ON INVERSE PROBLEMS FOR SETS IN \mathbb{Z}_{3}^{n}

JESÚS NIETO, DOMINGO QUIROZ and JOSÉ VILORIA

Communicated by Alexandru Zaharescu

The sets in $G=\mathbb{Z}_{3}^{3}$ with maximal cardinality and zero sum free are characterized. Also, the greatest cardinality and structure of subsets of G without zero sum and length ≤ 3 sets, are given. As a result, we find exact values of Olson's constant $O^{k}(G)$ for $k \in[3,7]$.

AMS 2010 Subject Classification: 11P70, 11B13.
Key words: zero sum free set, inverse problem, Olson's constant.

1. INTRODUCTION

Let G be a finite additive abelian group. $\mathcal{F}(G)$ denotes the free abelian monoid in G whose operation is concatenation and the unit is the empty sequence. Every $S \in \mathcal{F}(G)$ is a sequence and it has the form $S=g_{1}^{v_{1}} \cdots g_{k}^{v_{k}}=$ $\prod_{g \in G} g^{v_{g}(S)}$ where $v_{g}(S) \geq 0$ is the multiplicity of g : the number of times of g in S. In case of $v_{g}(S)=1, S$ is a set: a sequence with no repeated elements. A sequence T which consists of members of S is a subsequence of S and it is said to be proper if $T \neq S$. Also, $T \mid S$ is the subsequence of S whose members are not in T. Given a sequence S

- $\sigma(S) \in G$ is the sum of all of the members of S.
- $\sum S=\{\sigma(T): T$ is a nonempty subsequence of $S\}$.
- $|S|=\sum_{g \in G} v_{g}(S)$ is the length of S, the many of its members.

The sequence S is:

- Zero sum if $\sigma(S)$ is zero in G.
- Zero sum free if $0 \notin \sum S$.
- $k \leq$-zero sum free, with k a positive integer, if it does not contain zero sum subsequences with length in $[1, k]$.
In 1961, Erdös, Ginzburg and Ziv [4] proved that in a cyclic group with cardinality n, for every sequence with $2 n-1$ elements, there are n of them whose sum is zero. This result, among others, gave rise to the well known zero sum problems. Since their appearance, zero sum problems have been studied by a lot of researchers, leading to many problems and conjectures, some of which remain
open. The study of zero sum problems is within combinatoric number theory and they might be classified in two types. Direct problems search for conditions granting the existence of elements in a sequence (with given characteristics), whose sum is zero. Inverse problems consist in finding, for a given integer k, the structure of a k^{\leq}-zero sum free sequence in $\mathcal{F}(G)$ with the largest length. Several constants have been defined while studying these two types of problems. One of them is known as Davenport's constant, introduced in 1966, denoted $D(G)$ and defined as the least positive integer d such that every sequence with d elements contains a nonempty zero sum subsequence. The corresponding constant for sets, Olson's constant $O(G)$, is defined in an analogous way. Many results on zero sum problems are well known (see $[1,3,5-8,11,14,15]$). However, very few results on the structure of zero sum free sets with cardinality $O(G)-1$ are known (see $[2,9,10,12-14]$).

In this work, the inverse problem in $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ is studied and a characterization of the structure of every set with greatest cardinality and without zero sum subsets is given. The same is done for sets without zero sum subsets with cardinality ≤ 3.

2. ZERO SUM FREE SETS IN \mathbb{Z}_{3}^{n}

For a given prime p, the elementary p-group $G=\mathbb{Z}_{p}^{n}$ is a vector space on the finite field \mathbb{Z}_{p}. Thus, we will use notions like basis and independent sets. In [15], Julio Subocz proved the following:

Proposition 1. If $n \geq 3$ then $O\left(\mathbb{Z}_{3}^{n}\right)=2 n+1$.
The following important fact, for sequences, was given by Gao and Geroldinger in 1999 [7].

Theorem 1. Let G be a finite abelian group. If S is a zero sum free sequence in G with $|S|=D(G)-1$, then $\sum S \cup\{0\}=G$.

As a consequence, we have the following:
Corollary 1. Let S be a set in $G=\mathbb{Z}_{3}^{n}$. If S is zero sum free and $|S|=2 n$, then S contains a basis of G.

