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An exact solution for dimensionless velocity corresponding to the free convection
flow of an incompressible, electrically conducting, viscous fluid over an infinite
plate that applies arbitrary shear stress to the fluid is developed in the presence
of ramped wall temperature, heat source and chemical reaction. It is presented
as a sum of its mechanical, thermal and concentration components whose con-
tribution to the fluid motion is graphically underlined. Radiative effects are
not taken into consideration but they can be immediately included by a simple
rescaling of Prandtl number. The influence of heat absorption/generation and
chemical parameters as well as the combined magnetic and porous effects on the
fluid motion is brought to light for a time dependent shear on the boundary.

AMS 2010 Subject Classification: 76A05.

Key words: Free convection flow, heat source, chemical reaction, ramped wall
temperature.

1. INTRODUCTION

Double diffusion due to the temperature and concentration variations ap-
pears in many real situations such as condensation, evaporation and chemical
reactions. It has various applications in geothermal and geophysical engineer-
ing and the unsteady free convection flow with mass transfer over an infinite
flat plate has received continuous attention due to its industrial and techno-
logical utilization. On the other, hand the influence of magnetic field on such
a flow is significant and Soundalgekar et al. [1] seem to be the first authors
who took into consideration mass transfer and magnetic effects in their work.
It is well known the fact that the properties of some end products are usually
improved using electrically conducting fluids and an applied magnetic field [2].

Sometimes, a foreign mass reacts with the fluid producing chemical reac-
tions that influence both the heat and mass transfer. According to Bird et al.
[3], a chemical reaction between two species can generate heat and its reaction
rate depends on the species’ concentration. A chemical reaction is of the first
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order if the rate of reaction is proportional to the species’ concentration [4].
It is homogeneous, if it takes place in solution and plays an important role
in food processing and polymer production. During time, many researchers
studied the influence of chemical reaction on the free convection over a moving
plate. For a fast review, we recommend the recent works of Ahmed and Dutta
[5] and Narahari et al. [6]

Recently, Narahari et al. [7] found that the fluid velocity is smaller in the
case of ramped wall temperature in comparison to the isothermal plate. On
the other hand, the radiation effects on free convection flow with ramped wall
temperature are important in some industrial and technological processes such
as glass production, plasma physics and power generation systems. Further,
the influence of ramped wall temperature on the MHD free convection flow of
a viscous fluid over an infinite plate has been extensively studied. The most
recent and interesting results seem to be those of Seth et al. [8], Rajesh [9],
Kalidas [10], Narahari [11], Patra et al. [12], Samiulhaq et al. [13], Ghara et al.
[14], Narahari et al. [15], Nandkeolyar et al. [16], Ismail et al. [17], Rajesh
and Chamkha [18], Khan et al. [19], Narahari et al. [20], Seth et al. [21] and
Samiulhaq et al. [22]. However, in all above-mentioned papers the plate is
moving in its plane with a given velocity. Recently, Khan et al. [23] developed
exact solutions for the unsteady MHD conjugate flow in a porous medium with
ramped wall temperature and arbitrary shear stress on the boundary.

The main objective of this note is to extent the results of Khan et al. [23]
to the case when the motion takes place in the presence of heat source and
chemical reaction. Secondly, we want to point to one fact that is completely
neglected in the existing literature, namely [24] “the velocity of a viscous fluid
in such motions does not depend on magnetic and porous effects independently
and a two parameter approach is superfluous or even misleading”. Radiative
effects are not taken into consideration but, according to Magyari and Pan-
tokratoras [25], they can be easily included by a simple rescaling of Prandtl
number. The fluid velocity is determined as sum of its mechanical, thermal
and concentration components whose contribution to the fluid motion is graph-
ically brought to light for time-dependent shear on the boundary. Finally, the
influence of dimensionless heat absorption/generation and chemical reaction
parameters as well as the combined magnetic and porous effects on the fluid
motion are graphically underlined and discussed for time-dependent shear on
the boundary.

2. STATEMENT OF THE PROBLEM

Consider the unsteady MHD free convection flow of an incompressible
viscous electrically conducting fluid over an infinite vertical plate embedded in
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a porous medium. Thermal and concentration buoyancy effects are taken into
consideration in the presence of a heat source/sink and chemical reaction. A
uniform transverse magnetic field of constant strength B acts perpendicular to
the plate. Thermal radiation and viscous dissipation heat are neglected but,
according to Magyari and Pantokratoras [25], the radiative effects can be eas-
ily introduced by a simple rescaling of the Prandtl number if the Rosseland
approximation is adopted for the heat flux.

