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Let R be a commutative Noetherian ring with identity and a be an ideal of
R. Also, suppose that M and N are two non-zero R-modules such that M
is a-cominimax and N is finitely generated. We show that TorlR(N7 M) is a-
cominimax for all 7 > 0, whenever dim N < 2 or dim M < 1. As an immediate
consequence, we obtain that if M is a non-zero minimax R-module such that
dim Hi(M) < 1, then for each finitely generated R-module N, Tor;2 (N, H;(M))
is a-cominimax for all 4 > 0 and j > 0. Moreover, we prove that if R is local, M
is a-cominimax and N is finitely generated, then the R-module Torf%(N , M) is
a-weakly cofinite for all ¢ > 0, when dim N = 3 or dim M < 2.
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1. INTRODUCTION

Let R be a commutative Noetherian ring with identity and a be an ideal
of R. For an R-module M, the ith local cohomology module of M with respect
to a is defined as ' .

H (M) = liglExtﬁ(R/a", M).
neN
For more details about the local cohomology, we refer the reader to [6].

In 1968, Grothendieck [12] conjectured that for any ideal a of R and any
finitely generated R-module M, Homp (R/a, H{(M)) is a finitely generated
R-module for all i. One year later, Hartshorne [13] provided a counterexample
to Grothendieck’s conjecture and introduced the class of cofinite modules with
respect to an ideal. He defined an R-module M to be a-cofinite if Suppg (M) C
V(a) and Ext},(R/a, M) is finitely generated for all j and he asked:

For which rings R and ideals a are the modules H}(M) a-cofinite for all
7 and all finitely generated R-modules M?

There are several papers devoted to this question (see [5,7-9,13,15,17,27]).

In [28], Zoschinger introduced the class of minimax modules and in [28]
and [29] gave equivalent conditions for a module to be minimax. An R-module
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M is called minimax if there is a finitely generated submodule N of M such that
M/N is Artinian. The concept of a-cominimax modules was introduced in [3]
as a generalization of a-cofinite modules. According to the definition, an R-
module M is said to be a-cominimaz if Suppg(M) C V(a) and Exth(R/a, M)
is minimax for all j. Since the concept of minimax modules is a natural gen-
eralization of the concept of finitely generated modules, many authors studied
the minimaxness of local cohomology modules and answered the Hartshorn’s
question in the class of minimax modules (see [2,3,18]).

In this paper, we continue the study of cominimax modules with respect
to an ideal of a commutative Noetherian ring. Melkersson in [23, Theorem 2.1]
showed the striking result that a-cofiniteness of a module M over a Noetherian
ring R is actually equivalent to the finiteness of the R-modules Tor?(R/a, M)
for all . In this paper, we extend this result for any Serre subcategory of the
category of all R-modules. This extension plays an important role in the proof
of the results of this paper.

Recall that an R-module X is said to be weakly Laskerian if the set of
associated primes of any quotient module of X is finite. Also, an R-module
X is said to be a-weakly cofinite if Suppgr(X) C V(a) and Extl(R/a, X) is
weakly Laskerian for all ¢ > 0 (see [10] and [11]).

Recently, Naghipour et al. in [24] proved that if (R, m) is a local ring, M
is a non-zero a-cofinite R-module and N be a finitely generated R-module such
that dim N = 3 or dim M < 2, then the R-module Tor®(N, M) is a-weakly
cofinite for all 4 > 0. As a main goal of this paper, we will show that the
assertion in this result holds when we replace ”a-cofinite” by the more general
condition ”a-cominimax”. In this direction, we prove the following result:

THEOREM 1.1. Let M be a non-zero a-cominimax R-module and N be a
finitely generated R-module. Then the R-module Tor®(N, M) is a-cominimaz
for all i > 0, when one of the following statements holds:

1. dim N < 2; or

2. dimM <1.
In particular, the Bass numbers and Betti numbers of R-module Torf(N, M)
1s finite for alli >0

As the consequences, we derive the following corollaries of the above the-
orem.

COROLLARY 1.2. Let M be a non-zero minimax R-module such that
dim H: (M) < 1 (e.g. dimM < 1 or dimR/a < 1). Then for each finitely
generated R-module N, the R-module Torf (N, HQ(M)) is a-cominimax for all
1 >0 andj > 0.

COROLLARY 1.3. Let (R, m) be a local ring and M be a minimaz R-module
such that dim H{(M) < 2 (e.g. dim R/a < 2). Then for each finitely generated



3 Torsion functors of cominimax modules 53

R-module N, the R-module Torf“ (N, Hg(M)) is a-weakly cofinite for all i > 0
and j > 0.

Throughout this paper, we assume that R is a commutative Noetherian
ring with non-zero identity, a is an ideal of R, V'(a) is the set of all prime ideals
of R containing a and Max(R) is the set of all maximal ideals of R. For any
unexplained notation and terminology we refer the reader to [6] and [21].

2. PRELIMINARIES

Recall that a class of R-modules is a Serre subcategory of the category
of R-modules when it is closed under taking submodules, quotients and ex-
tensions. For example, the classes of Noetherian modules, Artinian modules
or minimax modules are Serre subcategories. As in standard notation, we let
S stand for a Serre subcategory of the category of R-modules. The follow-
ing lemma which is needed in the next section, immediately follows from the
definition of Ext and Tor modules.

