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The sets in G = Z3
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1. INTRODUCTION

Let G be a finite additive abelian group. F(G) denotes the free abelian
monoid in G whose operation is concatenation and the unit is the empty se-
quence. Every S ∈ F(G) is a sequence and it has the form S = gv11 · · · g

vk
k =∏

g∈G g
vg(S) where vg(S) ≥ 0 is the multiplicity of g: the number of times of g

in S. In case of vg(S) = 1, S is a set : a sequence with no repeated elements.
A sequence T which consists of members of S is a subsequence of S and it is
said to be proper if T 6= S. Also, T |S is the subsequence of S whose members
are not in T . Given a sequence S

• σ(S) ∈ G is the sum of all of the members of S.

•
∑
S = {σ(T ) : T is a nonempty subsequence of S}.

• |S| =
∑

g∈G vg(S) is the length of S, the many of its members.

The sequence S is:

• Zero sum if σ(S) is zero in G.

• Zero sum free if 0 /∈
∑
S.

• k≤-zero sum free, with k a positive integer, if it does not contain zero
sum subsequences with length in [1, k].

In 1961, Erdös, Ginzburg and Ziv [4] proved that in a cyclic group with
cardinality n, for every sequence with 2n−1 elements, there are n of them whose
sum is zero. This result, among others, gave rise to the well known zero sum
problems. Since their appearance, zero sum problems have been studied by a lot
of researchers, leading to many problems and conjectures, some of which remain
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open. The study of zero sum problems is within combinatoric number theory
and they might be classified in two types. Direct problems search for conditions
granting the existence of elements in a sequence (with given characteristics),
whose sum is zero. Inverse problems consist in finding, for a given integer k,
the structure of a k≤-zero sum free sequence in F(G) with the largest length.
Several constants have been defined while studying these two types of problems.
One of them is known as Davenport’s constant, introduced in 1966, denoted
D(G) and defined as the least positive integer d such that every sequence with
d elements contains a nonempty zero sum subsequence. The corresponding
constant for sets, Olson’s constant O(G), is defined in an analogous way. Many
results on zero sum problems are well known (see [1, 3, 5–8, 11, 14, 15]).
However, very few results on the structure of zero sum free sets with cardinality
O(G)− 1 are known (see [2, 9, 10,12–14]).

In this work, the inverse problem in Z3 ⊕ Z3 ⊕ Z3 is studied and a char-
acterization of the structure of every set with greatest cardinality and without
zero sum subsets is given. The same is done for sets without zero sum subsets
with cardinality ≤ 3.

2. ZERO SUM FREE SETS IN Zn
3

For a given prime p, the elementary p-group G = Znp is a vector space on
the finite field Zp. Thus, we will use notions like basis and independent sets.
In [15], Julio Subocz proved the following:

Proposition 1. If n ≥ 3 then O(Zn3 ) = 2n+ 1.

The following important fact, for sequences, was given by Gao and Gerol-
dinger in 1999 [7].

Theorem 1. Let G be a finite abelian group. If S is a zero sum free
sequence in G with |S| = D(G)− 1, then

∑
S ∪ {0} = G.

As a consequence, we have the following:

Corollary 1. Let S be a set in G = Zn3 . If S is zero sum free and
|S| = 2n, then S contains a basis of G.

Proof. Let S be a set in G = Zn3 as in the hypothesis. Assume that S does
not contain a basis of G. If S = a1 · · · an−kb1 · · · bn+k with 1 < k < n and B =
{a1, . . . , an−k} is the largest independent subset of S, then bi =

∑n−k
j=1 βijaj for

every i ∈ [1, n + k]. Let {g1, . . . , gk} ⊂ G − S such that B ∪ {g1, . . . , gk} is a
basis of G. By Theorem 1,

∑
S = G−{0}. Thus, gj ∈

∑
S for every j ∈ [1, k]

and hence, there exist Ij1 ⊂ [1, n − k] and Ij2 ⊂ [1, n + k] such that gj =
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i∈Ij1
ai +

∑
i∈Ij2

bi =
∑n−k

t=1 βtat. But this contradicts that B ∪ {g1, . . . , gk}
is a basis. �

From these results, the inverse problem for some constants related to
O(Zn3 ) with n ≥ 3, is settled. That is to say, the aim is to find the structure of
sets in F (Zn3 ) which don’t contain certain zero sum sets.