Proof. Let S be a set in $G=\mathbb{Z}_{3}^{n}$ as in the hypothesis. Assume that S does not contain a basis of G. If $S=a_{1} \cdots a_{n-k} b_{1} \cdots b_{n+k}$ with $1<k<n$ and $B=$ $\left\{a_{1}, \ldots, a_{n-k}\right\}$ is the largest independent subset of S, then $b_{i}=\sum_{j=1}^{n-k} \beta_{i_{j}} a_{j}$ for every $i \in[1, n+k]$. Let $\left\{g_{1}, \ldots, g_{k}\right\} \subset G-S$ such that $B \cup\left\{g_{1}, \ldots, g_{k}\right\}$ is a basis of G. By Theorem $1, \sum S=G-\{0\}$. Thus, $g_{j} \in \sum S$ for every $j \in[1, k]$ and hence, there exist $I_{j_{1}} \subset[1, n-k]$ and $I_{j_{2}} \subset[1, n+k]$ such that $g_{j}=$
$\sum_{i \in I_{j_{1}}} a_{i}+\sum_{i \in I_{j_{2}}} b_{i}=\sum_{t=1}^{n-k} \beta_{t} a_{t}$. But this contradicts that $B \cup\left\{g_{1}, \ldots, g_{k}\right\}$ is a basis.

From these results, the inverse problem for some constants related to $O\left(\mathbb{Z}_{3}^{n}\right)$ with $n \geq 3$, is settled. That is to say, the aim is to find the structure of sets in $F\left(\mathbb{Z}_{3}^{n}\right)$ which don't contain certain zero sum sets.

From now on, a zero sum free set $S \in F\left(\mathbb{Z}_{3}^{n}\right)$ with $|S|=2 n$, will be denoted by $S=a_{1} \cdots a_{n} b_{1} \cdots b_{n}$, where $\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis and $b_{i}=\beta_{i_{1}} a_{1}+$ $\cdots+\beta_{i_{n}} a_{n}$ for every $i \in[1, n]$. A very useful tool for what follows is the \mathcal{B}_{1} property of the b_{i} 's:

Given $S_{B}=b_{1} \cdots b_{n}$, for every $b \in \sum S_{B}$, if $b=\beta_{1} a_{1}+\cdots+\beta_{n} a_{n}$, there exists (at least one) $j \in[1, n]$ such that $\beta_{j}=1$. In particular, every b_{i} has this property.

Lemma 1. Let $S=a_{1} \cdots a_{n} b_{1} \cdots b_{n}$ be a zero sum free set in \mathbb{Z}_{3}^{n}, where $\left\{a_{1}, \ldots, a_{n}\right\}$ is a basis. If $\sum_{s \in I} b_{s}=s_{1} a_{1}+\cdots s_{n} a_{n}$, with $I \subseteq[1, n]$, then $1 \in\left\{s_{i}: i \in[1, n]\right\}$.

Proof. Let $S=a_{1} \cdots a_{n} b_{1} \cdots b_{n}$ be as in the hypothesis. For every nonempty $I \subseteq[1, n]$, if $\sum_{i \in I} b_{i}=s_{1} a_{1}+\cdots+s_{n} a_{n}$ and $1 \notin\left\{s_{1}, \cdots, s_{n}\right\}$, then $s_{i} \in\{0,2\}$ for every $i \in[1, n]$. Since S is zero sum free, some s_{i} is not zero. Consider $I_{2}=\left\{i \in[1, n]: s_{i}=2\right\}$. Then $\sum_{i \in I_{2}} a_{i}+\sum_{i \in I} b_{i}=0$. But this contradicts that S is zero sum free.

Proposition 2. Consider a zero sum free set $S \in F\left(\mathbb{Z}_{3}^{n}\right)$, with $n \geq 3$, $|S|=2 n$ and $\left\{a_{1}, \ldots, a_{n}\right\} \subset S$ a basis. If $\sigma(S)=\sigma_{1} a_{1}+\cdots \sigma_{n} a_{n}$ then $\{0,2\} \subset$ $\left\{\sigma_{i}\right\}_{i \in[1, n]}$.

Proof. Consider S as in the hypothesis. By Theorem 1 it is possible to rearrange S in such a way that $S=a_{1} \cdots a_{n} b_{1} \cdots b_{n}$ where $\left\{a_{1}, \cdots, a_{n}\right\}$ is a basis and $\sum_{i=1}^{n} b_{i}=2 \sum_{i \in I} b_{i}$ for some nonempty $I \subset[1, n]$. Then $\sigma(S)=$ $\sigma_{1} a_{1}+\cdots \sigma_{n} a_{n}=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}=\sum_{i=1}^{n} a_{i}+2 \sum_{i \in I} b_{i}$. By the \mathcal{B}_{1} property of $\sum_{i=1}^{n} b_{i}$ and $\sum_{i=\in I} b_{i}$, there exist $j, k \in[1, n](j \neq k)$ such that $\sigma_{j}=2$ and $\sigma_{k}=0$.

