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In this paper, we first present necessary and sufficient conditions for various
modules to be of finite length. We then use our results to give an alternative
proof of the well-known result that if R is a Noetherian local ring with maximal
ideal M and M is a finitely generated R-module of dimension d, then Hd

M(M) is
finitely generated if and only if d = 0.
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1. INTRODUCTION

This note is motivated by the question of what are the most elementary
properties that are required for an R-module M to be of finite length? That is
M being both Noetherian and Artinian. We first provide conditions equivalent
to M and all its Koszul cohomology modules Hi(x∞M) to be of length at
most two, where x = {x1, x2, · · · , xn} is any sequence of elements in R. We
then consider the case for divisible modules and show that over a reduced
Noetherian ring, finitely generated divisible modules are of finite length and
that a reduced local ring R with finitely many prime ideals possesses a nonzero
finitely generated divisible module implies that R is of Krull dimension zero.
We use these results to show that if R is a Noetherian local ring with maximal
ideal M and M a finitely generated R-module with dimension d, then Hd

M(M)
is finitely generated if and only if d = 0. We then prove that for any ideal I
of R, Hd

I(M) is a nonzero finitely generated module over a reduced Noetherian
local ring R if and only if R is a field provided that the set of zero divisors of
M is contained in the set of zero divisors of R.

Throughout, R denotes a commutative ring with identity and M denotes
a non-zero R-module, and that Z(M) will denote the set of zero divisors of M.
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2. MODULES OF LENGTH AT MOST TWO

We begin by recalling the following:

Let R be a Noetherian ring and I be an ideal of R. For an R-module M ,
set

ΓI(M) = {x ∈M : there exists an n ∈ N such that Inx = 0}.

Then the ith local cohomology of M with respect to the ideal I is the ith

cohomology module of the sequence obtained by applying ΓI(−) to an injective
resolution of M and this module is denoted by Hi

I(M). Equivalently, the ith

local cohomology of M with respect to I is defined to be

Hi
I(M) = lim

→
ExtiR(R/In,M).

Let now R be a ring (not necessarily Noetherian) and x = {x1, x2, · · · , xn}
be a sequence of elements of R and let xt denote the sequence {xt1, xt2, · · · , xtn}.
Then the ith Koszul cohomology of M is defined to be:

Hi(x∞;M) = Hi(lim
−→t

K•(xt;M))

where K•(xt;M) denote the cohomological Koszul complex. In particular, if
R is Noetherian, then for all i

Hi(x∞;M) ∼= Hi
I(M)

where I = (x1, x2, · · · , xn). For more details, we refer the reader to Section 7
of [3].

In this section, we make some simple but somehow interesting observa-
tions, the first of which is the following:

Proposition 2.1. For an R-module M the following statements are equiv-
alent.

(i) For any two distinct proper submodules K, L of M , Ann(K) + Ann(L)
= R.

(ii) For any two distinct proper submodules K, L of M , HomR(K,L) = 0.

(iii) M is a direct sum of at most two non-isomorphic simple submodules.

(iv) M has length at most two with non-isomorphic simple quotient modules.

(v) For all i and for all sequences x = {x1, x2, · · · , xn} of elements in R,
Hi(x∞;M) is of length at most two with non-isomorphic simple quotient
modules. (In particular if R is Noetherian, then for all i and for all
ideals I of R, Hi

I(R) is of length at most two with non-isomorphic simple
quotient modules.)
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Proof. (i)⇒(iii). Let K be any non-zero proper submodule of M and x
a non-zero element of K. We claim that K = Rx. Suppose not, then Rx is a
proper submodule of K and hence by the assumption Ann(Rx)+Ann(K) = R.
But this is the same thing as saying that Ann(Rx) = R, a contradiction to the
fact that x is non-zero in K. Therefore it follows that every proper submodule
of M is simple. If K is different than M , then there is a proper submodule L
of M different than K, and for the same reason as above L = Ry, for some y
in M. Thus K ∼= R/Ann(x) and L ∼= R/Ann(y), and Ann(x), Ann(y) are two
distinct maximal ideals of R. Next we show that K ∩ L = 0. But this follows
from the fact that if K ∩L has a non-zero element z, then Ann(z)+Ann(K) =
Ann(z) = R, which is not possible. Therefore M = K ⊕ L. Since otherwise
K ⊕ L would be a proper submodule of M which would then contradict the
fact that K is a non-zero and yet Ann(K) = Ann(K) + Ann(K ⊕ L) = R.

