
AVKHADIEV-BECKER TYPE P -VALENT CONDITIONS
FOR HARMONIC MAPPINGS OF THE UNIT DISK

AND ITS EXTERIOR

RAMIL G. NASIBULLIN and ILNAR K. SHAFIGULLIN

Communicated by Lucian Beznea

We obtain Avkhadiev–Becker type p-valent conditions for harmonic mappings
of the unit disk and its exterior, and prove a generalization of John’s p-valent
condition.

AMS 2010 Subject Classification: 30C55.

Key words: harmonic mapping, Becker univalence condition, global univalence,
John’s univalence condition.

1. INTRODUCTION

Let f be a complex-valued function defined on a simply connected sub-
domain E of the complex plane C. It has been shown that for a function f
harmonic in E, there exist two functions g and h analytic in E, such that

f(z) = h(z) + g(z), z ∈ E.

H. Lewy proved that f is locally univalent and sense-preserving in E if and
only if |g′(z)| < |h′(z)| in E (see [16, 21] for more information). In the recent
paper [10], F.G. Avkhadiev et al. used the methods of L. Ahlfors and G. Weill
[1] to establish the univalency condition for harmonic mappings of the unit
disk

D = {z ∈ C : |z| < 1}
and its exterior

D− = {z ∈ C : |z| > 1}.

Namely, the authors proved the following

Theorem A. Let h and g be holomorphic functions in the unit disk D,
and for all z ∈ D,

h′(z) 6= 0, |ω(z)| < 1,

where ω(z) = g′(z)/h′(z). Let for all z ∈ D,
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|ω(z)|+ (1− |z|2)
∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1.

Then f = h+ g is univalent in D.

Note that Theorem A implies the following J. Becker’s theorem for ana-
lytic functions (see more details in [5, 6, 8, 9, 12–14,22]).

Theorem B. Let f be an analytic mapping from D into C, such that
f ′(z) 6= 0 for all z ∈ D. Let for all z ∈ D,

(1− |z|2)|zf ′′(z)/f ′(z)| ≤ 1.

Then f is univalent in D.

Note that there are analogues of Theorem B for analytic functions proved
by F.G. Avkhadiev (see [5, 6, 9, 14, 22]), and for harmonic functions proved by
R. Hernandez and M.J. Martin in [20] and by Sh.L. Chen, S. Ponnusamy,
A. Rasila and X.T. Wang in [15].

Let p be a natural number. We say that a function f is p-valent in a
domain, if

a) for all w ∈ C, the equation f(z) = w has m roots, where 0 ≤ m ≤ p;
b) there exists w0 ∈ C such that the equation f(z) = w0 has exactly p

roots.

In [7], F.G. Avkhadiev obtained p-valent conditions for analytic functions.
Namely, the author proved the following

Theorem A2. Let f be an analytic function in D \ {0}, n 6= 0 be an
integer, and

lim
z→0

z−nf(z) = a1 ∈ C \ {0}.
Let for all z ∈ D, |z| < 1,

sup
z∈D

∣∣∣∣(1− |z|2n)(n− 1− z f
′′ (z)

f ′ (z)

)∣∣∣∣ ≤ |n|.
Then f is |n|-valent in D.

The aim of this paper is to obtain Avkhadiev–Becker type p-valent con-
ditions for harmonic mappings of the unit disk and its exterior. We will use
the methods from [4–6]. The main result for harmonic mappings in D is the
following assertion.

Theorem 1. Let n 6= 0 be an integer, D = {z ∈ C : |z| < 1}, h and g be
analytic in D \ {0}, h′(z) 6= 0, |ω(z)| < 1 for all z ∈ D \ {0}, where

ω(z) = g′(z)/h′(z),
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moreover,

(1) lim
z→0

z−nh(z) = 1.

Let f(z) = h(z) + g(z) satisfy the condition

|n| |ω(z)|+
(
1− |z|2n

) ∣∣∣∣n− 1− zh
′′ (z)

h′ (z)

∣∣∣∣ ≤ |n|
for all z ∈ D. Then f(z) is |n|-valent in D.

