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Let R be a commutative Noetherian ring with identity and a be an ideal of
R. Also, suppose that M and N are two non-zero R-modules such that M
is a-cominimax and N is finitely generated. We show that TorRi (N,M) is a-
cominimax for all i ≥ 0, whenever dimN ≤ 2 or dimM ≤ 1. As an immediate
consequence, we obtain that if M is a non-zero minimax R-module such that
dimHi

a(M) ≤ 1, then for each finitely generated R-module N , TorRj
(
N,Hi

a(M)
)

is a-cominimax for all i ≥ 0 and j ≥ 0. Moreover, we prove that if R is local, M
is a-cominimax and N is finitely generated, then the R-module TorRi (N,M) is
a-weakly cofinite for all i ≥ 0, when dimN = 3 or dimM ≤ 2.
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1. INTRODUCTION

Let R be a commutative Noetherian ring with identity and a be an ideal
of R. For an R-module M , the ith local cohomology module of M with respect
to a is defined as

H i
a(M) ∼= lim

−→
n∈N

ExtiR(R/an,M).

For more details about the local cohomology, we refer the reader to [6].
In 1968, Grothendieck [12] conjectured that for any ideal a of R and any

finitely generated R-module M , HomR

(
R/a, H i

a(M)
)

is a finitely generated
R-module for all i. One year later, Hartshorne [13] provided a counterexample
to Grothendieck’s conjecture and introduced the class of cofinite modules with
respect to an ideal. He defined an R-module M to be a-cofinite if SuppR(M) ⊆
V (a) and ExtjR(R/a,M) is finitely generated for all j and he asked:

For which rings R and ideals a are the modules H i
a(M) a-cofinite for all

i and all finitely generated R-modules M?
There are several papers devoted to this question (see [5,7–9,13,15,17,27]).
In [28], Zöschinger introduced the class of minimax modules and in [28]

and [29] gave equivalent conditions for a module to be minimax. An R-module
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M is called minimax if there is a finitely generated submoduleN ofM such that
M/N is Artinian. The concept of a-cominimax modules was introduced in [3]
as a generalization of a-cofinite modules. According to the definition, an R-
module M is said to be a-cominimax if SuppR(M) ⊆ V (a) and ExtjR(R/a,M)
is minimax for all j. Since the concept of minimax modules is a natural gen-
eralization of the concept of finitely generated modules, many authors studied
the minimaxness of local cohomology modules and answered the Hartshorn’s
question in the class of minimax modules (see [2, 3, 18]).

In this paper, we continue the study of cominimax modules with respect
to an ideal of a commutative Noetherian ring. Melkersson in [23, Theorem 2.1]
showed the striking result that a-cofiniteness of a module M over a Noetherian
ring R is actually equivalent to the finiteness of the R-modules TorRi (R/a,M)
for all i. In this paper, we extend this result for any Serre subcategory of the
category of all R-modules. This extension plays an important role in the proof
of the results of this paper.

Recall that an R-module X is said to be weakly Laskerian if the set of
associated primes of any quotient module of X is finite. Also, an R-module
X is said to be a-weakly cofinite if SuppR(X) ⊆ V (a) and ExtiR(R/a, X) is
weakly Laskerian for all i ≥ 0 (see [10] and [11]).

Recently, Naghipour et al. in [24] proved that if (R,m) is a local ring, M
is a non-zero a-cofinite R-module and N be a finitely generated R-module such
that dimN = 3 or dimM ≤ 2, then the R-module TorRi (N,M) is a-weakly
cofinite for all i ≥ 0. As a main goal of this paper, we will show that the
assertion in this result holds when we replace ”a-cofinite” by the more general
condition ”a-cominimax”. In this direction, we prove the following result:

Theorem 1.1. Let M be a non-zero a-cominimax R-module and N be a
finitely generated R-module. Then the R-module TorRi (N,M) is a-cominimax
for all i ≥ 0, when one of the following statements holds:

1. dimN ≤ 2; or

2. dimM ≤ 1.

In particular, the Bass numbers and Betti numbers of R-module TorRi (N,M)
is finite for all i ≥ 0

As the consequences, we derive the following corollaries of the above the-
orem.