(iii)⇒(i). Is clear.

(iii) ⇒ (ii). Is clear.

(ii)⇒(iii). Let K be again a proper submodule of M and x a non-zero
element of K. If Rx is different than K, then HomR(Rx,K) 6= 0, a contradic-
tion. Therefore each proper submodule of M is simple. If L is another proper
submodule of M different from K, then M = K⊕L. Because otherwise K⊕L
would be a proper submodule of M , and that would give HomR(K,K⊕L) 6= 0,
contradicting the assumption.

(iii)⇒ (iv). Follows from the fact that length(M1⊕M2) = length(M1)+
length(M2).

(iv)⇒(iii). Is clear.

(iii) ⇒ (v). Let K be one of the simple submodules of M and x =
{x1, x2, · · · , xn} be a sequence of elements in R. Let I = (x1, x2, · · · , xn). Then
by Lemma 7.7 of [3], Hi(x∞;K) = 0 for all i > 0. Therefore we only consider
the remaining case H0(x∞;K) = {x ∈ K : Itx=0 for some positive integer t}.
Since K is simple, K ∼= R/M for some maximal ideal M of R. If now I * M
then I + M = I + AnnK = R and since I + AnnK annihilates H0(x∞;K),
H0(x∞;K) = 0. If however I ⊆ M, then it follows from the definition that
H0(x∞;K) = K. Since Koszul cohomology commutes with direct sum, it fol-
lows that for any sequence x = {x1, x2, · · · , xn} of elements of R and any i,
Hi(x∞;M) is either zero or one of the factors of M or is M itself. Therefore
for all i and for all sequences x = {x1, x2, · · · , xn} of elements in R, Hi(x∞;M)
has length at most two with non-isomorphic simple quotient submodules.

(v)⇒(i). Let K and L be any two distinct proper submodules of M and
J = Ann(K + L) which is both contained in Ann(K) and Ann(L). Let now
y = {y} where y ∈ J . Then it follows from the definition of Koszul cohomology
that K = H0(y∞;K) ⊆ H0(y∞;M) and L = H0(y∞;L) ⊆ H0(y∞;M) and
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so K and L are also distinct proper submodules of H0(y∞;M). Hence by
assumption Ann(K) + Ann(L) = R. �

We note that if M and N are any two R-modules, then it is not hard

to see that Ann(HomR(M,N)) and Ann(M ⊗R N) contains both Ann(M)

and Ann(N) and so, if Ann(M) + Ann(N) = R, then we necessarily have

HomR(M,N) = 0 and M⊗RN = 0. Of course, in general, neither M⊗RN = 0

nor HomR(M,N) = 0 implies that Ann(M) + Ann(N) = R.

Proposition 2.2. Let {Mi}i∈I be a family of R-modules such that for all

pairs i 6= j in I, Ann(Mi) + Ann(Mj) = R. Then

(i)
∑

i∈IMi =
⊕

i∈IMi.

(ii) HomR(
⊕

i∈I1 Mi,
⊕

j∈I2 Mj) = 0, for any two finite disjoint subsets I1
and I2 of I.

(iii) (
⊕

i∈I1 Mi) ⊗R (
⊕

j∈I2 Mj) = 0, for any two disjoint subsets I1 and I2
of I.

(iv) ExtkR(
⊕

i∈I1 Mi,
⊕

j∈I2 Mj) = 0, for any two finite disjoint subsets I1
and I2 of I and all k ≥ 1.