From now on, a zero sum free set S ∈ F (Zn3 ) with |S| = 2n, will be
denoted by S = a1 · · · anb1 · · · bn, where {a1, . . . , an} is a basis and bi = βi1a1 +
· · · + βinan for every i ∈ [1, n]. A very useful tool for what follows is the B1
property of the bi’s:

Given SB = b1 · · · bn, for every b ∈
∑
SB, if b = β1a1 + · · ·+ βnan,

there exists (at least one) j ∈ [1, n] such that βj = 1. In particular,
every bi has this property.

Lemma 1. Let S = a1 · · · anb1 · · · bn be a zero sum free set in Zn3 , where
{a1, . . . , an} is a basis. If

∑
s∈I bs = s1a1 + · · · snan, with I ⊆ [1, n], then

1 ∈ {si : i ∈ [1, n]}.

Proof. Let S = a1 · · · anb1 · · · bn be as in the hypothesis. For every
nonempty I ⊆ [1, n], if

∑
i∈I bi = s1a1 + · · · + snan and 1 /∈ {s1, · · · , sn},

then si ∈ {0, 2} for every i ∈ [1, n]. Since S is zero sum free, some si is not
zero. Consider I2 = {i ∈ [1, n] : si = 2}. Then

∑
i∈I2 ai +

∑
i∈I bi = 0. But

this contradicts that S is zero sum free. �

Proposition 2. Consider a zero sum free set S ∈ F (Zn3 ), with n ≥ 3,
|S| = 2n and {a1, . . . , an} ⊂ S a basis. If σ(S) = σ1a1 + · · ·σnan then {0, 2} ⊂
{σi}i∈[1,n].

Proof. Consider S as in the hypothesis. By Theorem 1 it is possible to
rearrange S in such a way that S = a1 · · · anb1 · · · bn where {a1, · · · , an} is a
basis and

∑n
i=1 bi = 2

∑
i∈I bi for some nonempty I ⊂ [1, n]. Then σ(S) =

σ1a1 + · · ·σnan =
∑n

i=1 ai+
∑n

i=1 bi =
∑n

i=1 ai+2
∑

i∈I bi. By the B1 property
of
∑n

i=1 bi and
∑

i=∈I bi, there exist j, k ∈ [1, n] (j 6= k) such that σj = 2 and
σk = 0. �

3. ZERO SUM FREE SETS IN Z3
3 WITH GREATEST LENGTH

By Theorem 2 above, we solve a well known inverse problem in Z3
3: what

is the structure of a zero sum free set in Z3
3 with maximal cardinality? The

following lemma will be useful for the characterization given in Theorem 2.
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Lemma 2. In G = Z3
3, every zero sum free set S with |S| = 6, has the

form

S = a1a2a3b1b2b3
where {a1, a2, a3} is a basis of G and bk = bi + bj for {i, j, k} = {1, 2, 3}.
Furthermore, bk + bh 6= al, for h ∈ {i, j} and l ∈ [1, 3].

Proof. Let S = a1a2a3b1b2b3 be as in the hypothesis. By Corollary 1
and without a loss of generality, assume that {a1, a2, a3} is a basis of G. We
proceed according to the dependence of the bi’s. If they are dependent, the
result holds since if {i, j, k} = {1, 2, 3} then

bi = 2 · bj + bk ⇔ bk = bi + bj

Thus, assume that the bi’s are independent. We have two cases: 1) at least one
bi = xi ·a1 +yi ·a2 + zi ·a3 has a coefficient equal to zero. 2) the opposite of 1).
In case 1), for fixed i, j ∈ {1, 2, 3} with i 6= j, let b1 = p · ai + q · aj . Since S is
zero sum free, by the B1 property, b1 ∈ {ai+aj , 2·ai+aj}. Thus, we may write,
for b1 = ai + aj : S = aiajb2b1b3ak with ak = b1 + b3 or S = aiajb2b1akb3, with
b3 = b1 +ak and {ai, aj , b2} a basis. And, for b1 = 2 ·ai+aj , S = aib1akajb2b3,
with b3 = aj + b2 and {ai, b1, ak} a basis.