Corollary 1.2. Let M be a non-zero minimax R-module such that
dimH i

a(M) ≤ 1 (e.g. dimM ≤ 1 or dimR/a ≤ 1). Then for each finitely
generated R-module N , the R-module TorRj

(
N,H i

a(M)
)

is a-cominimax for all
i ≥ 0 and j ≥ 0.

Corollary 1.3. Let (R,m) be a local ring and M be a minimax R-module
such that dimH i

a(M) ≤ 2 (e.g. dimR/a ≤ 2). Then for each finitely generated
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R-module N , the R-module TorRj
(
N,H i

a(M)
)

is a-weakly cofinite for all i ≥ 0
and j ≥ 0.

Throughout this paper, we assume that R is a commutative Noetherian
ring with non-zero identity, a is an ideal of R, V (a) is the set of all prime ideals
of R containing a and Max(R) is the set of all maximal ideals of R. For any
unexplained notation and terminology we refer the reader to [6] and [21].

2. PRELIMINARIES

Recall that a class of R-modules is a Serre subcategory of the category
of R-modules when it is closed under taking submodules, quotients and ex-
tensions. For example, the classes of Noetherian modules, Artinian modules
or minimax modules are Serre subcategories. As in standard notation, we let
S stand for a Serre subcategory of the category of R-modules. The follow-
ing lemma which is needed in the next section, immediately follows from the
definition of Ext and Tor modules.

Lemma 2.1. Suppose that M is a finitely generated R-module and N ∈ S.
Then ExtiR(M,N) ∈ S and TorRi (M,N) ∈ S for all i ≥ 0.

Proof. See [1, Lemma 2.2]. �

Lemma 2.2. Let N be an arbitrary R-module. Then the following condi-
tions are equivalent:

1. TorRi (R/a, N) ∈ S for all i ≥ 0;

2. ExtiR(R/a, N) ∈ S for all i ≥ 0;

3. ExtiR(L,N) ∈ S for all i ≥ 0 and for any finitely generated R-module L
with SuppR(L) ⊆ V (a);

4. TorRi (L,N) ∈ S for all i ≥ 0 and for any finitely generated R-module L
with SuppR(L) ⊆ V (a).

Proof. (1.) ⇔ (2.) : This follows by the same method as in [26, Theo-
rem 2.7]. (2.)⇔ (3.) : This follows from Lemma 2.1.

(4.)⇔ (1.) : The forward direction is clear, because SuppR(R/a) = V (a).
For the other direction, using [21, Theorem 6.4], there exist prime ideals
p1, · · · , pt of R and a chain 0 = L0 ⊆ L1 ⊆ · · · ⊆ Lt = L of submodules of L
such that Lj/Lj−1 ∼= R/pj for all j = 1, · · · , t. Since pj ∈ SuppR(L) ⊆ V (a),
by induction on the length of this filtration of L, it is enough to show that
TorRi (R/p, N) ∈ S for all i ≥ 0 and all p ∈ SuppR(L). This follows by the
equivalence of (1.)− (3.) and the fact that SuppR(R/p) ⊆ V (a). �

Remark 2.3. The following statements hold:

1. The class of minimax modules contains all finitely generated and all
Artinian modules.
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2. Let 0→ L→M → N → 0 be an exact sequence of R-modules. Then M
is minimax if and only if L and N are both minimax (see [4, Lemma 2.1]).
Thus any submodule and quotient of a minimax module is minimax.

3. The set of associated primes of any minimax R-module is finite.

4. If M is a minimax R-module and p is a non-maximal prime ideal of R,
then Mp is a finitely generated Rp-module.

3. MAIN RESULTS

Theorem 3.1. Let M be a non-zero a-cominimax R-module. Then for
each non-zero R-module N of finite length, the R-module TorRi (N,M) has finite
length for all i ≥ 0.