Corollary 1. Let n 6= 0 be an integer, D− = {ζ ∈ C : |ζ| > 1}, h and g
be analytic in D− \ {∞}, h′(ζ) 6= 0, |ω(ζ)| < 1 for all ζ ∈ D− \ {∞}, where

ω(ζ) = g′(ζ)/h′(ζ),

moreover,

(2) lim
ζ→∞

ζnh(ζ) = 1.

Let f(ζ) = h(ζ) + g(ζ) satisfy the condition

|n| |ω(ζ)|+
(
|ζ|2n − 1

) ∣∣∣∣n+ 1 + ζ
h′′ (ζ)

h′ (ζ)

∣∣∣∣ ≤ |n|
for all ζ ∈ D−. Then f(ζ) is |n|-valent in D−.

To obtain Corollary 1, we apply Theorem 1 to the function f1 defined by
f1(ζ) = f(z), z = 1/ζ.

F. John, F.G. Avkhadiev and J. Gevirtz obtained sufficient univalence
conditions of the type

m < |f ′(z)| < M

for analytic functions (see [8, 18]). Sh.L. Chen, S. Ponnusamy, A. Rasila and
X.T. Wang in [15] got univalence condition of this type for harmonic mappings.
We obtain a p-valent condition of this type for harmonic mappings.

Theorem 2. Let D = {z ∈ C : |z| < 1}, n 6= 0 be an integer, q ∈ [0, 1), h
and g be holomorphic mappings in D \ {0}, h′(z) 6= 0, moreover,

(3) lim
z→0

z−nh(z) = 1, h(z)− zn = O
(
|z||n|

)
.

Then a harmonic mapping f(z) = h(z) + g(z) is |n|-valent in D, provided that
for all z ∈ D,

m ≤ |h′(z)z1−n| ≤M, |g′(z)/h′(z)| ≤ q,

where the positive constants m and M are such that

1 <
M

m
≤ exp

(
π(1− q)

2

)
for n ≥ 1,
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1 <
M

m
≤ exp

(
π(1− q)

4

)
for n ≤ −1.

Note that Theorem A follows from Theorem 1 for n = 1. In [12, 13],
using Levner–Kufarev’s equation, J. Becker proved the statement of Theo-
rem 1 for analytic functions in the case of n = ±1. P.L. Duren, M.S. Shapiro,
A.L. Shields in the paper [17] and F.G. Avkhadiev in [2, 3] obtained the ana-
logues of Theorem 1 using other methods.

In [10], the authors also obtained univalence conditions for harmonic map-
pings from the exterior of the unit disc D− into C.

Let

F (ζ) = H(ζ) +G(ζ), ζ ∈ D−,

where H and G are analytic functions in D− \ {∞}.

Theorem 3. Let G and F be holomorphic functions in D− \ {∞}, such
that

G(ζ) =
∞∑
k=n

gk/ζ
k

and

H(ζ) = ζn +
∞∑
k=n

hk/ζ
k.

Moreover, for each positive integer n 6= 0, let the function H have a pole of
order n at the point ζ =∞, and for all ζ ∈ D−,

lim
ζ→∞

ζ−nH(ζ) = 1, H ′(ζ) 6= 0.

Let for all |ζ| > 1,

n

∣∣∣∣ζ2H ′(ζ)

G′(ζ)

∣∣∣∣+
(
|ζ|2n − 1

) ∣∣∣∣n− 1− ζH
′′ (ζ)

H ′ (ζ)

∣∣∣∣ ≤ n.
Then F = H +G is n-valent in D−.

Theorem 4. Let

G(ζ) = ζn +

∞∑
k=n

gk/ζ
k

and

H(ζ) = ζn +

∞∑
k=n

hk/ζ
k

be holomorphic in D− \ {∞}, and have a pole of order n at ζ =∞, moreover,
|H ′(ζ)| − |G′(ζ)| > 0 for all ζ ∈ D−. Let for all |ζ| ≥ 1,
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|H ′′ (ζ) |+ |G′′(ζ)| ≤ n |H
′ (ζ) | − |G′ (z) |
|ζ|2n+1 − |ζ|

− (n− 1)
|H ′ (ζ) |+ |G′ (ζ) |

|ζ|
.

Then F = H +G is n-valent in D− = {ζ ∈ C : |ζ| > 1}.

We note that the sufficient conditions in the unit disk were announced
without proof in the short communication [23].

