→ Ḃs2

p2,q ↪→ Ḃ
s2−n/p2
∞,q , Ḟ s1p1,q ↪→ Ḃs2

p2,p1 and Ḟ s1p1,q ↪→ Ḟ s2p2,r,
see [11],

• if 0 < p, q < ∞ then S∞ is a dense subspace in Ȧsp,q, see [7, Proposi-
tion 3.11] or [11, (1.6)],

• there exist c1, c2 > 0 such that

c1‖f‖Ȧsp,q ≤ λ
s−n/p‖f(λ−1(·))‖Ȧsp,q ≤ c2‖f‖Ȧsp,q

for all f ∈ Ȧsp,q and all λ > 0, see [6].

We also recall the Nikol’skij type estimates and refer to [8, Proposition 4]
and [14, Propositions 2.15, 2.17] for the proofs.

Proposition 2.3. Let s ∈ R and 0 < p, q ≤ ∞ (with p < ∞ in the
F -case). Let 0 < a < b and let (uj)j∈Z be a sequence in S ′ satisfying

• ûj is supported by the annulus a2j ≤ |ξ| ≤ b2j,
• A :=

(∑
j∈Z(2js‖uj‖p)q

)1/q
< ∞ (A :=

∥∥(∑
j∈Z(2js|uj(·)|)q

)1/q∥∥
p
< ∞

in the F -case).

Then the series
∑

j∈Z uj converges in S ′∞ and ‖
∑

j∈Z uj‖Ȧsp,q ≤ cA, where the

constant c depends only on n, s, p, q, a and b.

There exists a link between Ȧsp,q and its inhomogeneous counterpart.
Namely, we have the following statement, which is proved in [21, p. 98].

Proposition 2.4. Let 0 < p, q ≤ ∞ (with p < ∞ in the F -case). Let s
be a real such that s > (n/p− n)+. Then f ∈ Asp,q if, and only if, f ∈ Lp and

[f ]P ∈ Ȧsp,q. Moreover, ‖f‖p + ‖[f ]P‖Ȧsp,q defines an equivalent quasi-norm in

Asp,q.

To define the realized homogeneous spaces of Besov, and of Triebel-
Lizorkin, we first give the notion of distributions vanishing at infinity.

Definition 2.5. A distribution f vanishes at infinity in the weak sense if
limλ→0 f(λ−1(·)) = 0 in S ′. The set of all such distributions is denoted by C̃0.
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We second recall that if f ∈ Ȧsp,q, then the Littlewood-Paley series∑
j∈ZQjf converges in S ′ν to an element denoted σν(f) which satisfies

f = [σν(f)]P in S ′∞ and ∂ασν(f) ∈ C̃0 for all |α| = ν,

where the integer ν (which will be fixed throughout this paper) is defined as
the following:

ν :=

{
([s− n/p] + 1)+ if s− n/p /∈ N0 or q > 1 in B-case (p > 1 in F -case),

s− n/p if s− n/p ∈ N0 and q ≤ 1 in B-case (p ≤ 1 in F -case),

see [7, 14].

Definition 2.6. Let s ∈ R and 0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. The realized homogeneous Besov space
˙̃
Bs
p,q is the set

of f ∈ S ′ν such that [f ]P ∈ Ḃs
p,q and f (α) ∈ C̃0 for all |α| = ν. The space

˙̃
Bs
p,q

is endowed with the quasi-seminorm ‖f‖ ˙̃
Bsp,q

:= ‖[f ]P‖Ḃsp,q .
(ii) Let 0 < p < ∞. The realized homogeneous Triebel-Lizorkin space

˙̃
F sp,q is the set of f ∈ S ′ν such that [f ]P ∈ Ḟ sp,q and f (α) ∈ C̃0 for all |α| = ν.

The space
˙̃
F sp,q is endowed with the quasi-seminorm ‖f‖ ˙̃

F sp,q
:= ‖[f ]P‖Ḟ sp,q .

Remark 2.7. It is possible to define
˙̃
Asp,q in S ′ by correcting in the

Littlewood-Paley decomposition each Qkf by a polynomial of degree less than

ν. In this sense, the construction of
˙̃
Asp,q in S ′ is given as the following: for

f ∈ Ȧsp,q we have

(i) σν(f) :=
∑

k∈ZQkf , if either s < n/p or s = n/p and q ≤ 1 in B-case
(p ≤ 1 in F -case),

(ii) σν(f) :=
∑

k∈Z

(
Qkf −

∑
|α|<ν(Qkf)(α)(0)xα/α!

)
, if either s − n/p ∈

R+ \ N0 or s− n/p ∈ N and q ≤ 1 in B-case (p ≤ 1 in F -case),

(iii) σν(f) :=
∑

j≥1Qjf+
∑

k≤0

(
Qkf−

∑
|α|<ν(Qkf)(α)(0)xα/α!

)
, if s−n/p ∈

N0 and q > 1 in B-case (p > 1 in F -case),

where all above series converge in S ′, and ∂ασν(f) ∈ C̃0 for all |α| = ν, and
[σν(f)]P = f in S ′∞, see [7].