LEMMA 2.1. Suppose that M is a finitely generated R-module and N € S.
Then Extly (M, N) € S and Torl*(M,N) € S for all i > 0.

Proof. See [1, Lemma 2.2]. O

LEMMA 2.2. Let N be an arbitrary R-module. Then the following condi-
tions are equivalent:

1. Tor®(R/a,N) € S for all i > 0;

2. Exty(R/a, N) € S for all i > 0;

3. Exty(L,N) € S for all i > 0 and for any finitely generated R-module L
with Suppr(L) C V(a);

4. ToriR(L, N) €S8 for alli > 0 and for any finitely generated R-module L
with Suppr(L) C V(a).

Proof. (1.) < (2.) : This follows by the same method as in [26, Theo-
rem 2.7]. (2.) < (3.) : This follows from Lemma 2.1.

(4.) & (1.) : The forward direction is clear, because Suppg(R/a) = V(a).
For the other direction, using [21, Theorem 6.4], there exist prime ideals
p1,--+,pr of R and a chain 0 = Ly C Ly C --- C Ly = L of submodules of L
such that L;/L;j_1 = R/p; for all j =1,---,t. Since p; € Suppr(L) C V(a),
by induction on the length of this filtration of L, it is enough to show that
Tor{(R/p,N) € S for all i > 0 and all p € Suppg(L). This follows by the
equivalence of (1.) — (3.) and the fact that Suppr(R/p) C V(a). O

Remark 2.3. The following statements hold:
1. The class of minimax modules contains all finitely generated and all
Artinian modules.
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2. Let 0 > L - M — N — 0 be an exact sequence of R-modules. Then M
is minimax if and only if L and N are both minimax (see [4, Lemma 2.1]).
Thus any submodule and quotient of a minimax module is minimax.

3. The set of associated primes of any minimax R-module is finite.

4. If M is a minimax R-module and p is a non-maximal prime ideal of R,
then M, is a finitely generated Ry-module.

3. MAIN RESULTS

THEOREM 3.1. Let M be a non-zero a-cominimax R-module. Then for
each non-zero R-module N of finite length, the R-module TorZR(N, M) has finite
length for all i > 0.

Proof. Since N is a non-zero R-module of finite length, the set Suppp (V)
is a finite non-empty subset of Max(R) by the definition. Let Suppr(N) :=
{my,---,my} and b := mymy---m,. As Suppr(N) = V(b), we need only
to show that the R-module Tor?(R/b, M) is of finite length for all i > 0,
by Lemma 2.2. Since Tor’(R/b, M) = D, Torl{(R/m;, M), without loss of
generality, we may assume that n = 1 and b = m;. Finally, let ¢ > 0 be an
integer such that Torf(R/my, M) # 0. It is clear that m; € Suppg(M) C V(a).
Therefore, in view of Lemma 2.2, the R-module Tor®(R/my, M) is minimax
and hence is of finite length for all ¢ > 0 by [14, Lemma 2.5|, as desired. [

THEOREM 3.2. Let M be a non-zero a-cominimax R-module and N be
a finitely generated R-module such that dim N = 1. Then the R-module
Tor®(N, M) is minimaz for all i > 0.

Proof. In the case where N = I'q(NV), we have Suppg(N) C V(a) and so
the assertion follows from Lemma 2.2. Otherwise, if N = N/T'4(N), then in
the light of the exact sequence

0T/ (N)—-N-—=N-=0

and Lemma 2.2, we need only to show that Tor!*(N, M) is minimax for all
i > 0. Therefore, without loss of generality, we may assume that I';(IN) = 0 and
dim N = 1. Hence, there exists an element @ € a\ Uyess,(v) P> by [6, Lemma
2.1.1]. Now, the exact sequence

0+ N3N N/xzN -0
induces the following exact sequence for all ¢ > 0:
-+ — Torfl | (N/xN, M) — Torf (N, M) 5 TorF(N,M) — - - .
Finally, we obtain the exact sequence

(1) TorfLy (N/zN, M) = (0 ipppi(n ap) %) — 0
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for all ¢ > 0. Since dim N/xN = 0 and so N/xN has finite length, it follows
from the exact sequence (1) and Lemma 3.1 that the R-module (0 “TorR (N, M) :c)

is of finite length for all ¢ > 0. Therefore, the R-module (O “Torf (N, M) a) is also

of finite length for all ¢ > 0, because = € a. But, as Suppp (Tor (N,M)) C

V(a) we infer that the R-module Torl*(N, M) is a-torsion. Thus, by Melkers-
son’s result [22, Theorem 1.3], TorZ? (N M) is Artinian and so is minimax for
all 7 > 0, as required. [

THEOREM 3.3. Let M be a non-zero a-cominimax module and N be a
finitely generated R-module such that dim N = 2. Then the R-module Torfz(N,
M) is a-cominimaz for all i > 0.