3. ZERO SUM FREE SETS IN \mathbb{Z}_{3}^{3} WITH GREATEST LENGTH

By Theorem 2 above, we solve a well known inverse problem in \mathbb{Z}_{3}^{3} : what is the structure of a zero sum free set in \mathbb{Z}_{3}^{3} with maximal cardinality? The following lemma will be useful for the characterization given in Theorem 2.

Lemma 2. In $G=\mathbb{Z}_{3}^{3}$, every zero sum free set S with $|S|=6$, has the form

$$
S=a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}
$$

where $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a basis of G and $b_{k}=b_{i}+b_{j}$ for $\{i, j, k\}=\{1,2,3\}$. Furthermore, $b_{k}+b_{h} \neq a_{l}$, for $h \in\{i, j\}$ and $l \in[1,3]$.

Proof. Let $S=a_{1} a_{2} a_{3} b_{1} b_{2} b_{3}$ be as in the hypothesis. By Corollary 1 and without a loss of generality, assume that $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a basis of G. We proceed according to the dependence of the b_{i} 's. If they are dependent, the result holds since if $\{i, j, k\}=\{1,2,3\}$ then

$$
b_{i}=2 \cdot b_{j}+b_{k} \Leftrightarrow b_{k}=b_{i}+b_{j}
$$

Thus, assume that the b_{i} 's are independent. We have two cases: 1) at least one $b_{i}=x_{i} \cdot a_{1}+y_{i} \cdot a_{2}+z_{i} \cdot a_{3}$ has a coefficient equal to zero. 2) the opposite of 1). In case 1), for fixed $i, j \in\{1,2,3\}$ with $i \neq j$, let $b_{1}=p \cdot a_{i}+q \cdot a_{j}$. Since S is zero sum free, by the B_{1} property, $b_{1} \in\left\{a_{i}+a_{j}, 2 \cdot a_{i}+a_{j}\right\}$. Thus, we may write, for $b_{1}=a_{i}+a_{j}: S=a_{i} a_{j} b_{2} b_{1} b_{3} a_{k}$ with $a_{k}=b_{1}+b_{3}$ or $S=a_{i} a_{j} b_{2} b_{1} a_{k} b_{3}$, with $b_{3}=b_{1}+a_{k}$ and $\left\{a_{i}, a_{j}, b_{2}\right\}$ a basis. And, for $b_{1}=2 \cdot a_{i}+a_{j}, S=a_{i} b_{1} a_{k} a_{j} b_{2} b_{3}$, with $b_{3}=a_{j}+b_{2}$ and $\left\{a_{i}, b_{1}, a_{k}\right\}$ a basis.

On the other hand, by independence, if for every $b_{s}=x_{s} \cdot a_{1}+y_{s} \cdot a_{2}+z_{s} \cdot a_{3}$ with $s \in[1,3], 0 \notin\left\{x_{s}, y_{s}, z_{s}\right\}$ holds; then by B_{1} property we may discard: the cases in which two of them have the form $2 \cdot a_{i}+a_{j}+a_{k}$ (since their sum has no B_{1} property); also the case in which all of them have the form $2 \cdot a_{i}+2 \cdot a_{j}+a_{k}$ is discarded. Analogously, if one of them is $a_{1}+a_{2}+a_{3}$. This is why the only valid case is $b_{1}=2 \cdot a_{i}+2 \cdot a_{j}+a_{k}, b_{2}=2 \cdot a_{i}+a_{j}+2 \cdot a_{k}$ and $b_{3}=2 \cdot a_{i}+a_{j}+a_{k}$ with $\{i, j, k\}=\{1,2,3\}, b_{1}+b_{2}=a_{i}$ and $\left\{b_{3}, a_{j}, a_{k}\right\}$ a basis. Therefore

$$
S=b_{3} a_{j} a_{k} b_{1} b_{2} a_{i}
$$

For $b_{k}=b_{i}+b_{j}$ with $\{i, j, k\}=\{1,2,3\}$ assume that $b_{k}+b_{h}=a_{l}$ for some $h \in\{i, j\}$ and $l \in[1,3]$; then $a_{l}=\left(b_{i}+b_{j}\right)+b_{h}=2 \cdot b_{i}+b_{j}\left(\mathrm{o} b_{i}+2 \cdot b_{j}\right)$. Hence

$$
a_{l}+b_{k}+b_{j}=\left(2 \cdot b_{i}+b_{j}\right)+\left(b_{i}+b_{j}\right)+b_{j}=0
$$