We finish this section by giving some examples of functions in C̃0: we
begin by the polynomial functions using the following easy lemma proved in [3,
p. 46].

Lemma 2.8. If f is a polynomial vanishing at infinity in the weak sense,
then f = 0, i.e., C̃0 ∩ P∞ = {0}.
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Example 2.9. (i) Functions in Lp for 1 ≤ p <∞.

(ii) Derivatives of bounded functions.

(iii) Derivatives of the members of C̃0.

(iv) The function g(x) := xαeix·η (η ∈ Rn \ {0}, α ∈ Nn0 ) belongs to C̃0.
Indeed, for all ϕ ∈ S there exists a constant c > 0 independent of η, such that
the inequality

|〈g(λ−1(·)), ϕ〉| = λ−|α||(F−1ϕ)(α)(λ−1η)| ≤ cλN−|α||η|−N

holds for all λ > 0, where the positive integer N is large enough. The last term
tends to 0 with λ→ 0. More generally, for any nonzero polynomial P and any
η ∈ Rn \ {0}, the functions f(x) := eix·ηP(x) belong to C̃0.

(v) We also give an example of functions f ∈ Lp (with 0 < p < 1) such

that f /∈ C̃0. Indeed, let f0(x) := |x|−nρ(x); the function ρ is defined in
Subsection 2.1. Clearly that f0 ∈ Lp (with 0 < p < 1). For a positive integer
N large enough, we have

〈f0(2N (·)), ρ〉 = 2−nN
∫
Rn
|x|−nρ(2Nx)ρ(x) dx

≥ 2−nN
∫
r<|x|<2−nN

|x|−n dx (with log r := −2N(n+1)),

and the last term tends to ∞ with N →∞.

3. PROOFS OF THE MAIN RESULTS

We first prove the following statement.

Proposition 3.1. Let 0 < p, q ≤ ∞ (with p < ∞ in the F -case). Then
there exists a constant c > 0 such that the inequality

(3.1) ‖f‖v ≤ c v
1−1/q 2n/v ‖f‖

A
n/p
p,q

holds, for all v ∈ [p,∞] (with v < ∞ in the F -case) and all f ∈ An/pp,q . The
constant c can be chosen such that c := max(1, pn/p) if p < v and c := 1 if
p = v, see (2.1).

Proof. Step 1: the B-case. Let f ∈ Bn/p
p,q . We separate the cases according

to q and v.

• The case q ≥ 1 and v ≥ 1. It is easy to see that by using (2.1) we obtain

‖f‖v ≤
∑
j≥0
‖Q̃jf‖v ≤ c

∑
j≥0

2j(n/p−n/v)‖Q̃jf‖p,
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where c is independent of v, indeed, we have c := p
n(1/p−1/v)
0 with p0 ∈ N such

that p0 > p/2, cf. [15, Theorem 4], then c ≤ p
n/p
0 ≤ max(1, pn/p) if p < v,

however c := 1 if p = v, see (2.1) again. By Hölder’s inequality, we have

(3.2) ‖f‖v ≤ c
(∑
j≥0

2−jq
′n/v
)1/q′

‖f‖
B
n/p
p,q

(q′ := q/(q − 1)).

Using the elementary inequality

(3.3)
∑
j≥0

2−jβ =
1

1− 2−β
≤ 2β

β log 2
(∀β > 0),

it holds that the right-hand side of (3.2) is bounded by c v1−1/q2n/v ‖f‖
B
n/p
p,q

.

• The case q ≥ 1 and 0 < v < 1. By the embedding `p(N0) ↪→ `v(N0)
since p ≤ v (here `p(N0) means that ‖(ak)‖`p(N0) := (

∑
k≥0 |ak|p)1/p <∞), one

has

‖f‖v =
∥∥∥∑
j≥0

Q̃jf
∥∥∥
v
≤
(∑
j≥0
‖Q̃jf‖vv

)1/v
≤
(∑
j≥0
‖Q̃jf‖pv

)1/p
≤ c
(∑
j≥0

(
2jn/p‖Q̃jf‖p

)p
2−jpn/v

)1/p
≤ c ‖f‖

B
n/p
p,∞

(∑
j≥0

2−jpn/v
)1/p

,

and as in (3.3) we have

(3.4) ‖f‖v ≤ c v1/p2n/v ‖f‖
B
n/p
p,∞
≤ c v1−1/q2n/v ‖f‖

B
n/p
p,∞

,

where the last inequality is obtained because 1/p > 1 > 1− 1/q. We conclude

by using the embedding B
n/p
p,q ↪→ B

n/p
p,∞.

• The case 0 < q < 1 and v ≥ 1. We get

‖f‖v ≤
∥∥∥(∑

j≥0
|Q̃jf |q

)1/q∥∥∥
v

≤
(∑
j≥0
‖Q̃jf‖qv

)1/q
≤ c
(∑
j≥0

(
2jn/p‖Q̃jf‖p

)q
2−jqn/v

)1/q
,

where

2−jqn/v =
(

2−jn/v
)q(1−1/q)

2−jn/v
(

with 2−jn/v ≤ 1
)

≤
(∑
k≥0

2−kn/v
)q(1−1/q)

≤ c1 (v2n/v)q(1−1/q)
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≤ c2 vq(1−1/q) 2qn/v (∀j ≥ 0),

and the bound c v1−1/q2n/v ‖f‖
B
n/p
p,q

is obtained again.