On the other hand, by independence, if for every bs = xs ·a1+ys ·a2+zs ·a3
with s ∈ [1, 3], 0 /∈ {xs, ys, zs} holds; then by B1 property we may discard: the
cases in which two of them have the form 2 ·ai+aj +ak (since their sum has no
B1 property); also the case in which all of them have the form 2 ·ai+2 ·aj +ak
is discarded. Analogously, if one of them is a1 + a2 + a3. This is why the only
valid case is b1 = 2 ·ai+2 ·aj +ak, b2 = 2 ·ai+aj +2 ·ak and b3 = 2 ·ai+aj +ak
with {i, j, k} = {1, 2, 3}, b1 + b2 = ai and {b3, aj , ak} a basis. Therefore

S = b3ajakb1b2ai.

For bk = bi + bj with {i, j, k} = {1, 2, 3} assume that bk + bh = al for some
h ∈ {i, j} and l ∈ [1, 3]; then al = (bi+ bj) + bh = 2 · bi+ bj (o bi+ 2 · bj). Hence

al + bk + bj = (2 · bi + bj) + (bi + bj) + bj = 0.

But this is a contradiction. �

Theorem 2. Let S ∈ F(Z3
3) be a set with |S| = 6, then S is zero sum

free if and only if it has the following structure

S = a1a2a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3)

where {ai}3i=1 is a basis.

Proof. (⇐) Let S = a1a2a3(a1+a2)(a1+a3)(2a1+a2+a3) ∈ F(Z3
3) where

{ai}3i=1 is a basis of Z3
3. First, we prove that S is zero sum free. For this, we
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shall see that the only solution of

α1 ·a1 +α2 ·a2 +α3 ·a3 +α4 · (a1 +a2) +α5 · (a1 +a3) +α6 · (2a1 +a2 +a3) = 0

with αi ∈ {0, 1} for i ∈ [1, 6], is the trivial. We have the following homogeneous
system 

α1 + α4 + α5 + 2α6 = 0
α2 + α4 + α6 = 0
α3 + α5 + α6 = 0.

If there is a non trivial solution, from the second and third equations
we conclude that α2 = · · · = α6 = 1 and from the first equation, we have
α1 + 1 = 0, which is not possible since α1 ∈ {0, 1}.

(⇒) Let S ∈ F(Z3
3) be a zero sum free with |S| = 6. By Corollary 1, S

contains a basis B = {ai}3i=1. For S − B = {b1, b2, b3} each element has the
form bi = αi ·a1 +βi ·a2 +γi ·a3. By Lemma 5, without a loss of generality, we
may assume that b3 = b1 + b2. Then for σ(S) = α · a1 + β · a2 + γ · a3, we have

b3 = 2σ(S) +
3∑
i=1

ai ⇒
α3 = 2α+ 1
β3 = 2β + 1
γ3 = 2γ + 1

By Proposition 2, {0, 2} ⊂ {α, β, γ} and by symmetry of the system,
without a loss of generality, assume that α = 2 and β = 0. Then, α3 = 2
and β3 = 1. Thus, for γ3 = 2γ + 1 the possible solutions for (γ3, γ) are
{(0, 1), (1, 0), (2, 2)}.

For every (γ3, γ) the corresponding values of b3 are {2a1 + a2, 2a1 + a2 +
a3, 2a1 + a2 + 2a3}.