But this is a contradiction.
Theorem 2. Let $S \in \mathcal{F}\left(\mathbb{Z}_{3}^{3}\right)$ be a set with $|S|=6$, then S is zero sum free if and only if it has the following structure

$$
S=a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right)
$$

where $\left\{a_{i}\right\}_{i=1}^{3}$ is a basis.
Proof. (\Leftarrow) Let $S=a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right) \in \mathcal{F}\left(\mathbb{Z}_{3}^{3}\right)$ where $\left\{a_{i}\right\}_{i=1}^{3}$ is a basis of \mathbb{Z}_{3}^{3}. First, we prove that S is zero sum free. For this, we
shall see that the only solution of
$\alpha_{1} \cdot a_{1}+\alpha_{2} \cdot a_{2}+\alpha_{3} \cdot a_{3}+\alpha_{4} \cdot\left(a_{1}+a_{2}\right)+\alpha_{5} \cdot\left(a_{1}+a_{3}\right)+\alpha_{6} \cdot\left(2 a_{1}+a_{2}+a_{3}\right)=0$ with $\alpha_{i} \in\{0,1\}$ for $i \in[1,6]$, is the trivial. We have the following homogeneous system

$$
\left\{\begin{array}{l}
\alpha_{1}+\alpha_{4}+\alpha_{5}+2 \alpha_{6}=0 \\
\alpha_{2}+\alpha_{4}+\alpha_{6}=0 \\
\alpha_{3}+\alpha_{5}+\alpha_{6}=0
\end{array}\right.
$$

If there is a non trivial solution, from the second and third equations we conclude that $\alpha_{2}=\cdots=\alpha_{6}=1$ and from the first equation, we have $\alpha_{1}+1=0$, which is not possible since $\alpha_{1} \in\{0,1\}$.
(\Rightarrow) Let $S \in \mathcal{F}\left(\mathbb{Z}_{3}^{3}\right)$ be a zero sum free with $|S|=6$. By Corollary $1, S$ contains a basis $B=\left\{a_{i}\right\}_{i=1}^{3}$. For $S-B=\left\{b_{1}, b_{2}, b_{3}\right\}$ each element has the form $b_{i}=\alpha_{i} \cdot a_{1}+\beta_{i} \cdot a_{2}+\gamma_{i} \cdot a_{3}$. By Lemma 5 , without a loss of generality, we may assume that $b_{3}=b_{1}+b_{2}$. Then for $\sigma(S)=\alpha \cdot a_{1}+\beta \cdot a_{2}+\gamma \cdot a_{3}$, we have

$$
b_{3}=2 \sigma(S)+\sum_{i=1}^{3} a_{i} \Rightarrow \begin{aligned}
& \alpha_{3}=2 \alpha+1 \\
& \beta_{3}=2 \beta+1 \\
& \gamma_{3}=2 \gamma+1
\end{aligned}
$$

By Proposition 2, $\{0,2\} \subset\{\alpha, \beta, \gamma\}$ and by symmetry of the system, without a loss of generality, assume that $\alpha=2$ and $\beta=0$. Then, $\alpha_{3}=2$ and $\beta_{3}=1$. Thus, for $\gamma_{3}=2 \gamma+1$ the possible solutions for $\left(\gamma_{3}, \gamma\right)$ are $\{(0,1),(1,0),(2,2)\}$.

For every $\left(\gamma_{3}, \gamma\right)$ the corresponding values of b_{3} are $\left\{2 a_{1}+a_{2}, 2 a_{1}+a_{2}+\right.$ $\left.a_{3}, 2 a_{1}+a_{2}+2 a_{3}\right\}$.

On the other hand, since $b_{3}=b_{1}+b_{2}$, then $b_{1}+b_{2}+b_{3}=2 b_{3}$. Hence, for every value of b_{3} there is an associated system, which is represented as follows:

$$
\begin{array}{lll}
\alpha_{1}+\alpha_{2}+2=1 & \alpha_{1}+\alpha_{2}+2=1 & \alpha_{1}+\alpha_{2}+2=1 \\
\beta_{1}+\beta_{2}+1=2 \\
\gamma_{1}+\gamma_{2}+0=0 & , & \beta_{1}+\beta_{2}+1=2 \\
\gamma_{1}+\gamma_{2}+1=2 & , & \beta_{1}+\beta_{2}+1=2 \\
\gamma_{1}+\gamma_{2}+2=1
\end{array}
$$