• The case 0 < q < 1 and 0 < v < 1. Recall that p ≤ v implies
p−1 log v < 0 < (1− 1/q) log v. Then

‖f‖v ≤
(∑
j≥0
‖Q̃jf‖vv

)1/v
≤ c
(∑
j≥0

(
2jn/p‖Q̃jf‖p

)p
2−jpn/v

)1/p
≤ c1 v

1/p 2n/v ‖f‖
B
n/p
p,∞
≤ c2 v1−1/q 2n/v ‖f‖

B
n/p
p,∞

.(3.5)

Step 2: the F -case. Let f ∈ Fn/pp,q . Here we use the embedding F
n/p
p,q ↪→

B
n/p
p,∞, and also separate the cases with respect to q and v.

• The case q ≥ 1 and 0 < v ≤ 1. See (3.4).

• The case 0 < q < 1 and 0 < v ≤ 1. See (3.5).

• The case 0 < q ≤ ∞ and v > 1. The previous step (with q =∞) implies
that ‖f‖v ≤ c v1−1/∞ 2n/v‖f‖

B
n/p
p,∞

, then we have

‖f‖v = ‖f‖1−1/qv ‖f‖1/qv

≤
(
c1 v

1−1/∞ 2n/v ‖f‖
B
n/p
p,∞

)1−1/q (∑
j≥0
‖Q̃jf‖v

)1/q
≤ c2 v1−1/q 2n/v ‖f‖1−1/q

F
n/p
p,q

‖f‖1/q
B0
v,1

( recall that 2−n/(vq) ≤ 1),

and we conclude by the embeddings F
n/p
p,q ↪→ B

n/v
v,∞ ↪→ B0

v,1. �

Remark 3.2. The estimate (3.1) extends the inequality given in [23,
(4.93), p. 145] to the case 0 < q ≤ 1.

Proof of Theorem 1.1. Step 1. We prove (1.2) with functions f ∈ An/pp,q

such that [f ]P ∈ Ȧ0
p,r (with p <∞ in the F -case). We recall that the parameter

r is defined as r := min(1, p) in the B-case and r := 1 in the F -case. By (3.1)
we get

‖f‖v ≤ c1 v
1−1/q 2n/v

(
‖f‖p + ‖[f ]P‖Ȧn/pp,q

)
≤ c2 v1−1/q 2n/v

(
‖[f ]P‖Ȧ0

p,r
+ ‖[f ]P‖Ȧn/pp,q

)
,(3.6)

where the estimate

(3.7) ‖f‖p =
∥∥∥∑
j≥0

Q̃jf
∥∥∥
p
≤
∥∥∥(∑

j≥0
|Q̃jf |r

)1/r∥∥∥
p
≤ c‖[f ]P‖Ȧ0

p,r
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can be directly obtained in the F -case and by Minkowski inequality in the
B-case. Now in (3.6) we replace f by f(λ(·)) with λ > 0, and we take

λ := ‖[f ]P‖p/nȦ0
p,r
‖[f ]P‖−p/n

Ȧ
n/p
p,q

(here we assume that ‖[f ]P‖Ȧn/pp,q
6= 0 since f is not a polynomial function),

then (1.2) follows for all f ∈ An/pp,q such that [f ]P ∈ Ȧ0
p,r.

Step 2. We now take f ∈ ˙̃
A0
p,r ∩

˙̃
A
n/p
p,q . Since we work with a function f in

˙̃
A0
p,r, then f ∈ C̃0 because ν = ([−n/p] + 1)+ = 0. Recall that here p, q <∞.

We introduce a sequence (gk)k∈N0 in S∞ satisfying [gk]P → [f ]P (with

k →∞) in both Ȧ
n/p
p,q and Ȧ0

p,r simultaneously. By Step 1, we have

‖gk‖v ≤ c1 v
1−1/q 2n/v ‖[gk]P‖

p/v

Ȧ0
p,r
‖[gk]P‖

1−p/v
Ȧ
n/p
p,q

≤ c2 v1−1/q2n/v
(
‖[gk]P − [f ]P‖Ȧ0

p,r
+ ‖[f ]P‖Ȧ0

p,r

)p/v
×
(
‖[gk]P − [f ]P‖Ȧn/pp,q

+ ‖[f ]P‖Ȧn/pp,q

)1−p/v
.

Then there exists a natural number k0 ∈ N0, such that

(3.8) ‖gk‖v ≤ c v
1−1/q 2n/v ‖[f ]P‖p/vȦ0

p,r
‖[f ]P‖1−p/v

Ȧ
n/p
p,q

(∀k ≥ k0).