2. PROOF OF THE SUFFICIENT CONDITIONS IN THE UNIT DISK

Proof of Theorem 1. Fix r ∈ (0, 1), and denote

Dr = {z ∈ C : |z| ≤ r}, D−r = {z ∈ C : |z| ≥ r}.

Consider the mapping f̂ : C→ C given by

f̂(z) =

{
f(z), |z| ≤ r,
f
(
r2/z

)
+ (zn − r2n/zn)f ′

(
r2/z

)
zn−1/(nr2(n−1)), |z| ≥ r.

Using the decomposition f(z) = h(z) + g(z), we obtain

f̂(z) =

{
f(z), |z| ≤ r

h
(
r2/z

)
+ g (r2/z) +

(
zn − r2n/zn

) h′(r2/z)zn−1

nr2(n−1) , |z| ≥ r.

The function f̂ is obviously continuous. We will prove that f̂(z) → ∞ as
z →∞, when n 6= 0 is an integer. It is easily shown that

lim
|z|→∞

h
(
r2/z

)
+ g (r2/z) = h (0) + g (0) = f(0).

Due to condition (2),

h(z) = zn + an+1z
n+1 + · · · = zn +

∞∑
k=n+1

akz
k,

where ak are complex numbers.
Straightforward computations give the following equalities.

h′
(
r2

z

)
= n

(
r2

z

)n−1
+ (n+ 1)an+1

(
r2

z

)n
+ . . . =

= n

(
r2

z

)n−1
+

∞∑
k=n+1

kak

(
r2

z

)k−1
.

Consequently, for n > 0 we have

znzn−1

nr2(n−1)
h′
(
r2

z

)
= zn

(
1 +

∞∑
k=n+1

kak

(
r2

z

)k−n)
= O(zn),
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and for n < 0 we obtain

r2

nz
h′
(
r2

z

)
=
r2n

zn
+

∞∑
k=n+1

kak

(
r2

z

)k
= O(z|n|).

Therefore, limz→∞ f̂(z) =∞ for any integer n 6= 0.
Denote by J

f̂
the Jacobian of f̂ . Since

J
f̂

= |f̂z|2 − |f̂z|2,

the Jacobian J
f̂

is positive for |z| ≤ r, provided that

|f̂z| − |f̂z| = |hz| − |gz| > 0.

The last statement follows from the condition |ω(z)| < 1 for all z ∈ D.
Now we will show that the Jacobian J

f̂
is positive for |z| ≥ r. By straight-

forward calculations we get

f̂z =
(zz)n−1

r2(n−1)
h′
(
r2

z

)
− r2

z2
g′
(
r2

z

)
and

f̂z = −r
2

z2

[
h′
(
r2

z

)
− (n− 1)|z|2n + r2n

nr2n
h′
(
r2

z

)
+
|z|2n − r2n

nr2(n−1)z
h′′
(
r2

z

)]
=

= −r
2

z2

[
−h′

(
r2

z

)
n− 1

n

(
|z|2n

r2n
− 1

)
+
r2

nz

(
|z|2n

r2n
− 1

)
h′′
(
r2

z

)]
=

=
r2

z2
1

n
h′
(
r2

z

)(
|z|2n

r2n
− 1

)n− 1− r2

z

h′′
(
r2

z

)
h′
(
r2

z

)
 .

We replace r2/z by ζ in the last statements, and obtain

f̂z =
r2(n−1)

ζn−1ζ
n−1h

′ (ζ)− ζ
2

r2
g′ (ζ) =

r2(n−1)

|ζ|2(n−1)
h′ (ζ)− ζ

2

r2
g′ (ζ)

and

f̂z =
1

n

ζ2

r2
h′ (ζ)

(
r2n

ζnζ
n − 1

)(
n− 1− ζ h

′′ (ζ)

h′ (ζ)

)
.