Initially, the whole system is at rest at the constant temperature T∞ and
a uniform concentration level C∞. The coordinate system is chosen so that the
x−axis is along the plate in the upward direction while the y−axis is normal to
the plate. After time t = 0 the plate, whose temperature is raised or lowered
to T∞ + (Tw − T∞)t/t0 until t = t0 applies an arbitrary shear stress −f(t) to
the fluid. It is also maintained at a constant temperature Tw after the time
t = t0 and at a constant concentration Cw all the time. Due to the shear the
fluid is gradually moved and the magnetic field induced by the fluid motion is
assumed to be negligible in comparison to the applied one. This assumption is
valid at least for metallic liquids and partially ionized fluids [26] whose mag-
netic Reynolds number is very small.

Bearing in mind the above considerations as well as the usual Boussinesq’s
assumption for the radiative heat flux [5], the governing equations correspond-
ing to the laminar free convection flow of such a fluid through a uniform porous
medium can be written as [5,23,27]

∂u(y, t)

∂t
= ν

∂2u(y, t)

∂y2
+ gβT [T (y, t)− T∞] + gβC [C(y, t)− C∞]

− σB2

ρ
u(y, t)− ν

K
u(y, t),(1)

(2) ρcp
∂T (y, t)

∂t
= k

∂2T (y, t)

∂y2
−Q[T (y, t)− T∞]; y, t > 0,

(3)
∂C(y, t)

∂t
= Dm

∂2C(y, t)

∂y2
−R[C(y, t)− C∞]; y, t > 0,

where u, T , C, ν, ρ, g, βT , βC , σ , K, cp , k, Q, Dm and R are the velocity,
temperature, species concentration, kinematic viscosity, fluid density, acceler-
ation due to gravity, volumetric coefficient of thermal expansion, volumetric
coefficient of concentration expansion, electrical conductivity, permeability of
the porous medium, specific heat at constant temperature, thermal conductiv-
ity, heat absorption/generation coefficient, chemical molecular diffusivity and
the chemical reaction parameter.
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The corresponding initial and boundary conditions are

u(y, 0) = 0, T (y, 0) = T∞, C(y, 0) = C∞; y ≥ 0,

∂u(y, t)

∂y
|y=0 = −f(t)

µ
, C(0, t) = Cw; t > 0,(4)

T (0, t) = T∞ + (Tw − T∞)
t

t0
if 0 < t ≤ t0

and T (0, t) = Tw for t > t0,(5)

u(y, t) → 0, T (y, t)→ T∞, C(y, t)→ C∞ as y →∞.(6)

By introducing the following non-dimensional variables and functions

y∗ = y√
νt0
, t∗ = t

t0
, u∗ = u

U , T ∗ = T−T∞
Tw−T∞ , C∗ = C−C∞

Cw−C∞ ,

M∗ = σB2

ρ t0,
1
K∗ = νt0

K , Q∗ = Qt0
ρcp

, R∗ = Rt0, f
∗(t∗) =

√
νt0
µU f(t0t

∗).(7)

where U is a characteristic velocity and dropping out the star notation, we

attain to the next problem with initial and boundary conditions

(8)
∂u(y, t)

∂t
=
∂2u(y, t)

∂y2
+ T (y, t) +NC(y, t)−Keffu(y, t); y, t > 0

(9)
∂T (y, t)

∂t
=

1

Pr

∂2T (y, t)

∂y2
−QT (y, t); y, t > 0

(10)
∂C(y, t)

∂t
=

1

Sc

∂2C(y, t)

∂y2
−RC(y, t); y, t > 0

where

u(y, 0) = 0, T (y, 0) = 0, C(y, 0) = 0, y ≥ 0(11)

∂u(y, t)

∂y
|y=0 = −f(t), C(0, t) = 1, t > 0(12)

T (0, t) = t if 0 < t < 1 and T (0, t) = 1 for t > 1(13)

u(y, t) → 0, T (y, t)→ 0, C(y, t)→ 0, as y →∞.(14)

Into above relations N is the ratio of buoyancy forces due to temperature

and concentration, Keff is the effective permeability [24], Pr is the Prandtl

number, Q is the non-dimensional heat absorption/generation parameter, Sc is

the Schmidt number and R is the dimensionless chemical reaction parameter.

