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Some properties of saturations of submodules of modules is investigated. In
particular, saturations of the zero submodule of injective modules and the as-
sociated prime ideals of saturations of submodules of Noetherian modules are
studied.
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1. INTRODUCTION

Throughout the paper, R is a commutative ring with nonzero identity,
all modules are unitary and p denotes a prime ideal of R. Moreover, the set of
all ideals of R not contained in p is designated by S(p). It is clear that S(p) is
a multiplicatively closed set of ideals of R.

The notion of saturation of ideals (or submodules) has been studied in
many literature, such as [1, 5, 7]. Let N be a submodule of an R-module M .
Then the saturation of N with respect to p is the contraction of Np in M and
designated by Sp(N). It is known that Sp(N) = {e ∈M | se ∈ N for some s ∈
R \ p}. For more detail, we refer the reader to [5]. The submodule N is said
to be p-saturated if Sp(N) = N .

A prime submodule (or a p-prime submodule) of M is a proper submodule
P with (P :R M) = p such that whenever re ∈ P for r ∈ R and e ∈M , either
e ∈ P or r ∈ p. If P is a prime submodule, then p = (P :R M) is necessarily a
prime ideal of R (see [4]). C.P. Lu in [5] investigated the relationship between
prime submodules and saturations of submodules.

In this short paper, some properties of saturations of submodules of mod-
ules are investigated. In Section 2, we show that if Spec(R) \ V (R \ p) is a
Noetherian scheme and for any finitely generated module, the saturation of
the zero submodule with respect to p is finitely generated, then for any finitely
generated R-module M and any submodule N of M , Sp(N) is finitely gener-
ated (Theorem 2.6). In Theorem 2.7, we prove that if R is a Noetherian ring
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and M is an injective R-module, then Sp(0) is an injective R-module. Also, the
associated prime ideals of saturations of submodules of Noetherian modules is
studied (see Proposition 2.9 and Theorem 2.11).

2. MAIN RESULTS

We begin by some properties of saturations of submodules.

Proposition 2.1. Let M be an R-module and N a submodule of M .

(1) Sp(N :M J) = (Sp(N) :M J) for each finitely generated ideal J of R.

(2) Let S be a multiplicatively closed subset of R. If M is Noetherian and N
is p-saturated, then S−1N ∩M is p-saturated.

(3) Let A = {N ≤ M |Sp(N) = N 6= M}. Then the maximal elements of A
are prime submodules.

(4) Let {Ni}ni=1 be a finite family of submodules of M . Then Sp(
⋂n

i=1Ni) =⋂n
i=1 Sp(Ni).

Proof. (1) Let m ∈ Sp(N :M J). Then sm ∈ (N :M J) for some s ∈ R \ p.
Thus sJm ⊆ N . So, Jm ⊆ Sp(N). This yields that m ∈ (Sp(N) :M J).

Now, suppose x ∈ (Sp(N) :M J) and J is generated by c1, . . . , ct. Then
there are b1, . . . , bt ∈ R\p such that bicix ∈ N . Set b := b1 · · · bt. Then b ∈ R\p
and Jbx ⊆ N . Therefore, bx ∈ (N :M J) and so, x ∈ Sp(N :M J).

(2) By assumption, there are elements g1, . . . , gt ∈ M such that S−1N ∩
M =

∑t
i=1Rgi. By [7, p. 137, Proposition 1], there are s1, . . . , st ∈ S such that

sigi ∈ N for each 1 ≤ i ≤ t. Set s = s1 · · · st. Then s ∈ S and s(S−1N ∩M) ⊆
N . This implies that S−1N ∩M = (N :M s). Hence,

Sp(S
−1N ∩M) = Sp(N :M s)

= (Sp(N) :M s) (by part ((1)))

= (N :M s) = S−1N ∩M.

(3) Let P be a maximal element of A and rm ∈ P , where r ∈ R and
m ∈M \P . We are going to show that r ∈ (P :R M). According to part ((1))
we have

(P :M Rr) = (Sp(P ) :M Rr) = Sp(P :M Rr).

Thus (P :M Rr) is p-saturated. By our choice of m we have P $ (P :M
Rr), since m ∈ (P :M Rr)\P . By maximality of P , we infer that (P :M Rr) =
M . Thus rM ⊆ P , as desired.