Proof. Since N is a non-zero R-module of finite length, the set SuppR(N)
is a finite non-empty subset of Max(R) by the definition. Let SuppR(N) :=
{m1, · · · ,mn} and b := m1m2 · · ·mn. As SuppR(N) = V (b), we need only
to show that the R-module TorRi (R/b,M) is of finite length for all i ≥ 0,
by Lemma 2.2. Since TorRi (R/b,M) ∼=

⊕n
j=1 TorRi (R/mj ,M), without loss of

generality, we may assume that n = 1 and b = m1. Finally, let i ≥ 0 be an
integer such that TorRi (R/m1,M) 6= 0. It is clear that m1 ∈ SuppR(M) ⊆ V (a).
Therefore, in view of Lemma 2.2, the R-module TorRi (R/m1,M) is minimax
and hence is of finite length for all i ≥ 0 by [14, Lemma 2.5], as desired. �

Theorem 3.2. Let M be a non-zero a-cominimax R-module and N be
a finitely generated R-module such that dimN = 1. Then the R-module
TorRi (N,M) is minimax for all i ≥ 0.

Proof. In the case where N = Γa(N), we have SuppR(N) ⊆ V (a) and so
the assertion follows from Lemma 2.2. Otherwise, if N = N/Γa(N), then in
the light of the exact sequence

0→ ΓI(N)→ N → N → 0

and Lemma 2.2, we need only to show that TorRi (N,M) is minimax for all
i ≥ 0. Therefore, without loss of generality, we may assume that ΓI(N) = 0 and
dimN = 1. Hence, there exists an element x ∈ a \

⋃
p∈AssR(N) p, by [6, Lemma

2.1.1]. Now, the exact sequence

0→ N
.x→ N → N/xN → 0

induces the following exact sequence for all i ≥ 0:

· · · → TorRi+1(N/xN,M)→ TorRi (N,M)
.x→ TorRi (N,M)→ · · · .

Finally, we obtain the exact sequence

(1) TorRi+1(N/xN,M)→ (0 :TorRi (N,M) x)→ 0
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for all i ≥ 0. Since dimN/xN = 0 and so N/xN has finite length, it follows

from the exact sequence (1) and Lemma 3.1 that theR-module
(

0 :TorRi (N,M) x
)

is of finite length for all i ≥ 0. Therefore, the R-module
(

0 :TorRi (N,M) a
)

is also

of finite length for all i ≥ 0, because x ∈ a. But, as SuppR

(
TorRi (N,M)

)
⊆

V (a), we infer that the R-module TorRi (N,M) is a-torsion. Thus, by Melkers-
son’s result [22, Theorem 1.3], TorRi (N,M) is Artinian and so is minimax for
all i ≥ 0, as required. �

Theorem 3.3. Let M be a non-zero a-cominimax module and N be a
finitely generated R-module such that dimN = 2. Then the R-module TorRi (N,
M) is a-cominimax for all i ≥ 0.

Proof. As in the proof of Theorem 3.2, we may assume that Γa(N) = 0
and dimN = 2. So, by [6, Lemma 2.1.1], there exists an element x ∈ a \⋃

p∈AssR(N) p. Now, the short exact sequence

0→ N
.x→ N → N/xN → 0

induces the following exact sequence for all i ≥ 0:

· · · → TorRi+1(N/xN,M)→ TorRi (N,M)
.x→ TorRi (N,M)→ TorRi (N/xN,M)

→ · · · .

Since dimN/xN ≤ 1, by Theorems 3.1 and 3.2, the R-modules
(0 :TorRi (N,M) x) and TorRi (N,M)/xTorRi (N,M) are minimax and so are a-

cominimax for all i ≥ 0. Therefore, the R-module TorRi (N,M) is a-cominimax
for all i ≥ 0, by [14, Lemma 2.6]. �

Theorem 3.4. Let M be a non-zero a-cominimax and dimM ≤ 1. Then
for each non-zero finitely generated R-module N , the R-module TorRi (N,M) is
a-cominimax for all i ≥ 0.

Proof. Since N is a finitely generated module over the Noetherian ring R,
it has a free resolution

F• : · · · → Fn → · · · → F2 → F1 → F0 → 0,

where all the free R-modules Fi have finite ranks. Hence, TorRi (N,M) =
Hi(F• ⊗R M) is a subquotient of a direct sum of finitely many copies of M .
Now, the assertion follows easily from [16, Theorem 2.5]. �

Recall that for an R-module M , the ith Bass number and Betti number of
M with respect to a prime ideal p is defined as µi(p,M) = dimk(p) ExtiRp

(k(p),

Mp) and βi(p,M) = dimk(p) Tor
Rp

i (k(p),Mp), respectively. Applying the same
technique in the proof of [2, Corollary 2.3] using Lemma 2.2, one can see the
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Bass numbers and Betti numbers of any a-cominimax module are finite. Hence,
the next result immediately follows from Theorems 3.1-3.4 and Lemma 2.2.