On the other hand, since b3 = b1 + b2, then b1 + b2 + b3 = 2b3. Hence, for
every value of b3 there is an associated system, which is represented as follows:

α1 + α2 + 2 = 1
β1 + β2 + 1 = 2
γ1 + γ2 + 0 = 0

,
α1 + α2 + 2 = 1
β1 + β2 + 1 = 2
γ1 + γ2 + 1 = 2

,
α1 + α2 + 2 = 1
β1 + β2 + 1 = 2
γ1 + γ2 + 2 = 1

Before solving it, we note that the three have in common α1 + α2 + 2 =
1⇒ α1 +α2 = 2 and then (α1, α2) ∈ {(0, 2), (2, 0), (1, 1)}. Since b3 = b1 + b2 =
b2 + b1, then (0, 2) and (2, 0) are equivalent. Therefore, to solve each system
we study only the cases (α1, α2) = (0, 2) and (α1, α2) = (1, 1). Thus:

• For (α1, α2) = (0, 2) we have
0 + 2 + 2 = 1
β1 + β2 + 1 = 2
γ1 + γ2 + γ3 = 2γ3.

Since S is zero sum free, 0 /∈ {β1, γ1}. And β1 + β2 = 1, then (β1, β2) =
(1, 0) or (2, 2). In the first case b2 = 2a1 + γ2a3 and the B1 property implies
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that γ2 = 1. In addition, b1 = a2 + γ1a3 and b1 + b3 = 2a1 + 2a2 + (γ1 + γ3)a3.
By B1 property it must be γ1 + γ3 = 1 and since γ1 + 1 = γ3 then 2γ1 + 1 = 1
and therefore γ1 = 0, which is a contradiction. For the case (β1, β2) = (2, 2)
it must be γ1 = γ2 = 1, then γ3 = 2 and b1 + b3 = 2a1 does not have the B1

property.

• For (α1, α2) = (1, 1) we have
1 + 1 + 2 = 1
β1 + β2 + 1 = 2
γ1 + γ2 + γ3 = 2γ3.

Since β1 + β2 = 1 then (β1, β2) = (0, 1) or (2, 2). In the first case,
b1 = a1 + γ1a3 and b2 = a1 + a2 + γ2a3. Since S is a set then γ1 6= 0. On the
other hand, b2 + b3 = 2a2 + (γ2 + γ3)a3 and b1 + b3 = a2 + (γ1 + γ3)a3. By
the B1 property γ2 + γ3 = 1 and since S is zero sum free, γ1 + γ3 6= 0. Since
γ1 + γ2 = γ3 it follows that γ1 6= γ2 and γ1 + 2γ2 = 1. Then we have the cases
(γ1, γ2) ∈ {(1, 0), (2, 1)}.

– For (γ1, γ2) = (1, 0), γ3 = 1. Which gives us the set

S = a1a2a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3)

– If (γ1, γ2) = (2, 1), then γ3 = 0. In this case the set is

S = a1a2a3(a1 + 2a3)(a1 + a2 + a3)(2a1 + a2)

For those, consider

S = a1︸︷︷︸
b2

a2︸︷︷︸
b3

a3︸︷︷︸
a3

(a1 + a2 + a3︸ ︷︷ ︸
a2

)(a1 + 2a3︸ ︷︷ ︸
a1

)(2a1 + a2︸ ︷︷ ︸
b1

)

= (a1 + 2a3︸ ︷︷ ︸
a1

)(a1 + a2 + a3︸ ︷︷ ︸
a2

) a3︸︷︷︸
a3

(2a1 + a2︸ ︷︷ ︸
b1

) a1︸︷︷︸
b2

a2︸︷︷︸
b3

S = a1 a2 a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3)

which has the expected structure.

It remains the case β1 = β2 = 2, for which b1 + b3 = (γ1 +γ3)a3. But this
contradicts that S is zero sum free. �

4. 3≤-ZERO SUM FREE SETS IN Z3
3 WITH GREATEST CARDINALITY

In this section, we give the structure of every set S in Z3
3 which does not

have any zero sum set with cardinality in [1, 3], and |S| is the greatest. In order
to do that, the following (which is an interesting result) will be used:

Proposition 3. Every zero sum set S ∈ F(Z3
3) with |S| = 8 and 3≤-zero

sum free, has a zero sum free subset with cardinality 6.
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Proof. Let S ∈ F(Z3
3) be as in the hypothesis. Since O(Z3

3) = 7, any zero
sum subset of S has cardinality 4. Furthermore, S contains two disjoint zero
sum sets with cardinality 4.