(v) If moreover for each i ∈ I, Mi is simple, then TorR1 (
⊕

j∈I1 Mi,
⊕

j∈I2 Mj)

= 0, for any two disjoint subsets I1 and I2 of I.

Proof. (i) Since every element of
∑

i∈IMi is contained in a submodule

generated by a finite number of the Mi and since for any finite subset J of I not

containing i, Ann(Mi)+
⋂

j∈J Ann(Mj) = R, it follows that Mi∩
∑

j∈JMj = 0,

and so
∑

i∈IMi is a direct sum.

For the proofs of (ii) and (iii) use the fact that Hom is distributive over

finite direct sum and the fact that HomR(Mi,Mj) = 0, and Tensor product is

distributive over arbitrary direct sum and the fact that Mi ⊗R Mj = 0.

(iv) Since for each pair i 6= j in I, Ann(Mi) + Ann(Mj) ⊆ Ann(ExtkR(Mi,

Mj)), it follows that ExtkR(Mi,Mj) = 0 for all k ≥ 1. Hence ExtkR(
⊕

i∈I1 Mi,⊕
j∈I2 Mj) = 0 follows from the fact that Ext is distributive over finite direct

sum.

(v) If for each i ∈ I, Mi is simple, then Mi
∼= R/Ann(Mi). But then from

Ann(Mi) + Ann(Mj) = R we have Ann(Mi) Ann(Mj) = Ann(Mi) ∩Ann(Mj).

Therefore TorR1 (Mi,Mj) ∼= Ann(Mi) ∩Ann(Mj)/Ann(Mi) Ann(Mj) = 0. Now,

TorR1 (
⊕

j∈I1 Mi,
⊕

j∈I2 Mj) = 0 is a consequence of the fact that Tor is dis-

tributive over arbitrary direct sum. �

It may be worth mentioning that if R is a Noetherian ring and M and

N are two finitely generated R-modules with Ann(M) + Ann(N) = R, then

the ith local cohomology of M with respect to the ideal AnnN is zero. That
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is, Hi
AnnN (M) = lim

→
ExtiR(R/(AnnN)n,M) = 0, which easily follows from the

proof of part (iv) of Proposition 2.2 above.

Proposition 2.3. Let R be a ring and M and N be R-modules. Suppose
that Ann(M) 6= 0 and that Ann(M) is not contained in Z(N), the set of zero
divisors of N . Then HomR(M,N) = 0.

Proof. Suppose that HomR(M,N) 6= 0, and let f be a non-zero element
of HomR(M,N). Then there is a non-zero element m in M such that f(m) 6= 0
in N . Let now r be any non-zero element of Ann(M) which is not contained
in Z(N). Then rf(m) = f(rm) = 0. But this is a contradiction to the fact
that r is not in Z(N). Therefore HomR(M,N) = 0. �

We note that if R is an integral domain and K is the field of fractions
of R, then for any non-zero ideal I of R, HomR(R/I,K) = 0. Now apply-
ing Hom(−,K) to the short exact sequence 0 → I → R → R/I → 0 we
obtain HomR(R,K) ∼= HomR(I,K), as K is an injective R-module. On the
other hand, applying Hom(R/I,−) to the same short exact sequence we ob-
tain HomR(R/I,R/I) ∼= HR

1 (R/I,R/I), the first homology of the Hom functor
applied to the given sequence. Also the conditions that Ann(M) 6= 0 and
Ann(M) * Z(N) in the statement of the above proposition has to be retained
for its conclusion. For let M = R and N = K, then clearly HomR(M,N) 6= 0.

3. DIVISIBLE MODULES OF FINITE LENGTH

Recall that an R−module M is divisible if for any nonzero divisor r in
R, M = rM . In this section, we examine conditions under which a divisible
module is of finite length.

Proposition 3.1. Let M be an R-module with Z(M) ⊆ Z(R) and E be
an injective R-module. Then HomR(M,E) is a divisible R-module.