They are defined by Eq. (7) and

(15) N =
βC(Cw − C∞)

βT (Tw − T∞)
, Keff = M +

1

K
, Sc =

ν

Dm
,
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where M is the magnetic parameter, K is the porosity parameter and the char-
acteristic velocity U has been taken to be equal to gβT t0(Tw − T∞).

As we already told before, a similar problem without heat source and
chemical reaction has been recently studied by Khan et al. [23]. However, their
graphical representations are restricted to a constant shear on the boundary
while magnetic and porous effects are wrongly brought to light using a two
parameter approach. Actually, such a mistake appears in all previous men-
tioned papers. Furthermore, as the variations of temperature and concentra-
tion can be obtained adjusting or using results from the existing literature (see
for instance [5] and [14]), closed form solutions will be here established only
for velocity and graphical representations prepared for constantly accelerating
shear shress on the boundary.

3. VELOCITY CALCULATION

Applying the Laplace transform to Eq. (8) and using the initial and
boundary conditions (11)1, (12)1, (14)1 as well as the Laplace transforms (see
[14, Eq. (17) with Ra = Q] for T (y, q) and [27, Eq. (18) with Sc and R instead
of Preff and Q] for C(y, q))

T (y, q) =
1− e−q

q2
e−y
√
Pr(q+Q), C(y, q) =

1

q
e−y
√
Sc(q+R)(16)

of T (y, t) and C(y, t) we find that

(17)
∂2u(y, q)

∂y2
−(q+Keff )u(y, q)+

1− e−q

q2
e−y
√
Pr(q+Q)+

N

q
e−y
√
Sc(q+R) = 0,

(18)
∂u(y, q)

∂y
|y=0 = −F (q), u(y, q)→ 0 as y →∞,

where u(y, q) and F (q) are the Laplace transforms of u(y, t), respectively f(t).
The solution of Eq. (17) with the boundary conditions (18) is

u(y, q) = F (q)
exp(−y

√
q +Keff )√

q +Keff

+

√
Pr

(Pr − 1)

1− e−q

q2
exp(−y

√
q +Keff )√

q +Keff
√
q +Q

q + a
−
√
Pr

(Pr − 1)

1− e−q

q2
exp(−y

√
Pr(q +Q))

q + a))
+
N
√
Sc

Sc− 1

exp(−y
√
q +Keff )√

q +Keff

√
q +R

q(q + b)
− N

Sc− 1

exp(−y
√
Sc(q +R))

q(q + b)
(19)

where a =
QPr−Keff

Pr−1 and b =
RSc−Keff

Sc−1 .
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Now, applying the inverse Laplace transform to Eq. (19), using Eqs.
(A1) − (A3) from Appendix and the convolution theorem, the velocity field
u(y, t) can be written in the form

(20) u(y, t) = um(y, t) + uT (y, t) + uC(y, t),

where

(21) um(y, t) =
1√
π

∫ t

0

f(t− s)√
s

exp(−y
2

4s
−Keffs)ds,

uT (y, t) =
H(t− 1)

Pr − 1

∫ t

0
(t− s− 1)Φ(y

√
Pr, s; c)e−asds

− H(t)

Pr − 1

∫ t

0
(t− s)Φ(y

√
Pr, s; c)e−asds

+
H(t)

√
Pr

(Pr − 1)
√
π

∫ t

0
(t− s)

∫ s

0

g(y, s, τ,Q)√
s− τ

h(τ, c)dτds(22)

− H(t− 1)
√
Pr

(Pr − 1)
√
π

∫ t−1

0
(t− s− 1)

∫ s

0

g(y, s, τ,Q)√
s− τ

h(τ, c)dτds

uC(y, t) =
N
√
Sc

(Sc− 1)
√
π

∫ t

0

∫ s

0

g(y, s, τ, R)√
s− τ

h(τ, d)dτds

− N

Sc− 1

∫ t

0
Φ(y
√
Sc, s; d)e−bsds(23)

and c =
Keff−Q
Pr−1 , d =

Keff−R
Sc−1 , h(t, a) = 1√

tπ
+
√
aeaterf(

√
at), g(y, s, τ, a) =

exp(− y2

4(s−τ) − Keff (s − τ) − aτ) and the function Φ(y, t; a) is defined in
Appendix.