Now clearly that gk ∈
˙̃
A0
p,r ∩

˙̃
A
n/p
p,q , then we apply the following lemma, which

is proved in e.g. [4, p. 52]:

Lemma 3.3. Let E be a quasi-Banach satisfying E ↪→ Lloc1 . If a sequence
(fk)k satisfies that fk → f in E, then admits a subsequence (fkj )j such that
limj→∞ fkj = f almost everywhere.

Consequently, from the sequence {gk0 , gk0+1, . . .} we may extract a subse-
quence (gkj )j∈N0 such that limj→∞ gkj = f a.e. Then using (3.8) with (gkj )j∈N0

and applying Fatou’s lemma to the sequence (|gkj |v)j∈N0 , the desired result fol-
lows.

The rest is to prove
˙̃
A0
p,r ∩

˙̃
A
n/p
p,q ↪→ Lloc1 , where it suffices to show that

˙̃
A
n/p
p,q ↪→ Lloc1 .

• The B-case. Let f ∈ ˙̃
B
n/p
p,q . We separate the cases with respect to q,

so we first assume that q > 1. By Remark 2.7(iii), we can split f into f1 + f2
where f1 :=

∑
j≥1Qjf and f2 :=

∑
j≤0(Qjf −Qjf(0)) since ν = 1. We have

|f2(x)| ≤ |x|
∑
j≤0
‖∇Qjf‖∞ ≤ c1|x|

∑
j≤0

2j(2jn/p‖Qjf‖p) ≤ c2|x| ‖f‖Ḃn/pp,∞
,
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and f2 ∈ Lloc1 . However, for f1 we first see the case p ≥ 1 (recall that Lp ↪→
Lloc1 ), and we get

‖f1‖p ≤ ‖f‖Ḃn/pp,∞

∑
j≥1

2−jn/p ≤ c‖f‖
Ḃ
n/p
p,∞

;

if 0 < p < 1, we drive

‖f1‖1 ≤ c1
∑
j≥1

2j(n/p−n)‖Qjf‖p ≤ c1‖f‖Ḃn/pp,∞

∑
j≥1

2−jn ≤ c2‖f‖Ḃn/pp,∞
.

Now we suppose that 0 < q ≤ 1, we have ν = 0, and by both Re-

mark 2.7(i) and the embedding Ḃ
n/p
p,q ↪→ Ḃ0

∞,1, we obtain f =
∑

j∈ZQjf and

(3.9) ‖f‖∞ ≤
∑
j∈Z
‖Qjf‖∞ = ‖f‖Ḃ0

∞,1
,

which implies that f ∈ Lloc1 .
• The F -case. If p > 1 we proceed as in “the B-case with q > 1” since

Ḟ
n/p
p,q ↪→ Ḃ

n/p
p,∞. However, if 0 < p ≤ 1 we use the embeddings Ḟ

n/p
p,q ↪→ Ḃ

n/p
p,p ↪→

Ḃ0
∞,1 and the result follows as in (3.9) too. The proof of Theorem 1.1 is

complete. �

Proof of Theorem 1.2. Step 1. We first prove the following assertion:
There exists a constant c > 0 such that the inequality

(3.10) ‖f‖v ≤ c ‖f‖
u/v
u ‖[f ]P‖1−u/v

Ȧ
n/p
p,q

holds, for all u ∈]0,∞[, all v ∈ [u,∞[ and all f ∈ Lu ∩
˙̃
A
n/p
p,q .

By taking into account of the embedding Ȧ
n/p
p,q ↪→ Ḃ0

∞,1 (recall the as-
sumption: q ≤ 1 in the B-case and p ≤ 1 in the F -case), it suffices to prove

(3.11) ‖f‖v ≤ ‖f‖
u/v
u ‖[f ]P‖1−u/vḂ0

∞,1
(∀f ∈ Lu ∩

˙̃
B0
∞,1).

Let now f ∈ Lu ∩
˙̃
B0
∞,1. We have ν = 0 (ν is defined in Subsection 2.2),

then f ∈ C̃0. By Lemma 2.8 we have σ(f) :=
∑

j∈ZQjf = f since σ(f)− f ∈
C̃0 ∩ P∞ = {0}. Hence, we immediately obtain

‖f‖v =
∥∥∥|f |u/v∣∣∣∑

j∈Z
Qjf

∣∣∣1−u/v∥∥∥
v
≤ ‖f‖u/vu

(∑
j∈Z
‖Qjf‖∞

)1−u/v
≤ ‖f‖u/vu ‖[f ]P‖1−u/vḂ0

∞,1
(recall that v <∞).

Step 2. Let f ∈ Lu ∩
˙̃
A
n/p
p,q . Let p1, v be such that p1 ≥ p and v ≥ p.

By (3.11) we have f ∈ Lv. By the embedding Ȧ
n/p
p,q ↪→ Ȧ

n/v
v,q , Proposition 2.4
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implies that f ∈ An/vv,q , and we are able to apply Proposition 3.1 with v = p.
Then we get

‖f‖v ≤ c v
1−1/q 2n/v ‖f‖

A
n/v
v,q

,

the constant c depends only on n and q; see again Proposition 3.1 for the term
cv1−1/q2n/v. This gives

‖f‖v ≤ c v
1−1/q 2n/v

(
‖f‖v + ‖[f ]P‖Ȧn/vv,q

)
.

