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In this paper, we analyze the heteroclinic cycle and the Hopf bifurcation of a
generic dynamical system with the symmetry of the group Q8, constructed via a
Cayley graph. While the Hopf bifurcation is similar to that of a D8-equivariant
system, our main result comes from analyzing the system under weak coupling.
We identify the conditions for heteroclinic cycle between three equilibria in the
three-dimensional fixed point subspace of a certain isotropy subgroup of Q8×S1.
We also analyze the stability of the heteroclinic cycle.
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1. INTRODUCTION

Heteroclinic cycles in systems with symmetry have been widely studied
over the large decades [1, 7, 11–14]. During the last couple of years a special
interest has received the existence of heteroclinic cycles in systems related with
quaternionic symmetry, see for example the works of X. Zhang [15] and O. Pod-
vigina [12,13]. This is basically due to two facts. On the one hand, quaternions
are involved in the study of heteroclinic cycles in ODEs with symmetry in a
natural way, owing to the easy representation of the dynamics in R4 in terms
of quaternions. Many of the dynamical systems giving rise to heteroclinic cy-
cles studied so far are Dn-equivariant; the action of Dn in R2 is absolutely
irreducible, so R4 is Dn-simple. Therefore, quaternionic representations in R4

turned out to be very useful. On the other hand, there is the intrinsic interest
in the differential equations where the variables are the quaternions. We relate
the study of heteroclinic cycles with the dynamics of networks of n coupled
oscillators with symmetry. Ashwin and Swift [2] showed that the symmetry
group of the network can be considered a subgroup of Sn, as long as the oscil-
lators taken individually have no internal symmetries. Besides these two main
reasons, there are also other ones that stimulate the analysis of dynamical sys-
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tems with the quaternionic symmetry, and these are related to applications to
other sciences. For example, we can cite the heteroclinic phenomena observed
in systems with quaternionic symmetry such as nematic liquid crystals [3],
particle physics [5] and improving computational efficiency [6]; however, these
heteroclinic behaviors in such systems have never encountered a theoretical
explanation. This is one of our major motivation, together with the intrinsic
value of the mathematical theory developed around this subject.

An important step in designing oscillatory networks with the symmetry
of a specific group has been developed by Stork [14]. The authors have shown
how to construct an oscillatory network with certain designed symmetry, by
the Cayley graph of the symmetry group.

In this paper, we analyze the heteroclinic cycles and Hopf bifurcation in
ODEs with the symmetry of the quaternionic group Q8 of order 16. We use
the methodology developed by Ashwin and Stork [1] to construct a network of
differential systems with Q8 symmetry. We investigate the dynamical behavior
of the system under the weak coupling. In this case, we reduce the asymptotic
dynamics to a flow on a sixteen-dimensional torus T16. We prove the existence
of heteroclinic cycles between the three steady states existing within a three-
dimensional fixed point subspace of one of the isotropy subgroups of Q8 × S1,
namely Z2. We also classify the stability of heteroclinic cycles.

The paper is organized as follows. In Section 2, we construct the most
general oscillatory system with the Q8 symmetry by using the Cayley graph
of this group. In Section 3, we analyze the Hopf bifurcation of the constructed
array. In Section 4, we prove the existence of heteroclinic cycles in some of the
subspaces which are invariant under the action of certain isotropy subgroups
of Q8. We also analyze their stability.

2. THE CAYLEY GRAPH OF THE Q8 GROUP

In this section, we construct an oscillatory system with the Q8 symmetry
and describe the elements of this group, as the relationships between them. For
more details about the use of the Cayley graph in constructing the network
with the prescribed symmetry see [14] or [11]. The Cayley graphs for Q8 is
shown in Fig. 1.

The action of the group Q8 on the cells can be written as:

Id

a = (1 2 3 4 9 10 11 12)(5 16 15 14 13 8 7 6)

b = (1 5 9 13)(2 6 10 14)(3 7 11 15)(4 8 12 16)

ab = (1 16 9 8)(2 5 10 13)(3 6 11 14)(4 7 12 15)
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b2 = (1 9)(2 10)(2 11)(4 12)(5 13)(6 14)(7 15)(8 16)

a2 = (1 3 9 11)(2 4 10 12)(5 15 13 7)(6 16 14 8)

a3 = (1 4 11 2 9 12 3 10)(5 14 7 16 13 6 15 8)

ab2 = (1 10 3 12 9 2 11 4)(5 8 15 6 13 16 7 4)(1)