The solutions (22) and (23) are not valid for Pr = Sc = 1. In order
to determine the thermal and concentration components corresponding to this
case, we take Pr = Sc = 1 into Eq. (17) and follow the same way as before.
Direct computations show that (see also Eqs. (A4) from Appendix)

uT (y, t) =
1

Keff −Q
{tH(t)Φ(y, t;Q)− (t− 1)H(t− 1)Φ(y, t− 1;Q)

+
y

2
√
Q

[H(t)Ψ(y, t;Q)−H(t− 1)Ψ(y, t− 1;Q)]

+
1

2π

[
H(t)

∫ t

0
(t− s)

∫ s

0

g(y, s, τ,Q)

τ
√
τ(s− τ)

dτds
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− H(t− 1)

∫ t−1

0
(t− s− 1)

∫ s

0

g(y, s, τ,Q)

τ
√
τ(s− τ)

dτds

]}
(24)

(25) uC(y, t) =
NH(t)

Keff −R
{Φ(y, t;R) +

1

2π

∫ t

0

∫ s

0

g(y, s, τ, R)

τ
√
τ(s− τ)

dτds}

where the function Ψ(y, t; a) is defined in Appendix.

Direct computations show that u(y, t) given by Eq. (20) satisfies the
associated initial and boundary conditions. In order to verify the condition
(12)1, for instance, we must use the next identity
(26)∫ t

0

f(t− s)
s
√
s

exp(−y
2

4s
−Keffs)ds =

4

y

∫ ∞
y

2
√
t

f(t− y2

4s2
) exp(−s2 −

Keffy
2

4s2
)ds.

Finally, it is worth pointing out that the solutions corresponding to the
same motion in the absence of heat source and chemical reaction are immedi-
ately obtained from the above solutions using the limits

lim
a→0

Φ(y, t; a) = erfc(
t

2
√
t
), lim

a→0

Ψ(y, t; a)√
a

= yerfc(
t

2
√
t
)− 2

√
t

π
exp(−y

2

4t
)

The mechanical component um(y, t) given by Eq. (21), as expected, is
identical to that obtained in [23, Eq. (31)]. Unfortunately, the complemen-
tary part of our solution in the absence of heat source and chemical reaction
cannot be compared with the similar solution from [23, Eq. (30)] because the
dimensionless governing equations for velocity are different.

4. NUMERICAL RESULTS AND DISCUSSION

In order to avoid repetition, we do not present here the solutions corre-
sponding to different forms of the function f(·) and graphical representations
which are similar to those of Khan et al. [23]. Our interest is to bring to light
the following new contributions: 1) The influence of the dimensionless param-
eters N , Q and R on the fluid velocity. 2) Combined magneto and porous
effects on the fluid velocity and 3) A comparison between the contributions of
mechanical, thermal and concentration components of the velocity on the fluid
motion in the case of a time dependent shear stress on the boundary when
f(t) = tH(t). In this case, the thermal and concentration components of ve-
locity are given by Eqs. (22) and (23), while um(y, t) takes the simple forms
(see [28, Eq. (B2)] and Eq. (A6) from Appendix)
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(27) um(y, t) =
1√
Keff

(
1

2Keff
− t)Ψ(y, t;Keff )

− y

2Keff
Ψ(y, t;Keff ); Keff 6= 0,

and

(28) um(y, t) =
y2 + 4t

3

√
t

π
exp(−y

2

4t
)− yy

2 + 6t

6
erfc(

y

2
√
t
), if Keff = 0

To obtain some physical insight of these results, the velocity profiles
against y are presented for different values of physical parameters N , Q, R
and Keff . From Fig. 1 it clearly results that the fluid velocity is an increas-
ing function with respect to N . If N > 0, the mass buoyancy force acts in
the same direction with the thermal buoyancy force and the fluid velocity in-
creases for increasing values of the concentration. In the case N < 0, the
negative buoyancy force causes the occurrence of a reverse flow. If N = 0,
there is no contribution from the species diffusion and the free convection is
due to the thermal buoyancy force only. In all cases, the dimensionless velocity
of the fluid smoothly decreases from a maximum value near the plate to an
asymptotic value for large values of y.

Fig. 1 – Velocity profiles against y for Pr = 0.71, Sc = 0.5,

Q = 1, R = 0.4, t = 3, Keff = 1, and different values of N .

The influence of heat generation (Q < 0) or heat absorption (Q > 0) on
the fluid velocity is shown by Fig. 2. It is found that the fluid velocity decreases
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Fig. 2 – Velocity profiles against y for Pr = 0.71,

N = 1, Sc = 0.5, R = 0.4, Keff = 1, t = 4, and

different values of Q.