Using (3.10) with
˙̃
A
n/p1
p1,q instead of

˙̃
A
n/p
p,q , we get

‖f‖v ≤ c1 v
1−1/q 2n/v

(
c2 ‖f‖u/vu ‖[f ]P‖1−u/v

Ȧ
n/p1
p1,q

+ ‖[f ]P‖Ȧn/vv,q

)
.

Now, we change f by f(λ(·)), with λ > 0, in the last inequality, then

‖f‖v ≤ c1 v
1−1/q 2n/v

(
c2 ‖f‖u/vu ‖[f ]P‖1−u/v

Ȧ
n/p1
p1,q

+ λn/v ‖[f ]P‖Ȧn/vv,q

)
.

Finally, we take λ → 0 and obtain the desired estimate. The proof of Theo-
rem 1.2 is complete. �

4. CONCLUDING REMARKS

4.1. OPTIMALITY OF THE ESTIMATES

We are interested in the optimality of the estimate (1.2) in both cases B
and F . We begin by the following statement:

Proposition 4.1. Let 1 < p <∞ and 1 < q <∞ in the B-case. Let 1 ≤
q ≤ p <∞ (p 6= 1) in the F -case. If there exists a function h : [p,∞[→ [0,∞[
such that

(4.1) ‖f‖v ≤ h(v) ‖[f ]P‖p/vȦ0
p,1

‖[f ]P‖1−p/v
Ȧ
n/p
p,q

, ∀f ∈ ˙̃
A0
p,1 ∩

˙̃
An/pp,q ,

then h(v) ≥ c v1−1/q for all v ∈ [p,∞[ and where the positive constant c is
independent of v.

The proof is based on the following lemma due to Bourdaud [5, Propo-
sition 2], where we need some notations: Let ϕ be a C∞- function on R such
that ϕ(t) = 1 for t ≤ e−3 and ϕ(t) = 0 for t ≥ e−2. For (α, β) ∈ R2, we define
a function f0 on Rn by

f0(x) :=
∣∣ log |x|

∣∣α( log
∣∣ log |x|

∣∣)−βϕ(|x|), x ∈ Rn.
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Lemma 4.2. (i) If 1 ≤ u, q ≤ ∞, α := 1 − 1/q and β > 1/q, then

f0 ∈ Bn/u
u,q .

(ii) If 1 < u <∞, 1 ≤ q ≤ ∞, α := 1−1/u and β > 1/u, then f0 ∈ Fn/uu,q .

Proof of Proposition 4.1. Step 1: preparation. We first show that f0 ∈
˙̃
A0
p,1 ∩

˙̃
A
n/p
p,q , where we will use f0 as the following:

• in the B-case, α := 1− 1/q and βq > 1,

• in the F -case, α := 1− 1/p1 with 1 < p1 <∞, q ≤ p1 < p and βp1 > 1.

Clearly f0 ∈ C̃0 since f0 is an integrable function. For the rest we separate B
and F cases.

–The B-case: By Lemma 4.2(i) with u := p and Proposition 2.4 (i.e.,

f0 ∈ B
n/p
p,q implies [f0]P ∈ Ḃ

n/p
p,q ), we get f0 ∈

˙̃
B
n/p
p,q . For f0 ∈

˙̃
B0
p,1, we use

Lemma 4.2(i) with u := 1 and the embeddings Bn
1,q ↪→ B

n−n/p
1,1 ↪→ Ḃ

n−n/p
1,1 ↪→

Ḃ0
p,1 (recall that by assumption 1 < p <∞).

–The F -case: We use Lemma 4.2(ii) with u := p1 < p and Proposi-

tion 2.4 (i.e., f0 ∈ F
n/p1
p1,q implies [f0]P ∈ Ḟ

n/p1
p1,q ), then we apply the embed-

ding Ḟ
n/p1
p1,q ↪→ Ḟ

n/p
p,q . As above for f0 ∈

˙̃
F 0
p,1, we employ the embeddings

F
n/p1
p1,q ↪→ F

n/p1−n/p
p1,1

↪→ Ḟ
n/p1−n/p
p1,1

↪→ Ḟ 0
p,1 (here also 1 < p < ∞ implies that

1 < p1 < p <∞ is possible).
Now, we want to see the Lv-norm of f0. To that purpose, we introduce

the function

f1(x) :=
∣∣ log |x|

∣∣α( log
(
1− log |x|

))−β
ϕ(|x|), x ∈ Rn,

where α and β are given above. By [9, Theorem 2.7.1, p. 82] or [22] the function
f1 satisfies

(4.2) ckα ≤ ‖f1‖k ≤ c′kα, ∀k ∈ N,

where the positive constants c, c′ are independent of k. On the other hand, by
the following elementary inequality

log 2 ≤ log
∣∣ log |x|

∣∣ ≤ log
(
1− log |x|

)
, ∀|x| ≤ e−2 (i.e., |x| ∈ suppϕ),

and since β > 0, we have |f0(x)| ≥ |f1(x)| for all x ∈ Rn. Then by using (4.2),
we obtain