a2b2 = (1 11 9 3)(2 12 10 4)(5 7 13 15)(6 8 14 16)

a3b2 = (1 12 11 10 9 4 3 2)(5 6 7 8 13 14 15 16)

ba = (1 6 9 14)(2 7 10 15)(3 8 11 16)(4 13 12 15)

ba2 = (1 7 9 15)(2 8 10 16)(3 13 11 5)(4 14 12 16)

b3 = (1 13 9 5)(2 14)(3 15 11 7)(4 16 12 8)(6 10)

ab3 = (1 8 9 16)(2 13 10 5)(3 4 15 14)(6 11 12 7)

a3b = (1 14 9 6)(2 15 10 7)(3 16 11 8)(4 5 12 13)

a2b = (1 15 9 7)(2 16 10 8)(3 5 11 13)(4 6 12 14)

with the relationship between them

(2) a8 = Id, a4 = b2 = abab, aba = b

Fig. 1 – A Cayley graph of the Q8 group. Solid arrows represent

left-multiplication with a, dot-and-dashed arrows left multiplication

with b, the two generators of this group.

If we assign coupling g between cells related by a and coupling h between
cells related by b, from the permutations in (1), we can build the following
pairwise system in with the Q8 symmetry.

(3)
ẋ1 = f(x1)+g(x12, x1)+h(x5, x9), ẋ2 = f(x2)+g(x1, x2)+h(x9, x13),
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ẋ3 = f(x3)+g(x2, x3)+h(x13, x1), ẋ4 = f(x4)+g(x3, x4)+h(x1, x5),

ẋ5 = f(x5)+g(x4, x9)+h(x2, x6), ẋ6 = f(x6)+g(x9, x10)+h(x6, x10),

ẋ7 = f(x7)+g(x10, x11)+h(x10, x14), ẋ8 = f(x8)+g(x11, x12)+h(x14, x2),

ẋ9 = f(x9)+g(x6, x5)+h(x3, x7), ẋ10 = f(x10)+g(x5, x16)+h(x7, x11),

ẋ11 = f(x11)+g(x16, x15)+h(x11, x15), ẋ12 =f(x12)+g(x15, x14)+h(x15, x3),

ẋ13 = f(x13)+g(x14, x13)+h(x4, x8), ẋ14 = f(x14)+g(x13, x8)+h(x8, x12),

ẋ15 = f(x15)+g(x8, x7)+h(x12, x16), ẋ16 = f(x16)+g(x7, x6)+h(x16, x4),

where f : R → R and g, h : R2 → R. As shown by Ashwin and Stork [1] we
can think of f, g, h as being generic functions that assure that the isotropy of
this vector field under the action of O16 is generically Q8.

3. HOPF BIFURCATION

In order to consider generic one-parameter Hopf bifurcation in systems
with Q8, we need to analyze the complex irreducible representations of Q8.
Based on the work of Golubitsky and Stewart [8], these representations are of
one or two dimensions. From their theory, we have that the linear representa-
tion of a group Γ

αΓ : Γ×W →W
on the complex vector spaceW is irreducible if and only if Γ-invariant subspaces
are trivial; it is to say, {0} or W itself. It is important to notice, that (a)
there need be no faithful irreducible representations, and (b) this is typical.
In addition, the amount by which the representation fails to be faithful is the
kernel of the action αΓ.

The group Q8 has five irreducible representations; four of them are one-
dimensional and the remaining one is two-dimensional. The one-dimensional
representations can be interpreted as Hopf bifurcation with trivial or Z2 sym-
metry, which correspond to a quotient group of Q8.

From [9] the two generators of Q8 are

(4) a =

(
ω 0
0 ω̄

)
, b =

(
0 −1
1 0

)
,

where ω = exp

(
πi

4

)
.

Therefore the standard irreducible action of Q8 on C2 is given by

(5)
a(z+, z−) =

(√
2

2
(1 + i)z+,

√
2

2
(1− i)z−

)
b(z+, z−) = (−z−, z+)
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TABLE 1
Table that relates the isotropies of points in C2

for identical actions of Q8 × S1 and D8 × S1

Isotropy in Q8 × S1 Isotropy in D8 × S1 Fix dimCFix Name (D8)