Before solving it, we note that the three have in common $\alpha_{1}+\alpha_{2}+2=$ $1 \Rightarrow \alpha_{1}+\alpha_{2}=2$ and then $\left(\alpha_{1}, \alpha_{2}\right) \in\{(0,2),(2,0),(1,1)\}$. Since $b_{3}=b_{1}+b_{2}=$ $b_{2}+b_{1}$, then $(0,2)$ and $(2,0)$ are equivalent. Therefore, to solve each system we study only the cases $\left(\alpha_{1}, \alpha_{2}\right)=(0,2)$ and $\left(\alpha_{1}, \alpha_{2}\right)=(1,1)$. Thus:

$$
0+2+2=1
$$

- For $\left(\alpha_{1}, \alpha_{2}\right)=(0,2)$ we have $\beta_{1}+\beta_{2}+1=2$

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=2 \gamma_{3} .
$$

Since S is zero sum free, $0 \notin\left\{\beta_{1}, \gamma_{1}\right\}$. And $\beta_{1}+\beta_{2}=1$, then $\left(\beta_{1}, \beta_{2}\right)=$ $(1,0)$ or $(2,2)$. In the first case $b_{2}=2 a_{1}+\gamma_{2} a_{3}$ and the B_{1} property implies
that $\gamma_{2}=1$. In addition, $b_{1}=a_{2}+\gamma_{1} a_{3}$ and $b_{1}+b_{3}=2 a_{1}+2 a_{2}+\left(\gamma_{1}+\gamma_{3}\right) a_{3}$. By B_{1} property it must be $\gamma_{1}+\gamma_{3}=1$ and since $\gamma_{1}+1=\gamma_{3}$ then $2 \gamma_{1}+1=1$ and therefore $\gamma_{1}=0$, which is a contradiction. For the case $\left(\beta_{1}, \beta_{2}\right)=(2,2)$ it must be $\gamma_{1}=\gamma_{2}=1$, then $\gamma_{3}=2$ and $b_{1}+b_{3}=2 a_{1}$ does not have the B_{1} property.

$$
1+1+2=1
$$

- For $\left(\alpha_{1}, \alpha_{2}\right)=(1,1)$ we have $\beta_{1}+\beta_{2}+1=2$

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=2 \gamma_{3} .
$$

Since $\beta_{1}+\beta_{2}=1$ then $\left(\beta_{1}, \beta_{2}\right)=(0,1)$ or $(2,2)$. In the first case, $b_{1}=a_{1}+\gamma_{1} a_{3}$ and $b_{2}=a_{1}+a_{2}+\gamma_{2} a_{3}$. Since S is a set then $\gamma_{1} \neq 0$. On the other hand, $b_{2}+b_{3}=2 a_{2}+\left(\gamma_{2}+\gamma_{3}\right) a_{3}$ and $b_{1}+b_{3}=a_{2}+\left(\gamma_{1}+\gamma_{3}\right) a_{3}$. By the B_{1} property $\gamma_{2}+\gamma_{3}=1$ and since S is zero sum free, $\gamma_{1}+\gamma_{3} \neq 0$. Since $\gamma_{1}+\gamma_{2}=\gamma_{3}$ it follows that $\gamma_{1} \neq \gamma_{2}$ and $\gamma_{1}+2 \gamma_{2}=1$. Then we have the cases $\left(\gamma_{1}, \gamma_{2}\right) \in\{(1,0),(2,1)\}$.

- For $\left(\gamma_{1}, \gamma_{2}\right)=(1,0), \gamma_{3}=1$. Which gives us the set

$$
S=a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right)
$$

- If $\left(\gamma_{1}, \gamma_{2}\right)=(2,1)$, then $\gamma_{3}=0$. In this case the set is

$$
S=a_{1} a_{2} a_{3}\left(a_{1}+2 a_{3}\right)\left(a_{1}+a_{2}+a_{3}\right)\left(2 a_{1}+a_{2}\right)
$$

For those, consider

$$
\begin{aligned}
S= & \underbrace{a_{1}}_{\overline{b_{2}}} \underbrace{a_{2}}_{\overline{b_{3}}} \underbrace{a_{3}}_{\overline{a_{3}}}(\underbrace{a_{1}+a_{2}+a_{3}}_{\overline{a_{2}}})(\underbrace{a_{1}+2 a_{3}}_{\overline{a_{1}}})(\underbrace{2 a_{1}+a_{2}}_{\overline{b_{1}}}) \\
= & (\underbrace{a_{1}+2 a_{3}}_{\overline{a_{1}}})(\underbrace{\left(a_{1}+a_{2}+a_{3}\right.}_{\overline{a_{2}}}) \underbrace{a_{3}}_{\overline{a_{3}}}(\underbrace{2 a_{1}+a_{2}}_{\overline{b_{1}}}) \underbrace{a_{1}}_{\overline{b_{2}}} \underbrace{a_{2}}_{\overline{b_{3}}} \\
& S=\overline{a_{1}} \overline{a_{2}} \overline{a_{3}}\left(\overline{a_{1}}+\overline{a_{2}}\right)\left(\overline{a_{1}}+\overline{a_{3}}\right)\left(2 \overline{a_{1}}+\overline{a_{2}}+\overline{a_{3}}\right)
\end{aligned}
$$

which has the expected structure.
It remains the case $\beta_{1}=\beta_{2}=2$, for which $b_{1}+b_{3}=\left(\gamma_{1}+\gamma_{3}\right) a_{3}$. But this contradicts that S is zero sum free.