(4.3) ‖f0‖k ≥ c1kα, ∀k ∈ N,

with a constant c1 > 0 independent of k.
Step 2. We will proceed by contradiction. Let us assume that h(v) <

cv1−1/q (∀v ∈ [p,∞[), and

(4.4) lim
v→∞

v1/q−1h(v) = 0;
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indeed to justify (4.4), if limv→∞ v
1/q−1h(v) 6= 0 say 2c0, then there exists

v0 ∈ [p,∞[ such that
∣∣v1/q−1h(v) − 2c0

∣∣ ≤ c0 for all v ≥ v0, implies that

h(v) ≥ c0v1−1/q.
Observe that ‖[f0]P‖Ȧ0

p,1
‖[f0]P‖Ȧn/pp,q

6= 0 since f0 is not a polynomial,

then it holds that limk→∞ ‖[f0]P‖
p/k

Ȧ0
p,1

‖[f0]P‖1−p/k
Ȧ
n/p
p,q

= ‖[f0]P‖Ȧn/pp,q
, i.e., there

exists an integer k0 ∈ N such that

‖[f0]P‖p/kȦ0
p,1

‖[f0]P‖1−p/k
Ȧ
n/p
p,q

≤ 1 + ‖[f0]P‖Ȧn/pp,q
, ∀k ≥ k0.

Now, using the inequality (4.1) with both f = f0 and v = k, where the integer
k is chosen satisfying k ≥ max(k0, p), and taking into account of (4.3), we find
c1k

α ≤ h(k)
(
1+‖[f0]P‖Ȧn/pp,q

)
, the constant c1 is defined in (4.3). Consequently,

lim
k→∞

k−αh(k) ≥ c1
(

1 + ‖[f0]P‖Ȧn/pp,q

)−1
> 0.

But this is impossible with (4.4); recall that
• k−α = k1/q−1 in the B-case,
• k−α = k1/p1−1 ≤ k1/q−1 in the F -case.

The proof of Proposition 4.1 is complete. �

Remark 4.3. By Proposition 4.1 we obtain the optimality of the growth
rate as v1−1/q in (1.2) with v → ∞, for 1 < p, q < ∞ in the B-case and
1 ≤ q ≤ p < ∞ (p 6= 1) in the F -case. On the other hand, it would be also
interesting to extend the validity of this proposition to p < 1 or q < 1, and to
show that the growth of the constant v1−1/q in (1.3) with v →∞ is optimal at
least for the B-case.

4.2. SOME EXTENSIONS

We first generalize Theorem 1.1 in the following sense.

Theorem 4.4. Let 0 < p, q < ∞. Let m ≥ 0 be such that one of the
following two conditions is satisfied:

(i) m ∈ N0.

(ii) m > (n/p− n)+ and either m < n/p or m− n/p ∈ N0.

We put r := min(1, p) in the B-case and r := 1 in the F -case. We also put
w := (m + n/v)1/q−12m+n/v. Then there exists a constant c = c(n, p, q) > 0
such that the inequality

(4.5) ‖f‖v ≤ cw ‖[f ]P‖p/v+mp/nȦmp,r
‖[f ]P‖1−p/v−mp/n

Ȧ
m+n/p
p,q

holds, for all v ∈ [p,∞[ and all f ∈ ˙̃
Amp,r ∩

˙̃
A
m+n/p
p,q .
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Proof. We only make a check since the proof is similar to that of Theo-
rem 1.1. First, the inequality (3.1) becomes

‖f‖v ≤ cw ‖f‖Am+n/p
p,q

,

for all v ∈ [p,∞] (with v < ∞ in the F -case) and all f ∈ Am+n/p
p,q . Second by

proceeding as in (3.6), then similar to (3.7) we have

‖f‖p =
∥∥∥∑
j≥0

2−jm2jmQ̃jf
∥∥∥
p
≤
∥∥∥(∑

j≥0
|2jmQ̃jf |r

)1/r∥∥∥
p
≤ c‖[f ]P‖Ȧmp,r .

Now to make sure that the approximation method will be done as in

Step 2 in the proof of Theorem 1.1, it suffices to see that
˙̃
Amp,r∩

˙̃
A
m+n/p
p,q ↪→ Lloc1 ,

wherein we note that the case m = 0 has been studied before. Then we prove
this embedding with respect to the cases (i) and (ii) separately.

Step 1: proof of
˙̃
A
m+n/p
p,q ↪→ Lloc1 under the assumption (i). We begin with

q ≤ 1 in B-case (p ≤ 1 in F -case) (here ν := m). Let f ∈ ˙̃
A
m+n/p
p,q . By Taylor’s

formula we write, (ii) of Remark 2.7, as

(4.6) f(x) = m
∑
k∈Z

∑
|α|=m

xα

α!