Q8 × S1 D8 × S1 (0, 0) 0 Trivial solution

Z̃a8 Z̃8(ρ) (z, 0) 1 Rotating Wave

Z̃b8 Z̃2(ρ2) × Z̃2(κ) (z, z) 1 Edge Solution

Z̃c8 Z̃2(ρ2) × Z̃2(ρκ) (z, iz) 1 Vertex Oscillation

Z̃2 Z̃2(ρ2) (w, z) 2 Submaximal

and there is a phase shift action of S1 given by

Rφ(z+, z−) = (eiφz+, e
iφz−),

for φ ∈ S1. The action of Q8 × S1 is similar to the action of D8 × S1. This
action is generated by

(6) κ(z+, z−) = (z−, z+), ρ(z+, z−) = (iz+,−iz−),

where ρ4 = κ2 = 1 and ρκ = κρ3. In our case of the group Q8 we have
a8 = b4 = 1, a4 = b2 and aba = b. The kernel of this action in the 2-cycle in
D8 × S1 is generated by (ρ2, π), while the kernel of the action of Q8 × S1 is
generated by (a4 = b2 = 1, π). Therefore, it is possible to check that

Q8 × S1/kerαQ8×S1 ≡ Q8 × S1/kerαD8×S1 .

This means that we use the results obtained in [8] for Hopf bifurcation in
systems with D8 symmetry, with a re-interpretation of the branches.

Proposition 1. There are exactly three branches of periodic solutions
that bifurcate from (0, 0), corresponding to the isotropy subgroups D8×S1 with
two-dimensional fixed-point subspaces.

Proof. The proof is a direct application to the group D8 of Theorem 4.2 of
[4]. Therefore, there are exactly three branches of periodic solutions occurring
generically in Hopf bifurcation with D8 symmetry. �

From Proposition 2.1, page 372 in [8] we have that every smooth D8×S1-
equivariant map germ g : C2 → C2 has the form

(7) g(z1, z2) = A

[
z1

z2

]
+B

[
z2

1 z̄1

z2
2 z̄2

]
+ C

[
z̄3

1z
4
2

z4
1 z̄

3
2

]
+D

[
z5

1 z̄
4
2

z̄4
1z

5
2

]
,

where A, B, C, D are complex-valued D8×S1-invariant functions. The branch-
ing equations for D8-equivariant Hopf bifurcation may be rewritten g(z1, z2) =
0. These branching equations are shown in Table 2.
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TABLE 2
Branching Equations for D8 Hopf Bifurcation

Orbit type Branching Equations Signs of Eigenvalues

(0, 0) - ReA(0,λ)
(a, 0) A+Ba2 = 0 Re(AN +B) +O(a)

−Re(B) [twice]
(a, a) A+Ba2 + Ca6 +Da8 = 0 Re(2AN +B) +O(a){

trace = Re(B) +O(a)
det = −Re(BC̄) +O(a)

(a, eπi/4a) A+Ba2 − Ca6 −Da8 = 0 Re(2AN +B) +O(a){
trace = Re(B) +O(a)
det = Re(BC̄) +O(a)

3.1. BIFURCATING BRANCHES

We now use the information in Table 2 to derive the bifurcation diagrams
describing the generic D8-equivariant Hopf bifurcation. Assume

(8) (a) Re(AN +B) 6= 0, (b) Re(B) 6= 0, (c) Re(2AN +B) 6= 0,

(d) Re(BC̄) 6= 0, (c) Re(Aλ) 6= 0,

where each term is evaluated at the origin.

Assuming nondegeneracy conditions (8) and the trivial branch is stable
subcritically and loses stability as bifurcation parameter λ passes through 0.
We summarize these facts into the next theorem.

Theorem 1. The following statements hold.

(a) The Z̃8 branch is super- or subcritical according to whether Re(AN (0)
+ B(0)) is positive or negative. It is stable if Re(AN (0) + B(0)) > 0,
Re(B(0)) < 0.

(b) The Z2(κ)[⊕Zc2] is super- or subcritical according to wether Re(2AN (0)
+ B(0)) is positive or negative. It is stable if Re(2AN (0) + B(0)) > 0,
Re(B(0)) > 0 and Re(2B(0)C̄(0)) < 0.

(c) The Z2(κ, π)[⊕Zc2] or Z2(κ, ξ)⊕Zc2 branch is super- or subcritical accord-
ing to wether Re(2AN (0) + B(0)) is positive or negative. It is stable if
Re(2AN (0) +B(0)) > 0, Re(B(0)) > 0 and Re(2B(0)C̄(0)) < 0.