(4) Obviously, Sp(
⋂n

i=1Ni) ⊆
⋂n

i=1 Sp(Ni). Conversely, if m ∈
⋂n

i=1 Sp(Ni),
then there exist b1, . . . , bn ∈ R \ p such that bim ∈ Ni for each 1 ≤ i ≤ n.
Then b := b1 · · · bn ∈ R \ p. This shows that bm ∈

⋂n
i=1Ni. Therefore,

m ∈ Sp(
⋂n

i=1Ni). �
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Proposition 2.2. Let M be an R-module. Then for each submodule N
of M and ideal I of R we have ISp(N) ⊆ Sp(IN). In particular, Sp(ISp(N)) =
Sp(IN).

Proof. Let m ∈ ISp(N). Then there are t ∈ N, a1, . . . , at ∈ I and
m1, . . . ,mt ∈ Sp(N) such that m =

∑t
i=1 aimi. So, there are b1, . . . , bt ∈ R \ p

such that bimi ∈ N for each 1 ≤ i ≤ t. Set b =
∏t

i=1 bi. Then bmi ∈ N for
each 1 ≤ i ≤ t. This implies that bm ∈ IN . Therefore, m ∈ Sp(IN). This
completes the proof. �

Proposition 2.3. Let M be an R-module, N a submodule of M and
I ∈ S(p) be a finitely generated ideal. Then we have Sp(N) = (ISp(N) :M I) =
(Sp(IN) :M I).

Proof. According to Proposition 2.2, we have

Sp(N) ⊆ (ISp(N) :M I) ⊆ (Sp(IN) :M I).

Now, suppose that m ∈ (Sp(IN) :M I) and I is generated by x1, . . . , xt ∈
R. Then Im ⊆ Sp(IN) and there are elements b1, . . . , bt ∈ R \ p such that
bixim ∈ IN . Set b = b1 · · · bt. Then bxim ∈ IN ⊆ N . This implies that
bIm ⊆ N and so m ∈ Sp(N), since bI ∈ S(p). This completes the proof. �

Proposition 2.4. Let M be an R-module, N,L be two submodules of M
and I ∈ S(p) be a finitely generated ideal. If IN ⊆ Sp(IL), then N ⊆ Sp(L).
In particular, if Sp(IN) = Sp(IL), then Sp(N) = Sp(L).

Proof. Assume that IN ⊆ Sp(IL). Then N ⊆ (Sp(IL) :M I) = Sp(L) by
Proposition 2.3.

For the second assertion, if Sp(IN) = Sp(IL), then IN ⊆ Sp(IL). So,
N ⊆ Sp(L) by the first part of the proposition. This yields that

Sp(N) ⊆ Sp(Sp(L)) = Sp(L).

Thus, by similarity, we infer that Sp(N) = Sp(L). �

The converse of Proposition 2.4 also holds. More precisely, if Sp(N) =
Sp(L), then KSp(N) = KSp(L) for all ideals K of R. Thus,

Sp(KN) = Sp(KSp(N)) = Sp(KSp(L)) = Sp(KL),

by Proposition 2.2.

Proposition 2.5. Let M be a Noetherian R-module and N a submodule
of M . Then there exists an ideal J ∈ S(p) such that

(1) Sp(N) = (N :M J);

(2) Sp(N) = (Sp(N) :M J) = (Sp(JN) :M J) = (JSp(N) :M J);
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(3) Sp(N) = (KN :M KJ) for all K ∈ S(p).

Proof. (1) It is straightforward.
(2) According to Proposition 2.2 and part (1), we have

Sp(N) ⊆ (JSp(N) :M J) ⊆ (Sp(JN) :M J) ⊆ (Sp(N) :M J) = Sp(N).

(3) Let K ∈ S(p). Then KJ ∈ S(p) and by part(1) we have

Sp(N) = (N :M J) ⊆ (K(N :M J) :M K) ⊆ (KN :M KJ)

⊆ (N :M KJ) ⊆
⋃

a∈R\p

(N :M a) = Sp(N).

This completes the proof. �

The next theorem is one of the main results of the paper. Recall that
a scheme X is locally Noetherian if it can be covered by open affine subsets
Spec(Ai), where each Ai is a Noetherian ring. X is Noetherian if it is locally
Noetherian and quasi-compact. Equivalently, X is Noetherian if it can be
covered by a finite number of open affine subsets Spec(Ai), with each Ai a
Noetherian ring (see [3]). In the sequel, N0 denotes the set of all non-negative
integers.

Theorem 2.6. Let I be a finitely generated ideal of R such that I ∩ p =
{0}. Then the following statements are equivalent:

(1) Spec(R) \ V (I) is a Noetherian scheme and for any finitely generated
R-module M , Sp(0M ) is finitely generated;

(2) for any finitely generated R-module M and any submodule N of M ,
Sp(N) is finitely generated;

(3) for any finitely generated R-module M , M/Sp(0M ) is finitely presented.