∫ 1

0
(1− t)m−1(Qkf)(α)(tx) dt,

which implies

|f(x)| ≤ c1|x|m
∑
k∈Z

∑
|α|=m

‖(Qkf)(α)‖∞ ≤ c2|x|m
∑
k∈Z

2k(m+n/p)‖Qkf‖p

≤ c3|x|m‖[f ]P‖Ḃm+n/p
p,1

(∀x ∈ Rn),

and by the embedding Ȧ
m+n/p
p,q ↪→ Ḃ

m+n/p
p,1 we deduce that f ∈ Lloc1 .

Now, we assume that q > 1 in B-case (p > 1 in F -case) (here ν := m+1).
As in the previous case we write, (iii) of Remark 2.7, as

(4.7) f(x) =
∑
j≥1

Qjf(x) + (m+ 1)
∑
k≤0

∑
|α|=m+1

xα

α!

∫ 1

0
(1− t)m(Qkf)(α)(tx) dt.

We put f1 :=
∑

j≥1Qjf and f2 := f − f1. By Hölder’s inequality we have

|f1(x)| ≤ c1
∑
j≥1

2−jm(2j(m+n/p)‖Qjf‖p) ≤ c2‖[f ]P‖Ȧm+n/p
p,q

(∀x ∈ Rn),

and f1 ∈ L∞. We also have

|f2(x)| ≤ c1|x|m+1
∑
k≤0

∑
|α|=m+1

‖(Qkf)(α)‖∞
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≤ c2|x|m+1
∑
k≤0

2k(m+1+n/p)‖Qkf‖p

≤ c3|x|m+1‖[f ]P‖Ḃm+n/p
p,∞

∑
k≤0

2k ≤ c4|x|m+1‖[f ]P‖Ȧm+n/p
p,q

,

and f2 ∈ Lloc1 . All these facts imply
˙̃
A
m+n/p
p,q ↪→ Lloc1 .

Step 2: proof of
˙̃
Amp,q ↪→ Lloc1 under the assumption (ii). Let f ∈ ˙̃

Amp,q.

• The case m = n/p has been studied in Step 2 of the proof of Theo-
rem 1.1.

• The case m < n/p: The function f coincides with
∑

j∈ZQjf , cf. Re-
mark 2.7(i). We write f = f1 +f2 where f1 :=

∑
j≥1Qjf and f2 :=

∑
j≤0Qjf .

We have

|f2(x)| ≤ c1
∑
j≤0

2j(n/p−m)(2jm‖Qjf‖p)

≤ c2‖[f ]P‖Ḃmp,∞
∑
j≤0

2j(n/p−m) ≤ c3‖[f ]P‖Ȧmp,q ,

and f2 ∈ L∞ (recall that Ȧmp,q ↪→ Ḃm
p,∞ and L∞ ↪→ Lloc1 ). For f1 we first see

the case p ≥ 1 (Lp ↪→ Lloc1 ), and we get

‖f1‖p ≤ c1
∑
j≥1

2−jm(2jm‖Qjf‖p) ≤ c2‖[f ]P‖Ḃmp,∞ ;

for 0 < p < 1, we have

‖f1‖1 ≤ c1
∑
j≥1

2j(n/p−n−m)(2jm‖Qjf‖p)

≤ c1‖[f ]P‖Ḃmp,∞
∑
j≥1

2j(n/p−n−m) ≤ c2‖[f ]P‖Ȧmp,q ,

which implies f ∈ Lloc1 .

• The case m− n/p =: m1 ∈ N. Here we treat the cases p ≤ 1 and p > 1
separately, as in (4.6) and (4.7) (by replacing m by m1), respectively. We omit
the details and the proof of Theorem 4.4 is finished. �

Now, we turn to give the estimate (1.1) in the realized spaces with a more
general case.

Theorem 4.5. Let 0 < p < v < ∞ and 0 < q < ∞. Let α > 0 be such
that the number β := α(v/p− 1) satisfies

β > (n/p− n)+ and either β < n/p or β − n/p ∈ N0.
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Then there exists a constant c > 0 such that the inequality

(4.8) ‖f‖v ≤ c‖[f ]P‖p/v
Ḟβp,q
‖[f ]P‖1−p/vḂ−α∞,∞

holds, for all f ∈ ˙̃
B−α∞,∞ ∩

˙̃
F βp,q.

We first prove the following assertion.

Proposition 4.6. Let 0 < p < v <∞ and α > 0. We put β := α(v/p−
1). Then there exists a constant c > 0 such that the inequality

(4.9) ‖f‖v ≤ c‖[f ]P‖p/v
Ḟβp,∞
‖[f ]P‖1−p/vḂ−α∞,∞

holds, for all f ∈ F βp,∞ such that [f ]P ∈ Ḃ−α∞,∞.

Proof. If ‖[f ]P‖Ḃ−α∞,∞ = 0 the inequality (4.9) is trivial since the assump-

tions imply that f = 0. Thus, we assume that ‖[f ]P‖Ḃ−α∞,∞ = 1, and write

‖f‖vv = v

∫ ∞
0

tv−1|{x : |f(x)| > t}|dt = v

∫ ∞
0

tv−1
∣∣∣{x :

∣∣∣∑
j≥0

Q̃jf(x)
∣∣∣ > t

}∣∣∣dt,
where |{x : . . .}| is the Lebesgue measure of the set {x : . . .}. Then the estimate
of the last-hand side is similar to that of the proof given in [20, pp. 129–130],
we obtain

‖f‖v ≤ c‖f‖p/v
Fβp,∞

.