Proof. The proof is a direct application to the case D8 of the Theorem 3.1
page 382 in [8]. �
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4. WEAK COUPLING

The idea of studying ODEs in the weak coupling limit was introduced
by Ashwin and Swift [2]. This situation can be understood as follows. In the
no coupling case there is an attracting n-dimensional torus with one angle for
every oscillator. The situation is completely different to the Hopf bifurcation.
Instead of examining small amplitude oscillations near a Hopf bifurcation point,
we make a weak coupling approximation. There is a slow evolution of the
phase differences in the weak coupling. Another improvement with respect
to the Hopf bifurcation is that while the Hopf bifurcation theory gives local
information, the weak coupling case yields global results on the n-dimensional
torus.

System (3) can be rewritten under weak coupling case as an ODE of the
form:

(9) ẋi = f(xi) + εgi(x1, . . . , x16)

for i = 1, . . . , 16, xi ∈ V and commuting with the permutation action of Q8

on V16, both f and gi being of the class C∞. The constant ε represents the
coupling strength and we have ε� 1. As in [2] or [1], we may assume ẋ = f(x)
has a hyperbolic stable limit cycle.

It follows that if the coupling is weak, we should not just take into account
the irreducible representations of Q8. Since there are 16 stable hyperbolic limit
cycles in the limit of ε = 0, it means that the asymptotic dynamics of the
system factors into the asymptotic dynamics of 16 limit cycles. We assume
that each limit cycle taken individually is hyperbolic for small enough values
of the coupling parameter. This justifies expressing the dynamics of the system
only in terms of phases, i.e. an ODE on T16 which is Q8-equivariant.

When considering the weakly coupled system we can average it over the
phases [14]. This is the same as introducing a phase shift symmetry by trans-
lation along the diagonal;

Rθ(φ1, . . . , φ16) := (φ1 + θ, . . . , φ16 + θ),

for θ ∈ S1.
We obtained an ODE on that is equivariant under the action of Q8×S1,

and we have to classify the isotropy types of points under this action. This is
done in Table 3. Since now on, our interest focuses in the three-dimensional
space Fix(Z2); it does not contain two-dimensional fixed-point subspaces. In
turn, it contains several one- and zero-dimensional subspaces fixed by the
isotropy subgroups Q̃i

8, Z̃
i
8 and Zi8, respectively, where i = {a, b, ab, a/4, b/4} as

in Table 3. These symmetries are not in Z2; however, they are in the normalizer
of Z2.
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4.1. DYNAMICS OF THE θ1, θ2 AND θ3 ANGLES IN FIX(Z2)

We can define coordinates in Fix(Z2) by taking a basis

(10)
e1 = −1

8(1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1)
e2 = −1

8(1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1)
e3 = −1

8(1,−1, 1,−1, 1,−1, 1,−1,−1, 1,−1, 1,−1, 1,−1, 1)

and consider the space spanned by {e1, e2, e3} parametrized by {θ1, θ2, θ3} :∑3
n=1 θnen.

By using these coordinates, we construct the following family of three-
dimensional differential systems which satisfies the symmetry of Fix(Z2).

(11)


θ̇1 = u sin θ1 cos θ2 + ε sin 2θ1 cos 2θ2

θ̇2 = u sin θ2 cos θ3 + ε sin 2θ2 cos 2θ3

θ̇2 = u sin θ3 cos θ1 + ε sin 2θ3 cos 2θ1 + q(1− cos θ1) sin 2θ3,

where u, ε, q ∈ R.

TABLE 4
Eigenvalues of the flow of equation (11), at the four non-conjugate zero-dimensional

fixed points

Σ Fix(Σ) with coordinates (φ1, φ2, φ3) λ1 λ2 λ3

Q8 (0, 0, 0) u+ 2ε u+ 2ε u+ 2ε

Q̃a
8 (π, 0, 0) −u+ 2ε u+ 2ε −u+ 2ε+ 4q

Q̃b
8 (0, π, 0) −u+ 2ε −u+ 2ε u+ 2ε

Q̃ab
8 (0, 0, π) u+ 2ε −u+ 2ε −u+ 2ε

We will show that this vector field contains structurally stable, attracting
heteroclinic cycles which may be asymptotically stable, essentially asymptot-
ically stable or completely unstable, depending on the values of u, ε and q.
We can assume, without loss of genericity that the space Fix(Z2) is normally
attracting for the dynamics and therefore the dynamics within the fixed-point
space determines the stability of the full system. In the following, we will show
that the planes θi = 0 (mod π), i = 1, 2, 3 are invariant under the flow of (11).

Let X be the vector field of system (11).