Proof. Let E be an injective R-module and M be any R-module with
Z(M) ⊆ Z(R), and let f be a non-zero element of HomR(M,E) and r be a
non-zero divisor in R. We want to show that there exists a g ∈ HomR(M,E)
such that f = rg. For this, we define h : M → M by h(m) = rm. Then it
is clear that h is well-defined and one-to-one. Now using the injectivity of E,
one obtains the following commutative diagram:

0 //M

f
��

h //M

g
}}

E
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Thus for any m ∈M , we have

f(m) = gh(m) = g(rm) = rg(m)

that is f = rg. Therefore HomR(M,E) is divisible. �

Corollary 3.2. Let E be a torsion free injective module over an integral
domain R. Then for any torsion free R-module M , HomR(M,E) is an injective
R-module and in particular, EndR(E) is injective as an R-module.

Proof. It is easy to see that HomR(M,E) is torsion free. Hence by Propo-
sition 3.1, it is also divisible. Since over an integral domain a torsion free
divisible module is injective, HomR(M,E) is an injective R-module. �

Corollary 3.3. Let M be an R-module and E be an injective R-module.
Then HomR(HomR(M,R), E) is a divisible R-module.

Proof. Let r ∈ Z(HomR(M,R)). Then there exists a nonzero element
f ∈ HomR(M,R) such that rf = 0. Since f is nonzero, 0 6= f(m) ∈ R for some
m ∈ M . But then rf(m) = 0 and so r ∈ Z(R). Therefore Z(HomR(M,R)) ⊆
Z(R) and the result follows from Proposition 3.1. �

The following statement may be considered as the dual of Proposition 3.1:

Proposition 3.4. Let M be a divisible R-module. Then for any projective
R-module P , HomR(P,M) is a divisible R-module.

Proof. Let M be a divisible and P be a projective R-module, and let f
be a non-zero element of HomR(P,M) and r be a non-zero divisor in R. We
want to show that there exists a g ∈ HomR(P,M) such that f = rg. For this,
we define h : M → M by h(m) = rm. Then from the divisibility of M , h is
onto. Now using the projectivity of P , one obtains the following commutative
diagram:

P
g

}}
f
��

M
h
//M // 0

Thus for any p ∈ P , we have

f(p) = h(g(p)) = rg(p)

that is f = rg. Therefore HomR(P,M) is divisible. �

Proposition 3.5. Let M be an Artinian R-module with Z(M) ⊆ Z(R).
Then M is divisible.
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Proof. Let r ∈ R−Z(R) ⊆ R−Z(M). Then because M is Artinian, the
chain

rM ⊇ r2M ⊇ · · ·

must stabilize i.e. rnM = rn+1M for some positive integer n. Let now x ∈M
then rnx = rn+1y for some y ∈ M . Hence rn(x − ry) = 0 and since rn ∈
R−Z(M), x−ry = 0 implies x = ry. Therefore M = rM for all r ∈ R−Z(R)
and so M is divisible. �

Proposition 3.6. Over an integral domain R which is not a field the
only finitely generated divisible module is the zero module.

Proof. Let M be a finitely generated divisible module over the integral
domain R. Then for any nonzero prime ideal P of R and any nonzero element
r in P we have rM = M and hence r

1MP = MP as RP -modules. But then by
Nakayama’s Lemma MP = 0. Thus MP = 0 for all prime ideals P of R and
therefore M = 0. �

When R is not an integral domain there are cases where R possesses a
nonzero finitely generated divisible module and we now establish these facts.

Proposition 3.7. Let M be a nonzero finitely generated divisible R-
module. Then any maximal ideal in the support of M consists of zero divisors.

Proof. Let M be a maximal ideal of R such that MM 6= 0 and r be a
nonzero divisor in M. Then as M is divisible, rM = M and hence r

1MM = MM

as RM-modules. But then again by Nakayama’s Lemma, MM = 0. This
contradiction shows that M consists of zero divisors. �

Corollary 3.8. Let R be a ring and M a finitely generated non-zero
R-module. Suppose that the Jacobson radical, J(R), of R is non-zero and that
M is divisible. Then J(R) consists of only zero divisors.