Let C1 = x1x2x3x4 be a zero sum subset of S, then C1|S is zero sum.
For every xi, xj , xk ∈ C1 with i, j, k ∈ [1, 4] (distinct) and u ∈ C1|S; since
x1 + x2 + x3 + x4 = 0, if σ(xixjxku) = 0 then u = xixjxk|C1. That is, u is a
member of C1, but this is not possible since S is a set. Hence xi+xj+xk+u 6= 0.
Thus, if S contains a zero sum set other than C1 or C1|S then it consists of two
members of C1 and two members of C1|S. If S0 = C1uv ⊂ S with u, v ∈ C1|S
and

(1) xi + xj + u+ v = 0.

Then

(2) σ(S0) = u+ v = xk + xt.

Since S is a set, by (1), xα + xβ + u+ v 6= 0 for every

(α, β) ∈ {(i, k), (i, t), (j, k), (j, t)}.
Also, since S is 3≤-zero sum free, by (2), we have xk + xt + u+ v 6= 0.

Consider Si = xjxkxtuvw, with w ∈ S0|S. We have the cases σ(C ′) = 0
where C ′ ⊂ Si with |C ′| = 4 and we discard xkxtuw and xkxtvw since, by (2),
if 0 = xk+xt+u+w = 2u+v+w ⇒ u = v+w and 0 = xk+xt+v+w = 2v+u+
w ⇒ v = u+w. But in both cases, C1|S = uvwz is zero sum implies that u = z
or v = z (respectively). And this is not possible since S does not have repeated
elements. Thus, we analyze the cases C ′ ∈ {xjxkuw, xjxtuw, xjxkvw, xjxtvw}.
But only one of them is possible since in any case the fact that S is a set is
contradicted. In fact:

• If xj + xk + u+ w = 0 (∗), then none of the other is zero sum. In fact:

– For xj + xt + u + w = 0 or xj + xk + v + w = 0, by (∗), it follows
xt = xk or u = v (respectively).

– From xj + xt + v + w = 0, by (∗), we have xk + u = xt + v and by
(2), it follows 2u+ v + xk = 2xt + v + xk ⇒ u = xt.

• If xj + xt + u+ w = 0 (∗∗) then for:.

– xj + xk + v + w = 0, by (∗∗) we have xt + u = xk + v and by (2) it
follows 2u+ v + xt = 2xk + v + xt ⇒ u = xk.

– xj + xt + v + w = 0, by (∗∗) we have u = v.

Thus, we may assume that

(3) xj + xk + u+ w = 0

Now, consider Sj = xixkxtuvw. Since S does not have repeated elements,
we discard xixkuw and xkxtuw. This is because from (3), it follows xi = xj
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and xj = xt. On the other hand, since S is 3≤-zero sum free, it is not possible
that xi + xt + u + w = 0, because, by (3), it would be xj + xk = xi + xt and
since x1 + x2 + x3 + x4 = 0, then xj + xk = 0 = xi + xt.

Hence, if Sj contains a zero sum set, it has to be in {xixkvw, xixtvw,
xkxtvw}.
• If xi + xk + v + w = 0, from (3), it follows xi + v = xj + u and since
xi + xj + u+ v = 0, then xi + v = xj + u = 0, which contradicts that S
is 3≤-zero sum free.

• For xi + xt + v + w = 0, from (1), we get xj + u = xt + w and from (1)
and (3) it follows xi + v = xk +w. Adding these results and using (1), it
follows 2w+xk+xt = 0. Now, by (2), we have w = u+v. But this is not
possible since σ(C1|S) = u + v + w + z = 0 ⇒ w = z which contradicts
that S is a set.

• If xk + xt + v +w = 0, from (2), we obtain u+ 2v +w = 0⇒ v = u+w
and since u + v + w + z = 0, then v = z, which contradicts that S is a
set.