Hence,

|fz|
|fz|

=

∣∣∣ 1n ζ2r2h′ (ζ)
(
r2n

|ζ|2n − 1
)(

n− 1− ζ h
′′(ζ)
h′(ζ)

)∣∣∣∣∣∣∣ r2(n−1)

|ζ|2(n−1)h
′ (ζ)− ζ

2

r2
g′ (ζ)

∣∣∣∣ ≤

≤

∣∣∣( r2n

|ζ|2n − 1
)(

n− 1− ζ h
′′(ζ)
h′(ζ)

)∣∣∣
|n|
(
r2n

|ζ|2n −
∣∣∣ g′(ζ)h′(ζ)

∣∣∣) .
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Thus, the positivity of the Jacobian for |ζ| ≤ r is implied by the following
inequalities:

n
|ζ|2n

r2n
|ω(ζ)|+

∣∣∣∣(1− |ζ|
2n

r2n

)(
n− 1− ζ h

′′ (ζ)

h′ (ζ)

)∣∣∣∣ < n, n > 0,

and

|n| |ζ|
2|n|

r2|n|
|ω(ζ)|+

∣∣∣∣∣
(

1− |ζ|
2|n|

r2|n|

)(
n− 1− ζ h

′′ (ζ)

h′ (ζ)

)∣∣∣∣∣ < |n|, n < 0.

Using the last inequality, condition |ω(ζ)| < 1,∀ζ ∈ D, and inequalities

|ζ|2n

r2n
≤ 1, 1− |ζ|

2n

r2n
≤ 1− |ζ|2n,

we get the positivity of the Jacobian for |ζ| ≤ r.
Thus, we obtain that the function f̂ is continuous in C\{0}, and it follows

from the positivity of the Jacobian that f̂ is a local homeomorphism in 0 <
|z| ≤ r and in r ≤ |z| <∞ separately. Using the following lemma from [5], we
get that f is a local homeomorphism in C\{0}.

Lemma A. Let D1 and D2 be nonintersecting domains which have com-
mon part of their boundaries including an open Jordan arc L, where D1∪D2∪L
is a domain. Let fi(z), i = 1, 2, be similarly oriented interior mappings of Di

in the sense of Stoilow [24] which are continuous except at finite number of
poles and locally univalent in Di ∪L, i = 1, 2, and f1(z) = f2(z) for all z ∈ L.
Then the function f(z) = {f1(z), z ∈ D1 ∪ L; f2(z), z ∈ D2 ∪ L} is an interior
locally univalent mapping of the domain D = D1 ∪D2 ∪ L.

Hence, using Stoilow’s theorem [5,24], we get that f̂ is topologically equiv-
alent to zn.

Theorem of Stoilow. Let f : C → C be an interior mapping in the
sense of Stoilow, moreover, f(z) → ∞ as z → ∞. Then there exists a home-
omorphic mapping ψ of the Euclidean plane onto itself, ψ(0) = 0, and a holo-
morphic in C mapping g such that f(z) = g(ψ(z)).

This proves that f is |n|-valent harmonic mapping.

Proof of Theorem 2. Since the unit disk is a simply connected domain,
and

lim
z→0

z−nh(z) = 1, h(z)− zn = O
(
|z||n|

)
,

it follows that there exists a holomorphic function defined as a single-valued
branch of lnh′(z)/zn−1. Under the condition of Theorem 2, namely,

m ≤ |h′(z)z1−n| ≤M,



66 Ramil G. Nasibullin and Ilnar K. Shafigullin 8

we see that the values of the function s(z) = lnh′(z)/zn−1 lie in the strip

S(m,M) = {w ∈ C : lnm < Re w < lnM}.

It means that s(z) is subordinated to the function

2 ln(M/m)

πi
ln

1 + z

1− z
,

which maps D onto the strip.

Consequently, there exists an analytic in the disk D function ϕ, such that

s(z) =
2 ln(M/m)

πi
ln

1 + ϕ(z)

1− ϕ(z)
+ const,

where |ϕ(z)| < 1, ϕ(0) ∈ D, and for n ≥ 1,

ϕ′(0) = ϕ′′(0) = . . . = ϕ(2|n|−1)(0) = 0.

Further, using the Schwarz lemma and the inequality of Goluzin [11, 19], we

have
|ϕ′(z)|

1− |ϕ(z)|2
≤ 1

1− |z|2
for n ≥ 1,

and
|ϕ′(z)|

1− |ϕ(z)|2
≤ 2|n||z|2|n|−1

1− |z|4|n|
for n ≤ −1.

It is clear that

s′(z) =
4 ln(M/m)

πi

ϕ′(z)

1− ϕ2(z)
.