Fig. 3 – Velocity profiles against y for Pr = 0.71, N = 1,

Sc = 0.5, Q = 0.25, Keff = 1, t = 2, and different values of R.

with increasing values of the heat absorption and an opposite trend appears in
the case of heat generation. Further, the values of velocity at any distance y
from the plate are lower for Q = 0.75 than those for Q = 0.25. Fig. 3 reveals
the effects of chemical reaction parameter R. The fluid velocity is a decreasing
function with respect to this parameter. In order to be realistic, the numerical
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value of Prandtl number has been taken to be 0.71 which corresponds to water.
The values of other parameters are arbitrary chosen.

Fig. 4 – Velocity profiles against y for Pr = 0.71, N = 1,

Sc = 0.5, Q = 0.25, R = 1, t = 2, and different values of Keff .

Fig. 5 – Profiles of the Velocities um(y, t), um(y, t) + uT (y, t)

and um(y, t) + uT (y, t) + uC(y, t) against y for Pr = 0.71, N = 1,

Sc = 0.5, Q = 0.25, Keff = 1, R = 1, and different values of t.



11 Effects of heat source and chemical reaction on MHD free convection flow 83

Combined effects of magnetic and porosity parameters on the dimen-
sionless velocity of the fluid are underlined in Fig. 4. As expected, the fluid
velocity is a decreasing function with regard to Keff . Its profiles smoothly de-
scend from maximum values at the boundary to lowest values for large values
of y. Finally, in order to bring to light the effective contributions of the three
components um, uT and uC of velocity on the fluid motion, the diagrams of
um(y, t), um(y, t)+uT (y, t) and u(y, t) = um(y, t)+uT (y, t)+uC(y, t) against y
are depicted for two values of the time t. The contribution of each component
on the fluid velocity, as it is clearly seen from this figure, is significant and has
to be taken into consideration. Further, as expected, the fluid velocity is an
increasing function with respect to the time t.

5. CONCLUSIONS

Unsteady MHD free convection flow of an incompressible, electrically con-
ducting, viscous fluid over an infinite plate that applies an arbitrary time-
dependent shear stress to the fluid has been studied in the presence of ramped
wall temperature, heat source and chemical reaction. Thermal radiation and
viscous dissipation are neglected but the radiative effects can immediately be
included by a simple resealing of the Prandtl number. Closed form solutions
are established for the dimensionless velocity as a sum of mechanical, thermal
and concentration components.

Porous effects are taken into consideration and we again emphasized the
fact that the fluid velocity does not depend on the porosity parameter inde-
pendently, but by a combination with the magnetic parameter that is called
the effective permeability. A two parameter approach is superfluous or even
misleading although the recent literature ignores this very important remark.
Finally, in order to get some physical insight of results that have been obtained,
the influence of pertinent parameters and of the three components of velocity
on the fluid motion is graphically underlined and discussed in the case of a
ramped shear stress on the boundary. The main findings are:

• Fluid velocity is an increasing function with respect to N > 0 (aiding
flows). A reverse trend appears for opposing flows when N < 0.

• In the presence of heat absorption (Q > 0) the fluid velocity decreases
for increasing values of Q. An opposite effect appears when Q < 0 (heat
generation).

• The fluid velocity is a decreasing function both with respect to the
chemical reaction parameter R and the effective permeability Keff .

• Contributions of mechanical, thermal or concentration components of
velocity on the fluid motion are significant and cannot be neglected.
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6. APPENDIX

(A1) L−1[
e−y
√
q

√
q

] =
1√
πt

exp(−y
2

4t
), L−1[

√
q

q − a
] =

1√
πt

+
√
aeaterf(

√
at),

(A2) L−1[
e−y
√
q+a

q − b
] = ebtΦ(y, t; a+ b)

where Φ(y, t; a) = 1
2{e

y
√
aerfc[ y

2
√
t

+
√

(a)t] + e−y
√
aerfc[ y

2
√
t
−
√

(a)t]},

(A3) L−1[e−aqF (q)] = f(t− a)H(t− a) if L−1[F (q)] = f(t),

(A4) L−1{√q} = − 1

2t
√
πt
, L−1[e−y

√
q] =

y

2t
√
πt

exp(−y
2

4t
),

(A5) Ψ(y, t; a) =
1

2
{ey
√
aerfc[

y

2
√
t

+
√

(a)t− e−y
√
aerfc[

y

2
√
t
−
√

(a)t]},

(A6)

∫ t

0

√
s exp(−y

2

4s
)ds =

2t− y2

3

√
t exp(−y

2

at
) +

y3

6

√
πerfc(

y

2
√
t
).
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