Proof. (1) ⇒ (2) Let M be a finitely generated R-module and N a sub-
module of M . Note that Spec(R) \ V (I) is quasi-compact, since I is finitely
generated. By [3, Proposition 3.2], there are non-zero elements a1, . . . , an ∈ I
such that Spec(R) \ V (I) is covered by affine open subsets Spec(Rai) and Rai

is a Noetherian ring, where Rai = S−1i R and Si = {ati | t ∈ N0}. Thus Nai is
a finitely generated submodule of the Noetherian Rai-module Mai . So, as it is
known, there exists a finitely generated submodule L of N such that Nai = Lai .
Obviously, Sp(L) ⊆ Sp(N). Let m ∈ Sp(N). Then there exists t ∈ R \ p such
that tm ∈ N . Therefore, t

1
m
1 = S−1i (tm) ∈ Nai = Lai . There exists r ∈ N0

such that ari (tm) ∈ L. Thus m ∈ Sp(L), since ari t ∈ R \ p. This yields that
Sp(N) = Sp(L). So it is enough for us to show that Sp(L) is finitely generated.
We deduce from the following short exact sequence

0→ L→ Sp(L)→ Sp(L)

L
→ 0
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that Sp(L) is finitely generated, since L is finitely generated (as we mentioned)

and by assumption
Sp(L)
L = Sp(0M

L
) is finitely generated too.

(2)⇒ (1) We must show that Spec(R)\V (I) is a Noetherian scheme. By
definition, it is enough to show that Ra is a Noetherian ring for each a ∈ I.
To do this, we will show that every ideal of Ra is finitely generated. Let H be
an ideal of Ra and H ′ = H ∩ R be the contraction of H by the natural map
R→ Ra. It is easy to verify that H ′ = Sp(H

′) and so H ′ is a finitely generated
ideal of R, by (2). Therefore, H = H ′Ra is finitely generated.

(3) ⇒ (2) Let M be a finitely generated R-module and N a submodule
of M . Then, the R-module

M

Sp(N)
∼=

M/N

Sp(N)/N
=

M/N

Sp(0M/N )

is finitely presented, by (3). Consider the following short exact sequence

0→ Sp(N)→M → M

Sp(N)
→ 0.

Then, by [2, Chap. I, §2.8, Lemma 9], we infer that Sp(N) is finitely
generated.

(2) ⇒ (3) Let M be a finitely generated R-module. Then there exists a

finitely generated free R-module F0 such that the sequence F0
f→ M

Sp(0)
→ 0 is

exact. We claim that ker(f) is finitely generated. Let m ∈ Sp(ker(f)). Then
there exists t ∈ R \ p such that tm ∈ ker(f). Thus tf(m) = f(tm) = 0M/Sp(0).
This shows that m ∈ ker(f). Therefore, ker(f) = Sp(ker(f)) and so is finitely
generated by (2). Again, there exists a finitely generated free R-module F1

such that the sequence F1 → ker(f)→ 0 is exact. A standard technique shows
that the combined sequence F1 → F0 → M

Sp(0)
→ 0 is exact. Consequently,

M/Sp(0) is finitely presented. �

In the next theorem, we consider the saturations of the zero submodule
of injective modules.

Theorem 2.7. Let R be a Noetherian ring. If M is an injective R-module,
then so is Sp(0M ).

Proof. We recall the following well-known facts:

(1) If R is a commutative Noetherian ring and M is an injective R-module,
then it is a direct sum of modules of the form E(R/q) for q ∈ Spec(R).

(2) Fix p ∈ Spec(R), then for any q ∈ Spec(R),

E(R/q)p =

{
E(R/q) q ⊆ p

0 otherwise
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(3) If p ∈ Spec(R) and M is an R-module, then Sp(0) is exactly the kernel
of the canonical localization map M →Mp.

If we combine the above facts it follows that when M is an injective
module, then Sp(0) is exactly the direct sum of all direct summands of M that
are isomorphic to E(R/q) for q * p so it is a direct summand of M , hence
injective (see [6, Theorem 18.5]). �

Corollary 2.8. Let R be a Noetherian ring and M be an injective R-
module. Then the canonical exact sequence 0 → Sp(0) → M → M

Sp(0)
→ 0

splits.

Proof. Use Theorem 2.7. �

In the sequel, among other things, we provide some results on the asso-
ciated prime ideals of M/Sp(N).