Proof. As in the proof of Theorem 3.2, we may assume that I'q(N) = 0
and dim N = 2. So, by [6, Lemma 2.1.1], there exists an element z € a\
L_Jpe Assr(N) P- Now, the short exact sequence

0—+N3N-—= N/aN =0

induces the following exact sequence for all ¢ > 0:

- — Torf (N/zN, M) — Torf(N, M) =% Tor?(N, M) — Torf(N/xN, M)
T
Since dim N/zN < 1, by Theorems 3.1 and 3.2, the R-modules
(0 : “TorR (N,M) x) and Torl? (N M) /xTor®(N, M) are minimax and so are a-
cominimax for all i > 0. Therefore, the R-module Tor?(N, M) is a-cominimax
for all i > 0, by [14, Lemma 2.6]. O

THEOREM 3.4. Let M be a non-zero a-cominimaz and dim M < 1. Then
for each non-zero finitely generated R-module N, the R-module Tor (N, M) is
a-cominimaz for all i > 0.

Proof. Since N is a finitely generated module over the Noetherian ring R,
it has a free resolution

Fo: - = F,— - = —>F —F—0,

where all the free R-modules F; have finite ranks. Hence, Tor®(N, M) =
H;(Fqe ®p M) is a subquotient of a direct sum of finitely many copies of M.
Now, the assertion follows easily from [16, Theorem 2.5]. [

Recall that for an R-module M, the ith Bass number and Betti number of
M with respect to a prime ideal p is defined as p;(p, M) = dimy,) Extp (k(p),
My) and B;(p, M) = dimy,y,) Tor?"(k(p), M,), respectively. Applying the same
technique in the proof of [2, Corollary 2.3] using Lemma 2.2, one can see the
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Bass numbers and Betti numbers of any a-cominimax module are finite. Hence,
the next result immediately follows from Theorems 3.1-3.4 and Lemma 2.2.

COROLLARY 3.5. Suppose that M and N are two non-zero R-modules
such that M is a-cominimaz and N is finitely generated. Then the Bass numbers
and Betti numbers of R-module Tor®(N, M) is finite for all i > 0, when one
of the following statements holds:

1. dim N < 2; or
2. dimM < 1.

COROLLARY 3.6. Let M be a non-zero minimaxr R-module such that
dim H{(M) <1 for alli >0 (e.g. dim M < 1 or dim R/a < 1). Then for each
finitely generated R-module N, the R-module Torf (N, H;(M)) 1S a-cominimazx
for alli > 0 and j > 0. In particular, the R-module Tor? (N, Hg(M)) is a-
cofinite for allt > 1 and 7 > 0.

Proof. In the light of [2, Theorem 2.2], H!(M) is an a-cominimax R-
module for all 4 > 0. Hence, Theorem 3.4 yields the result. The last assertion
follows from [2, Theorem 2.2] and [24, Lemma 3.3]. O

The following corollary which is a generalization of [24, Corollary 3.5],
gives an extension of Corollary 3.6 for local (Noetherian) rings.

COROLLARY 3.7. Let (R, m) be a local ring and M be a minimaz R-module
such that dim H: (M) < 2 (e.g. dim R/a < 2). Then for each finitely generated
R-module N, the R-module Torf2 (N, H;(M)) s a-weakly cofinite for all i > 0
and j > 0.

Proof. By ~Lemma 2.2, we mneed only to show that TorkR
(R/a, Torf (N, Hi(M))) is weakly Laskerian for all 4, j,k > 0. Let

Q = {Torg (R/a, Torf' (N, HL(M))) | i>0,j >0,k >0}.

Suppose that K € Q and K’ is a submodule of K. By definition, it
suffices to show that Assp(K/K') is a finite set. For do this, in view of the
Flat Base Change Theorem [6, Theorem 4.3.2], [21, Ex. 7.7] and [19, Lemma
2.1], without loss of generality, we can assume that R is complete.

Now, on the contrary, suppose that the set Assg(K/K') is infinite. So,
there is a countably infinite subset {p,}>2; of non-maximal elements of Assp
(K/K'). Thus, m € [Jo2, p, by [20, Lemma 3.2]. Let S be the multiplica-
tively closed subset R\ |J;2, p,. By hypothesis, [6, Corollary 4.3.3] and [25,
Lemma 3.4], it easily follows that S~'M is a minimax S~!R-module such that
dim H,_, (S7'M) < 1. Therefore, Corollary 3.6 implies that S~'K/S~ 1K’
is a minimax S~!R-module and so Assg-1p (S_IK/S_IK’) is a finite set by
Remark 2.3. But, S7!p, € Assg-1p (SflK/SflK’) for all r = 1,2,---, a
contradiction. U
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Finally, as an application, we state the following theorem which is a
generalization of [24, Theorem 3.2 and Corollary 3.6].

THEOREM 3.8. Let (R,m) be a local ring, M be a non-zero a-cominimaz
R-module and N be a finitely generated R-module. Then the R-module Torf(N,
M) is a-weakly cofinite for alli > 0, when one of the following statements holds:

1. dim N = 3; or
2. dim M < 2.

Proof. In the light of Theorems 3.1-3.4, the assertion follows by the same
method as in Corollary 3.7. 0O
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