4. 3^{\leq}-ZERO SUM FREE SETS IN \mathbb{Z}_{3}^{3} WITH GREATEST CARDINALITY

In this section, we give the structure of every set S in \mathbb{Z}_{3}^{3} which does not have any zero sum set with cardinality in $[1,3]$, and $|S|$ is the greatest. In order to do that, the following (which is an interesting result) will be used:

Proposition 3. Every zero sum set $S \in \mathcal{F}\left(\mathbb{Z}_{3}^{3}\right)$ with $|S|=8$ and $3 \leq$-zero sum free, has a zero sum free subset with cardinality 6 .

Proof. Let $S \in \mathcal{F}\left(\mathbb{Z}_{3}^{3}\right)$ be as in the hypothesis. Since $O\left(\mathbb{Z}_{3}^{3}\right)=7$, any zero sum subset of S has cardinality 4. Furthermore, S contains two disjoint zero sum sets with cardinality 4.

Let $C_{1}=x_{1} x_{2} x_{3} x_{4}$ be a zero sum subset of S, then $C_{1} \mid S$ is zero sum. For every $x_{i}, x_{j}, x_{k} \in C_{1}$ with $i, j, k \in[1,4]$ (distinct) and $u \in C_{1} \mid S$; since $x_{1}+x_{2}+x_{3}+x_{4}=0$, if $\sigma\left(x_{i} x_{j} x_{k} u\right)=0$ then $u=x_{i} x_{j} x_{k} \mid C_{1}$. That is, u is a member of C_{1}, but this is not possible since S is a set. Hence $x_{i}+x_{j}+x_{k}+u \neq 0$. Thus, if S contains a zero sum set other than C_{1} or $C_{1} \mid S$ then it consists of two members of C_{1} and two members of $C_{1} \mid S$. If $S_{0}=C_{1} u v \subset S$ with $u, v \in C_{1} \mid S$ and

$$
\begin{equation*}
x_{i}+x_{j}+u+v=0 . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sigma\left(S_{0}\right)=u+v=x_{k}+x_{t} . \tag{2}
\end{equation*}
$$

Since S is a set, by (1), $x_{\alpha}+x_{\beta}+u+v \neq 0$ for every

$$
(\alpha, \beta) \in\{(i, k),(i, t),(j, k),(j, t)\} .
$$

Also, since S is 3^{\leq}-zero sum free, by (2), we have $x_{k}+x_{t}+u+v \neq 0$.
Consider $S_{i}=x_{j} x_{k} x_{t} u v w$, with $w \in S_{0} \mid S$. We have the cases $\sigma\left(C^{\prime}\right)=0$ where $C^{\prime} \subset S_{i}$ with $\left|C^{\prime}\right|=4$ and we discard $x_{k} x_{t} u w$ and $x_{k} x_{t} v w$ since, by (2), if $0=x_{k}+x_{t}+u+w=2 u+v+w \Rightarrow u=v+w$ and $0=x_{k}+x_{t}+v+w=2 v+u+$ $w \Rightarrow v=u+w$. But in both cases, $C_{1} \mid S=u v w z$ is zero sum implies that $u=z$ or $v=z$ (respectively). And this is not possible since S does not have repeated elements. Thus, we analyze the cases $C^{\prime} \in\left\{x_{j} x_{k} u w, x_{j} x_{t} u w, x_{j} x_{k} v w, x_{j} x_{t} v w\right\}$. But only one of them is possible since in any case the fact that S is a set is contradicted. In fact:

- If $x_{j}+x_{k}+u+w=0(*)$, then none of the other is zero sum. In fact:
- For $x_{j}+x_{t}+u+w=0$ or $x_{j}+x_{k}+v+w=0$, by ($*$), it follows $x_{t}=x_{k}$ or $u=v$ (respectively).
- From $x_{j}+x_{t}+v+w=0$, by ($*$), we have $x_{k}+u=x_{t}+v$ and by (2), it follows $2 u+v+x_{k}=2 x_{t}+v+x_{k} \Rightarrow u=x_{t}$.
- If $x_{j}+x_{t}+u+w=0(* *)$ then for:.
$-x_{j}+x_{k}+v+w=0$, by $(* *)$ we have $x_{t}+u=x_{k}+v$ and by (2) it follows $2 u+v+x_{t}=2 x_{k}+v+x_{t} \Rightarrow u=x_{k}$.
$-x_{j}+x_{t}+v+w=0$, by $(* *)$ we have $u=v$.
Thus, we may assume that

$$
\begin{equation*}
x_{j}+x_{k}+u+w=0 \tag{3}
\end{equation*}
$$

Now, consider $S_{j}=x_{i} x_{k} x_{t} u v w$. Since S does not have repeated elements, we discard $x_{i} x_{k} u w$ and $x_{k} x_{t} u w$. This is because from (3), it follows $x_{i}=x_{j}$
and $x_{j}=x_{t}$. On the other hand, since S is 3^{\leq}-zero sum free, it is not possible that $x_{i}+x_{t}+u+w=0$, because, by (3), it would be $x_{j}+x_{k}=x_{i}+x_{t}$ and since $x_{1}+x_{2}+x_{3}+x_{4}=0$, then $x_{j}+x_{k}=0=x_{i}+x_{t}$.

Hence, if S_{j} contains a zero sum set, it has to be in $\left\{x_{i} x_{k} v w, x_{i} x_{t} v w\right.$, $\left.x_{k} x_{t} v w\right\}$.

- If $x_{i}+x_{k}+v+w=0$, from (3), it follows $x_{i}+v=x_{j}+u$ and since $x_{i}+x_{j}+u+v=0$, then $x_{i}+v=x_{j}+u=0$, which contradicts that S is $3 \leq$-zero sum free.
- For $x_{i}+x_{t}+v+w=0$, from (1), we get $x_{j}+u=x_{t}+w$ and from (1) and (3) it follows $x_{i}+v=x_{k}+w$. Adding these results and using (1), it follows $2 w+x_{k}+x_{t}=0$. Now, by (2), we have $w=u+v$. But this is not possible since $\sigma\left(C_{1} \mid S\right)=u+v+w+z=0 \Rightarrow w=z$ which contradicts that S is a set.
- If $x_{k}+x_{t}+v+w=0$, from (2), we obtain $u+2 v+w=0 \Rightarrow v=u+w$ and since $u+v+w+z=0$, then $v=z$, which contradicts that S is a set.
Therefore S_{j} zero sum free subset of S with $\left|S_{j}\right|=6$.
Proposition 4. Every zero sum set T in $G=\mathbb{Z}_{3}^{3}$ with $|T|=8$ is $3 \leq$-zero sum free if and only if it has the following structure

where $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a basis.
Proof. (\Leftarrow) Consider the zero sum set in \mathbb{Z}_{3}^{3}, where $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a basis.

it is immediate that T is $2 \leq$-zero sum free, since zero is not in T and it does not contain any member together with its inverse. Furthermore, T does not contain a zero sum set with cardinality 3 since there are no distinct a_{i}, a_{j}, a_{k} with $i, j, k \in[1,8]$ such that $a_{i}=2 a_{j}+2 a_{k}$.
(\Rightarrow) Let $T \in \mathcal{F}(G)$ be a zero sum set with $|T|=8$ and 3^{\leq}-zero sum free. By Proposition $3, T$ contains a zero sum free set with cardinality 6 , and by Theorem 2, the set is $S=a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right)$. We need to extend such set to a 3^{\leq}-zero sum free set. From these 6 elements we discard their inverses. Remaining 14 from $|G-\{0\}|=26$. Since $\exp (G)=3$, in order to discard those whose sum is zero with 6 of the initial elements, we use that $x+y+z=0$ if and only if any of them is the inverse of the sum of the two others, that is, $z=2(x+y)=2 x+2 y$. These give $\binom{6}{2}=15$, from
which, we exclude those of the form $2 x+2 y$ for $x+y \in S$, since they have been counted already. Also, $2 a_{2}+2 a_{3}$ and $2 a_{1}+2 a_{2}+2 a_{3}$, which are considered twice. Substracting: $a_{2}+a_{3}, a_{1}+a_{2}+a_{3}, 2 a_{1}+2 a_{2}+a_{3}$ y $2 a_{1}+a_{2}+2 a_{3}$. From which, the required elements are $2 a_{1}+2 a_{2}+a_{3}$ y $2 a_{1}+a_{2}+2 a_{3}$ since otherwise their sum is the inverse of a member of S. Finally, we have the zero sum set

$$
a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right)\left(2 a_{1}+2 a_{2}+a_{3}\right)\left(2 a_{1}+a_{2}+2 a_{3}\right) .
$$

Definition 1. Let G be a finite abelian group. Given a positive integer k, the constant $O^{k}(G)$ is the least positive integer l such that every set S in G with $|S| \geq l$ contains a $k \leq$-zero sum set.