Definition 1. We call a trigonometric invariant algebraic surface h(θ1, θ2,
θ3) = 0, if it is invariant by the flow of (11), i.e. there exists a function
K(θ1, θ2, θ3) such that

(12) Xh =
∂h

∂θ1
θ̇1 +

∂h

∂θ2
θ̇2 +

∂h

∂θ3
θ̇3 = Kh.
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Lemma 1. Functions sin θ1, sin θ2 and sin θ3 are trigonometric invariant
algebraic surfaces for system (11).

Proof. We can write the system (11) in the form

(13)


θ̇1 = sin θ1 (u cos θ2 + 2ε cos θ1 cos 2θ2)

θ̇2 = sin θ2 (u cos θ3 + 2ε cos θ2 cos 2θ3)

θ̇3 = sin θ3 (u cos θ1 + 2ε cos 2θ1 cos θ3 + 2q(1− cos θ1) cos θ3)

Now if we choose h1 = sin θ1, then Xh1 = cos θ1 sin θ1(u cos θ2 + 2ε cos θ1

cos 2θ2) so K1 = cos θ1 (u cos θ2 + 2ε cos θ1 cos 2θ2) . The remaining cases follow
similarly. �

Since the planes θi = 0(mod π) are invariant under the flow of (11), it
is clear that (0, 0, 0), (π, 0, 0), (0, π, 0), and (0, 0, π) are equilibria for (11). To
check the possibility of heteroclinic cycles in system (11), we linearize about
the equilibria (i.e. the zero-dimensional fixed points). The idea is proving
that there are three-dimensional fixed-point spaces Fix(Z2) and Fix(Z̃2) which
connect these fixed points, allowing the existence of such a heteroclinic network
between the equilibria.

Let’s assume:

(14) |ε| < u
2 and |ε+ 2q| < u

2 .

We use the criteria of Krupa and Melbourne [10] to study the stability of
the heteroclinic cycle.

Theorem 2. In the following, we will prove that there exists the possibility
of a heteroclinic cycle in the following way:

(15) · · ·
Fix(Z̃b8)
−−−−−→ Fix(Q̃a

8)
Fix(Z̃ab8 )
−−−−−→ Fix(Q̃b

8)
Fix(Z̃a8)
−−−−−→ Fix(Q̃ab

8 )
Fix(Z̃b8)
−−−−−→ · · ·

The stability of the heteroclinic cycle is:

(a) asymptotically stable if

(16) u < 0 and q <
3u

4
− ε

2
,

(b) unstable but essentially asymptotically stable if

(17) u < 0 and
3u

4
− ε

2
< q <

u

2
− (u+ 2ε)3

(−u+ 2ε)2
.

(c) completely unstable if u > 0.
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Proof. The stability is expressed by

(18) ρ =
3∏
i=1

ρi, where ρi = min{ci/ei, 1− ti/ei}.

In equation (18), ei is the expanding eigenvalue at the ith point of the
cycle, −ci is the contracting eigenvalue and ti is the transverse eigenvalue of
the linearization. For the heteroclinic cycle we have:

(19) ρ1 =


2u− 4q

u+ 2ε
if q <

3u

4
− ε

2
,

−u+ 2ε

u+ 2ε
if q >

3u

4
− ε

2
,

ρ2 = ρ3 =
−u+ 2ε

u+ 2ε
,

so from equations (18) and (19) we obtain:

(20) ρ =


(−u+ 2ε)2(2u− 4q)

(u+ 2ε)3
if u < 0 and q <

3u

4
− ε

2
,

(−u+ 2ε)3

(u+ 2ε)3
if u < 0 and q >

3u

4
− ε

2
.

Then the proof follows by applying Theorem 2.4 in [10]. �

For any u < 0 we have
3u

4
− ε

2
< q <

u

2
− (u+ 2ε)3

(−u+ 2ε)2
and therefore there

exist values of q for which there exist essentially asymptotic stable heteroclinic
connections. In consequence, there exists an attracting heteroclinic cycle even
though the linear stability of Fix(Q̃a

8) has an expanding transverse eigenvalue.

5. CONCLUSIONS

We prove the existence of stable heteroclinic cycles in the most general
coupled ordinary differential equations with quaternionic symmetry Q8. Our
approach is generic and offers for the first time as far as we know, evidence
of these phenomena in systems with this symmetry. While the result stands
on its own from a mathematical point of view, it might also contribute to a
better understanding of these intermittent behaviors experimentally observed
in nematic liquid crystals [3] and particle physics [5].
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