Therefore Sj zero sum free subset of S with |Sj | = 6. �

Proposition 4. Every zero sum set T in G = Z3
3 with |T | = 8 is 3≤-zero

sum free if and only if it has the following structure

a1a2a3(a1 + a2︸ ︷︷ ︸
a4

)(a1 + a3︸ ︷︷ ︸
a5

)(2a1 + a2 + a3︸ ︷︷ ︸
a6

)(2a1 + 2a2 + a3︸ ︷︷ ︸
a7

)(2a1 + a2 + 2a3︸ ︷︷ ︸
a8

)

where {a1, a2, a3} is a basis.

Proof. (⇐) Consider the zero sum set in Z3
3, where {a1, a2, a3} is a basis.

T = a1a2a3(a1 + a2︸ ︷︷ ︸
a4

)(a1 + a3︸ ︷︷ ︸
a5

)(2a1 + a2 + a3︸ ︷︷ ︸
a6

)(2a1 + 2a2 + a3︸ ︷︷ ︸
a7

)(2a1 + a2 + 2a3︸ ︷︷ ︸
a8

)

it is immediate that T is 2≤-zero sum free, since zero is not in T and it does
not contain any member together with its inverse. Furthermore, T does not
contain a zero sum set with cardinality 3 since there are no distinct ai, aj , ak
with i, j, k ∈ [1, 8] such that ai = 2aj + 2ak.

(⇒) Let T ∈ F(G) be a zero sum set with |T | = 8 and 3≤-zero sum
free. By Proposition 3, T contains a zero sum free set with cardinality 6, and
by Theorem 2, the set is S = a1a2a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3). We
need to extend such set to a 3≤-zero sum free set. From these 6 elements we
discard their inverses. Remaining 14 from |G − {0}| = 26. Since exp(G) = 3,
in order to discard those whose sum is zero with 6 of the initial elements, we
use that x + y + z = 0 if and only if any of them is the inverse of the sum of
the two others, that is, z = 2(x + y) = 2x + 2y. These give

(
6
2

)
= 15, from
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which, we exclude those of the form 2x+2y for x+y ∈ S, since they have been
counted already. Also, 2a2 + 2a3 and 2a1 + 2a2 + 2a3, which are considered
twice. Substracting: a2 +a3, a1 +a2 +a3, 2a1 +2a2 +a3 y 2a1 +a2 +2a3. From
which, the required elements are 2a1 +2a2 +a3 y 2a1 +a2 +2a3 since otherwise
their sum is the inverse of a member of S. Finally, we have the zero sum set

a1a2a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3)(2a1 + 2a2 + a3)(2a1 + a2 + 2a3). �

Definition 1. Let G be a finite abelian group. Given a positive integer k,
the constant Ok(G) is the least positive integer l such that every set S in G
with |S| ≥ l contains a k≤-zero sum set.

As an application of the obtained results we calculate exact values of
Ok(Z3

3) for k ∈ [3, 7].

Proposition 5. Let G = Z3
3, then O3(G) = 9 and Ok(G) = 7 for every

k ∈ [4, 7].

Proof. (≥) The sets S = a1a2a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3) and
S(2a1 + 2a2 + a3)(2a1 + a2 + 2a3) given by Theorem 2 and Proposition 4
respectively, prove that Ok(G) ≥ 7 for k ∈ [4, 7] and O3(G) ≥ 9.

(≤) Let T ∈ F(G) be a set. If |T | = 7 and T is 3≤-zero sum free, then
it contains the zero sum free set S = a1a2a3(a1 + a2)(a1 + a3)(2a1 + a2 + a3)
given by Theorem 2, where {a1, a2, a3} is a basis. Thus, T = Sg with g ∈
{a2 + a3, a1 + a2 + a3, 2a1 + 2a2 + a3, 2a1 + a2 + 2a3}, hence in every case,
the set given by g and three members of S is zero sum. Therefore Ok(G) ≤ 7
for k ∈ [4, 7]. On the other hand, if |T | = 9, by Proposition 4 there exists a
3≤-zero sum subset of T . This proves that O3(G) ≤ 9. �
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