Now, we suppose that ‖[f ]P‖Ḃ−α∞,∞ 6= 0 and change f by (‖[f ]P‖−1Ḃ−α∞,∞)f

in the last inequality, then we deduce that the following estimate

(4.10) ‖f‖v ≤ c‖f‖p/v
Fβp,∞
‖[f ]P‖1−p/vḂ−α∞,∞

holds, for all f ∈ F βp,∞ such that [f ]P ∈ Ḃ−α∞,∞. Again in (4.10), we replace f
by f(λ(·)), with λ > 0, and use the fact that (β−n/p)p/v−α(1−p/v) = −n/v
and ‖f‖

Fβp,∞
∼ ‖f‖p + ‖[f ]P‖Ḟβp,∞ , then we obtain

‖f‖v ≤ c
(
λ−β‖f‖p + ‖[f ]P‖Ḟβp,∞

)p/v
‖[f ]P‖1−p/vḂ−α∞,∞

,

and by taking λ→∞, the inequality (4.9) follows. �

Proof of Theorem 4.5. Step 1. Let f ∈ ˙̃
B−α∞,∞ ∩

˙̃
F βp,q. We set gk :=∑k

j=−kQjf for all k ∈ N0. Then the sequence (gk)k∈N0 has the following
properties:

(I) ‖[gk]P‖Ḟβp,q ≤ c‖[f ]P‖Ḟβp,q and ‖[gk]P‖Ḃ−α∞,∞ ≤ c‖[f ]P‖Ḃ−α∞,∞ for all k ∈ N0,

see Proposition 2.3.
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(II) gk ∈ Lp for all k ∈ N0; indeed, we introduce the parameter r := min(1, p),
then it holds

‖gk‖p ≤
∥∥∥( ∑
−k≤j≤k

|Qjf |r
)1/r∥∥∥

p
≤ ‖[f ]P‖Ḟβp,q

( ∑
−k≤j≤k

2−jrβ
)1/r

≤ c(k)‖[f ]P‖Ḟβp,q .

(III) gk tends to f in
˙̃
F βp,q; indeed, by Proposition 2.3 we have

‖[gk]P − [f ]P‖Ḟβp,q ≤
∥∥∥( ∑
|j|>k

2jqβ|Qjf |q
)1/q∥∥∥

p
(∀k ∈ N0),

and because q <∞ the last term tends to 0 with k →∞.

By (I) and (II) we can apply Proposition 4.6 to (gk)k∈N0 and obtain

(4.11) ‖gk‖v ≤ c‖[f ]P‖p/v
Ḟβp,q
‖[f ]P‖1−p/vḂ−α∞,∞

(∀k ∈ N0).

On the other hand, if we assume for a moment that the following embed-
ding holds

(4.12)
˙̃
F βp,q ↪→ Lloc1 ,

then by (III) and Lemma 3.3 we may extract a subsequence (gkj )j∈N0 such
that limj→∞ gkj = f a.e. Now the inequality (4.11) with (gkj )j∈N0 and an
application of Fatou’s lemma to the sequence (|gkj |v)j∈N0 yield the desired
result.

Step 2: proof of (4.12). It is similar to that of the proof given in Step 2
of Theorem 4.4 in the F -case, wherein we just change m by β. The proof of
Theorem 4.5 is therefore complete. �

Using the embedding properties of homogeneous spaces i.e., Ḟ βp,q ↪→ Ḟ βp,∞
and the fact that if q ≤ p then Ḃβ

p,q ↪→ Ḃβ
p,p = Ḟ βp,p, we drive the following

statement.

Corollary 4.7. Let p, q, v, α and β be given as in Theorem 4.5. Let in
addition q ≤ p in the B-case. Then there exists a constant c > 0 such that the
inequality

(4.13) ‖f‖v ≤ c‖[f ]P‖p/v
Ȧβp,q
‖[f ]P‖1−p/vḂ−α∞,∞

holds, for all f ∈ ˙̃
B−α∞,∞ ∩

˙̃
Aβp,q.

Remark 4.8. Corollary 4.7 covers the result given in [1, Theorem 2.42,
p. 82].
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Remark 4.9. As in Corollary 1.3, from the inequalities (4.5), (4.8) and
(4.13) we have the intersection of certain realized spaces are embedded in the
spaces Lv.
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[22] H. Triebel, Approximation numbers and entropy numbers of embeddings of fractional

Besov-Sobolev spaces in Orlicz spaces. Proc. London Math. Soc. 66 (1993), 589–618.

[23] H. Triebel, Local Function Spaces, Heat and Navier-Stokes Equations. EMS Tracts

Math. 20, European Math. Soc. Publishing House, Zürich, 2013.
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