As an application of the obtained results we calculate exact values of $O^{k}\left(\mathbb{Z}_{3}^{3}\right)$ for $k \in[3,7]$.

Proposition 5. Let $G=\mathbb{Z}_{3}^{3}$, then $O^{3}(G)=9$ and $O^{k}(G)=7$ for every $k \in[4,7]$.

Proof. (\geq) The sets $S=a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right)$ and $S\left(2 a_{1}+2 a_{2}+a_{3}\right)\left(2 a_{1}+a_{2}+2 a_{3}\right)$ given by Theorem 2 and Proposition 4 respectively, prove that $O^{k}(G) \geq 7$ for $k \in[4,7]$ and $O^{3}(G) \geq 9$.
(\leq) Let $T \in \mathcal{F}(G)$ be a set. If $|T|=7$ and T is 3^{\leq}-zero sum free, then it contains the zero sum free set $S=a_{1} a_{2} a_{3}\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{3}\right)$ given by Theorem 2, where $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a basis. Thus, $T=S g$ with $g \in$ $\left\{a_{2}+a_{3}, a_{1}+a_{2}+a_{3}, 2 a_{1}+2 a_{2}+a_{3}, 2 a_{1}+a_{2}+2 a_{3}\right\}$, hence in every case, the set given by g and three members of S is zero sum. Therefore $O^{k}(G) \leq 7$ for $k \in[4,7]$. On the other hand, if $|T|=9$, by Proposition 4 there exists a 3^{\leq}-zero sum subset of T. This proves that $O^{3}(G) \leq 9$.

REFERENCES

[1] G. Bhowmik and J.C. Schlage-Puchta, Davenport's constant for groups of the form $\mathbb{Z}_{3} \oplus$ $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3 d}$. In: M. Lavrauw et al. (Eds.), Additive combinatorics. CRM Proc. Lecture Notes 43, Amer. Math. Soc. Providence, RI, 307-326, 2007.
[2] G. Bhowmik, I. Halupczok and J.-C. Schlage-Puchta, Inductive methods and zero-sum free sequences. Integers 9 (2009), 5, 515-536.
[3] C. Delorme, O. Ordaz and D. Quiroz, Some remarks on Davenport constant. Discrete Math. 237 (2001), 119-128.
[4] P. Erdös, A. Ginzburg and A. Ziv, Theorem in the additive number theory. Bull. Res. Council Israel 10 (1961), 41-43.
[5] B.W. Finklea, T. Moore, V. Ponomarenko and Z.J. Turner, On block monoid atomic structure. Preprint, 2005.
[6] W. Gao and A. Geroldinger, On the structure of zerofree sequences. Combinatorica 18 (1998), 519-527.
[7] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups. Period. Math. Hungar. 38 (1999), 179-211.
[8] W. Gao, I. Ruzsa and R. Thangadurai, Olson's constant for the group $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$. J. Combin. Theory Ser. A 107 (2004), 49-67.
[9] A. Geroldinger and Y. Hamidoune, Zero-sum free sequences in cyclic groups and some arithmetical application. J. Théor. Nombres Bordeaux 14 (2002) 221--239.
[10] Y.O. Hamidoune and G. Zémor, On zero-free subset sums. Acta Arith. 78 (1996), 143-152.
[11] F. Halter-Koch, A generalization Davenport's constant and its arithmetical applications. Colloq. Math. 63 (1992), 2, 203-210.
[12] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Grad. Texts in Math. 165, Springer, Berlin, 1996.
[13] O. Ordaz and D. Quiroz, On zero free sets. Divulg. Mat. 14 (2006), 1, 1-10.
[14] W.A. Schmid, The inverse problem associated to the Davenport constant for $C_{2} \oplus C_{2} \oplus$ $C_{2 n}$, and applications to the arithmetical of class groups. Electron. J. Combin. 18 (2011), Research Paper P33.
[15] J. Subocz, Some Values of Olson's Constant. Divulg. Mat. 2 (2000), 2, 121-128.
Received 8 March 2017
Universidad Simón Bolívar, Departamento de Matemáticas Puras y Aplicadas, jnieto@usb.ve

Universidad Simón Bolívar,
Departamento de Matemáticas Puras y Aplicadas, dquiroz@usb.ve

Universidad Simón Bolívar,
Departamento de Formación General y Ciencias Básicas, jviloria@usb.ve