Denote by R(w, S(M,m)) the conformal radius of the domain S(M,m) at the

point w. We obtain

|s′(w)| = R(w, S(M,m))

1− |w|2
, w = ϕ(z),

and

|s′(z)| = |s′(w)||ϕ′(z)| = R(s(z), S(M,m))
|ϕ′(z)|

1− |ϕ(z)|2
.

Since

s(z) = ln zn−1h′(z), s′(z) = h′′(z)/h′(z)− (n− 1)/z,

one can show that for all z ∈ D,∣∣∣∣zh′′ (z)h′ (z)
− n+ 1

∣∣∣∣ ≤
{

2/π ln(M/m)|z|(1− |z|2)−1 for n ≥ 1,

4/π ln(M/m)|n||z|2|n|(1− |z|4|n|)−1 for n ≤ −1.
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Using the inequalities

|ω(z)| = |g
′(z)|
|h′(z)|

≤ q, 1 <
M

m
≤ exp

(
π(1− q)

2

)
for n ≥ 1,

and

|ω(z)| = |g
′(z)|
|h′(z)|

≤ q, 1 <
M

m
≤ exp

(
π(1− q)

4

)
for n ≤ −1,

we obtain

n |ω(z)|+
∣∣∣∣(1− |z|2n)(n− 1− zh

′′ (z)

h′ (z)

)∣∣∣∣ ≤
≤ nq +

∣∣∣∣∣ 2π ln

(
M

m

) |z| (1− |z|2n)
1− |z|2

∣∣∣∣∣ ≤ n,
and

|n| |ω(z)|+
∣∣∣∣(1− |z|2n)(n− 1− zh

′′ (z)

h′ (z)

)∣∣∣∣ ≤
≤ |n|q +

∣∣∣∣∣ 4π ln(M/m)
|n||z|2n

(
1− |z|2|n|

)
1− |z|4|n|

∣∣∣∣∣ ≤ |n|.
Hence, due to Theorem 1, f = h+ g is |n|-valent in D.

3. PROOF OF THE SUFFICIENT CONDITIONS IN THE EXTERIOR
OF THE UNIT DISK

Proof of Theorem 3. Let

Ĝ(ζ) =

{
F (ζ), |ζ| ≥ r,
F
(
r2/ζ

)
+
(
ζn − r2n/ζn

)
H ′
(
r2/ζ

)
ζ
n−1

/(nr2(n−1)), |ζ| ≤ r,

where r ∈ (1,∞).

It is obvious that the function Ĝ(ζ) is continuous and has a pole of order
n at the point ζ =∞. Under the condition of Theorem 3, we have∣∣ζ2G′(ζ)/H ′(ζ)

∣∣ < 1

for all ζ ∈ D−. Since |ζ| ≥ 1, it follows that∣∣G′(ζ)
∣∣ < ∣∣H ′(ζ)

∣∣
for all ζ ∈ D−. Hence, Ĝ(ζ) is locally univalent in |ζ| ≥ r.

Now we will prove that the Jacobian is positive in |ζ| ≤ r. By straight-
forward computations, we obtain that

Ĝζ =
(ζζ)n−1

r2(n−1)
H ′
(
r2

ζ

)
− r2

ζ2
G′
(
r2

ζ

)
,
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and

Ĝζ =
r2

ζ
2

1

n
H ′
(
r2

ζ

)(
ζnζ

n

r2n
− 1

)n− 1− r2

ζ

H ′′
(
r2

ζ

)
H ′
(
r2

ζ

)
 .

Let z = r2/ζ, i.e. |z| ≥ r. Hence,

Ĝζ =
r2(n−1)

zn−1zn−1
H ′ (z)− z2

r2
G′ (z) =

r2(n−1)

|z|2(n−1)
H ′ (z)− z2

r2
G′ (z),

and

Ĝζ =
1

n

z2

r2
H ′ (z)

(
r2n

znzn
− 1

)(
n− 1− ζH

′′ (z)

H ′ (z)

)
.

It is straightforward that

|Ĝζ |
|Gζ |

=

∣∣z2/r2H ′ (z) (r2n/|z|2n − 1
)

(n− 1− zH ′′ (z) /H ′ (z))
∣∣

n
∣∣∣r2(n−1)/|z|2(n−1)H ′ (z)− z2/r2G′ (z)∣∣∣ ≤

≤
∣∣(r2n/|z|2n − 1

)
(n− 1− zH ′′ (z) /H ′ (z))

∣∣
n
(
r2n/|z|2n −

∣∣∣G′(z)/H ′(z)∣∣∣) .