Corollary 3.5. Suppose that M and N are two non-zero R-modules
such that M is a-cominimax and N is finitely generated. Then the Bass numbers
and Betti numbers of R-module TorRi (N,M) is finite for all i ≥ 0, when one
of the following statements holds:

1. dimN ≤ 2; or

2. dimM ≤ 1.

Corollary 3.6. Let M be a non-zero minimax R-module such that
dimH i

a(M) ≤ 1 for all i ≥ 0 (e.g. dimM ≤ 1 or dimR/a ≤ 1). Then for each
finitely generated R-module N , the R-module TorRj

(
N,H i

a(M)
)

is a-cominimax

for all i ≥ 0 and j ≥ 0. In particular, the R-module TorRj
(
N,H i

a(M)
)

is a-
cofinite for all i ≥ 1 and j ≥ 0.

Proof. In the light of [2, Theorem 2.2], H i
a(M) is an a-cominimax R-

module for all i ≥ 0. Hence, Theorem 3.4 yields the result. The last assertion
follows from [2, Theorem 2.2] and [24, Lemma 3.3]. �

The following corollary which is a generalization of [24, Corollary 3.5],
gives an extension of Corollary 3.6 for local (Noetherian) rings.

Corollary 3.7. Let (R,m) be a local ring and M be a minimax R-module
such that dimH i

a(M) ≤ 2 (e.g. dimR/a ≤ 2). Then for each finitely generated
R-module N , the R-module TorRj

(
N,H i

a(M)
)

is a-weakly cofinite for all i ≥ 0
and j ≥ 0.

Proof. By Lemma 2.2, we need only to show that TorRk(
R/a,TorRj

(
N,H i

a(M)
))

is weakly Laskerian for all i, j, k ≥ 0. Let

Ω =
{

TorRk
(
R/a,TorRj

(
N,H i

a(M)
))
| i ≥ 0, j ≥ 0, k ≥ 0

}
.

Suppose that K ∈ Ω and K ′ is a submodule of K. By definition, it
suffices to show that AssR(K/K ′) is a finite set. For do this, in view of the
Flat Base Change Theorem [6, Theorem 4.3.2], [21, Ex. 7.7] and [19, Lemma
2.1], without loss of generality, we can assume that R is complete.

Now, on the contrary, suppose that the set AssR(K/K ′) is infinite. So,
there is a countably infinite subset {pr}∞r=1 of non-maximal elements of AssR
(K/K ′). Thus, m *

⋃∞
r=1 pr by [20, Lemma 3.2]. Let S be the multiplica-

tively closed subset R \
⋃∞

r=1 pr. By hypothesis, [6, Corollary 4.3.3] and [25,
Lemma 3.4], it easily follows that S−1M is a minimax S−1R-module such that
dimH i

S−1a(S
−1M) ≤ 1. Therefore, Corollary 3.6 implies that S−1K/S−1K ′

is a minimax S−1R-module and so AssS−1R

(
S−1K/S−1K ′

)
is a finite set by

Remark 2.3. But, S−1pr ∈ AssS−1R

(
S−1K/S−1K ′

)
for all r = 1, 2, · · · , a

contradiction. �
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Finally, as an application, we state the following theorem which is a
generalization of [24, Theorem 3.2 and Corollary 3.6].

Theorem 3.8. Let (R,m) be a local ring, M be a non-zero a-cominimax
R-module and N be a finitely generated R-module. Then the R-module TorRi (N,
M) is a-weakly cofinite for all i ≥ 0, when one of the following statements holds:

1. dimN = 3; or

2. dimM ≤ 2.

Proof. In the light of Theorems 3.1-3.4, the assertion follows by the same
method as in Corollary 3.7. �
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