Proposition 2.9. Let R be a Noetherian ring and M be an R-module.
Then the following statements hold:

(1) q ∈ Ass(Sp(0)) if and only if q ∈ Ass(M) and q * p;

(2) q ∈ Ass(M/Sp(0)) if and only if q ∈ Ass(M) and q ⊆ p.

Proof. (1) Let q ∈ Ass(Sp(0)). Then there exists a nonzero element m ∈
Sp(0) such that q = (0 :R m). So, there is an element t ∈ R \ p such that
tm = 0. Thus, t ∈ q. This shows that q ∈ Ass(M) and q * p.

Conversely, suppose that q ∈ Ass(M) and q * p. Then, there is a nonzero
element m ∈M and t ∈ (R \ p)∩ q such that q = (0 :R m) ⊇ t. Hence, tm = 0.
Therefore, m ∈ Sp(0). This implies that q ∈ Ass(Sp(0)).

(2) Let q ∈ Ass(M) and q ⊆ p. According to the canonical exact sequence

0→ Sp(0)→M → M

Sp(0)
→ 0,

we have Ass(M) ⊆ Ass(Sp(0)) ∪Ass(M/Sp(0)). Since q ⊆ p, we infer from (1)
that q ∈ Ass(M/Sp(0)).

Conversely, suppose that q ∈ Ass(M/Sp(0)). Then, there exists y ∈
M \ Sp(0) such that q = (Sp(0) :R Ry). Note that x ∈ (Sp(0) :R Ry) if and
only if xy ∈ Sp(0) if and only if txy = 0 for some t ∈ R \ p if and only if
x ∈ Sp(0 :R Ry). Therefore, q = Sp(0 :R Ry). Since R is Noetherian, by
Proposition 2.5, there exists J ∈ S(p) such that q = ((0 :R Ry) :R J) and
J =

∑l
i=1Rri where ri ∈ R for each i ∈ {1, . . . l}. Thus,

q =
l⋂

i=1

((0 :R Ry) :R Rri).
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So, q = ((0 :R Ry) :R Rrj) = (0 :R rjy) for some j ∈ {1, . . . l}. Con-
sequently, q ∈ Ass(M). We claim that q ⊆ p. For, if t ∈ (R \ p) ∩ q, then
t ∈ (Sp(0) :R Ry). Thus ty ∈ Sp(0) and so there is s ∈ R \ p such that sty = 0.
This implies that y ∈ Sp(0), since st ∈ R \ p. This is a contradiction. �

Corollary 2.10. Let R be a Noetherian ring and M be an R-module.
Then Ass(Sp(0)) and Ass(M/Sp(0)) are disjoint, and

Ass(M) = Ass(Sp(0)) ∪Ass(M/Sp(0)).

Proof. Use Proposition 2.9. �

Theorem 2.11. Let M be a Noetherian R-module and N be a submodule
of M . Then the following hold:

(1) If q ∈ Ass( M
Sp(N)), then q ∈ Ass( M

JSp(N)) ∩ Ass( M
Sp(JN)) for all finitely

generated ideals J ∈ S(p);

(2) If q ∈ Ass( M
Sp(N)), then q ∈ Ass( M

JN ) for all J ∈ S(p).

Proof. (1) Let q ∈ Ass( M
Sp(N)) and let J ∈ S(p) be a finitely generated

ideal. Then there exists m ∈ M such that q = (Sp(N) :R m). This implies
that

q = (Sp(N) :R m) ⊆ (JSp(N) :R Jm)

⊆ (Sp(JN) :R Jm) (by Proposition 2.2)

= ((Sp(JN) :M J) :R m)

= (Sp(N) :R m) (by Proposition 2.3)

= q.

Since M is Noetherian, Jm is a finitely generated submodule of M . Sup-
pose Jm =

∑t
i=1Rgi, where gi ∈M for each i ∈ {1, . . . , t}. Then

q = (JSp(N) :R Jm) = ∩ti=1(JSp(N) :R Rgi).

Thus, there exists j ∈ {1, . . . , t} such that q = (JSp(N) :R gj). Therefore,
q ∈ Ass( M

JSp(N)). Similarly, q ∈ Ass( M
Sp(JN)).

(2) By Proposition 2.5, there exists K ∈ S(p) such that Sp(N) = (JN :M
JK) for all J ∈ S(p). Suppose that q ∈ Ass( M

Sp(N)) and J ∈ S(p). Then there

exists m ∈M such that

q = (Sp(N) :R m) = ((JN :M JK) :R m) = (JN :M JKm).

Hence q ∈ Ass( M
JN ), since JKm is finitely generated. �
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