We need to check that

n
|z|2n

r2n
∣∣G′(z)/H ′(z)∣∣+

∣∣∣∣( |z|2nr2n
− 1

)(
n− 1− zH

′′ (z)

H ′ (z)

)∣∣∣∣ ≤ n, |z| ≥ r.

Since
|z|2n

r2n
≥ |z|2n, |z|2n

r2n
− 1 ≥ |z|2n − 1,

positivity of the Jacobian follows from the condition of Theorem 3. Using

Lemma A and Stoilow’s theorem, we obtain that F is n-valent in D−.

Proof of Theorem 4. Consider the mapping F̂ : C→ C given by

F̂ (ζ) =

F (ζ), |ζ| ≥ r,
F
(
r2

ζ

)
+A(ζ), |ζ| ≤ r,

where r ∈ (1,∞) and

A(ζ) =

(
ζn − r2n

ζ
n

)
H ′
(
r2

ζ

)
ζ
n−1

nr2(n−1)
+

(
ζ
n − r2n

ζn

)
G′
(
r2

ζ

)
ζn−1

nr2(n−1)
.

Obviously, the function F̂ have a pole of order n at the point ζ =∞ and

lim
ζ→0

ζnF̂ (ζ) = const ∈ C \ {0}.
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Since |H ′(ζ)| − |G′(ζ)| > 0 it follows that F̂ is locally univalent in |ζ| ≥ r.

Now we will prove that the Jacobian is positive in |ζ| ≤ r. By straightforward

computations, we obtain that

F̂ζ =
(ζζ)n−1

r2(n−1)
H ′
(
r2

ζ

)
+
n− 1

n

(
ζ
n
ζn−2

r2(n−1)
− r2

ζ2

)
G′
(
r2

ζ

)
−

− r2

nζ2

(
ζ
n
ζn−1

r2(n−1)
− r2

ζ

)
G′′
(
r2

ζ

)
and

F̂ζ =
(ζζ)n−1

r2(n−1)
G′
(
r2

ζ

)
+
n− 1

n

(
ζnζ

n−2

r2(n−1)
− r2

ζ
2

)
H ′
(
r2

ζ

)
−

− r2

nζ
2

(
ζ
n
ζn−1

r2(n−1)
− r2

ζ

)
H ′′
(
r2

ζ

)
.

Let z = r2/ζ, i.e. |z| ≥ r. Hence,

|F̂ζ | ≥
r2(n−1)

|z|2(n−1)
|H ′ (z) | −

∣∣∣∣ r2n|z|2n − 1

∣∣∣∣ (n− 1

n

|z|2

r2
|G′ (z) |+ |z|

3

nr2
|G′′ (z) |

)
and∣∣∣F̂ζ∣∣∣ ≤ r2(n−1)

|z|n−1
|G′ (z) |+

∣∣∣∣ r2n|z|2n − 1

∣∣∣∣ (n− 1

n

|z|2

r2
|H ′ (z) |+ |z|

3

nr2
|H ′′ (z) |

)
.

Consequently, we need to check that

r2(n−1)

|z|2(n−1)
|G′ (z) |+

∣∣∣∣ r2n|z|2n − 1

∣∣∣∣ (n− 1

n

|z|2

r2
|H ′ (z) |+ |z|

3

nr2
|H ′′ (z) |

)
≤

≤ r2(n−1)

|z|2(n−1)
|H ′ (z) | −

∣∣∣∣ r2n|z|2n − 1

∣∣∣∣ (n− 1

n

|z|2

r2
|G′ (z) |+ |z|

3

nr2
|G′′ (z) |

)
.

Since

|H ′′ (z) |+ |G′′(z)| ≤ n |H
′ (z) | − |G′ (z) |
|z|2n+1 − |z|

− (n− 1)
|H ′ (z) |+ |G′ (z) |

|z|
, |z| ≥ r,

we get the positivity of the Jacobian for |ζ| ≤ r. Therefore, using Lemma A

and Stoilow’s theorem, we obtain that F is n-valent in D−.
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