Corollary 3.9. Let R be a local ring with maximal ideal M and M be
a finitely generated non-zero R-module. Then M is divisible implies that M
consists of zero divisors.

Proposition 3.10. A reduced local ring with finitely many minimal prime
ideals which possesses a non-zero finitely generated divisible module is of Krull
dimension zero.

Proof. Let R be a reduced local ring with finitely many minimal prime
ideals which possesses a nonzero finitely generated divisible module and M be
a maximal ideal of R. Then it follows from the above corollary that M consists
of zero divisors. But then since R is reduced, we have
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M = Z(R) = ∪ni=1{Pi | Pi is a minimal prime ideal of R}

which implies that M = Pi for some i and so the height of M is zero. Therefore
R is of Krull dimension zero. �

It follows from Corollary 3.9 and Proposition 3.10 that if A is a Noetherian
local ring which is not a field and possesses a nonzero finitely generated divisible
module, then the maximal ideal of A consists of zero divisors and contains at
least one nonzero nilpotent element. Therefore the reduced Noetherian local
ring A = k[[x, y]]/(xy) does not have a nonzero finitely generated divisible
module.

On the other hand, let R = k[[x, y]]/(x2, xy). Then since every element
of R is either a unit or a zero divisor, every R-module is divisible. Note also
that R is of Krull dimension one and therefore non-Artinian. Thus there are
Noetherian divisible modules that are not Artinian. One also knows that the
Z-module Z(p∞) = Z[1/p]/Z is an Artinian divisible module which is not
Noetherian.

With this in mind, we have the following result:

Theorem 3.11. Over a reduced Noetherian ring R, a finitely generated
divisible module M is Artinian and Z(M) ⊆ Z(R).

Proof. Let M be a maximal ideal of R containing AnnM . Then by
Proposition 3.7 and the fact that R is reduced, we have

M ⊆ Z(R) = ∪ni=1{Pi | Pi is a minimal prime ideal of R}

which implies that M = Pi for some i and so height of M is zero. Therefore
R/AnnM is of Krull dimension zero and hence is Artinian. Since a finitely gen-
erated module over an Artinian ring is Artinian, M is Artinian as anR/AnnM -
module. But then since M as an R-module and as an R/AnnM - module is
one and the same it follows that M is an Artinian R-module. Let now r ∈ R be
a nonzero divisor in R and define f : M →M by f(m) = rm. It is clear from
the divisibility of M that f is onto and also since M is Noetherian, f must
be an isomorphism. Therefore Ker f = 0 and so rm = 0 implies m = 0 which
implies that r ∈ R is a nonzero divisor of M . Thus R − Z(R) ⊆ R − Z(M)
and hence we have Z(M) ⊆ Z(R). �

Proposition 3.12. Over a Noetherian integral domain R of Krull di-
mension 1, a finitely generated module M with AnnM 6= 0 is Artinian and so
is of finite length.

Proof. Since R is of Krull dimension 1, rad(AnnM), the radical of AnnM ,
is a finite product of maximal ideals of R, and so R/AnnM is Artinian. Hence
M is Artinian both as an R-module and an R/AnnM -module. �
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We also would like to mention that if R is any ring with J(R) 6= 0 and

M is an Artinian R-module with Z(M) ⊆ Z(R), then J(R) is contained in the

set of zero divisors of R. This easily follows from the proof of the following

proposition.

Proposition 3.13. Let R be a ring with nonzero Jacobson radical J(R)

and M be an Artinian R-module. Then J(R) ⊆ Z(M).

Proof. Suppose J(R) * Z(M) and let r ∈ J(R) − Z(M). Then for

any nonzero x ∈ M , the Nakayama’s Lemma would give a non-stationary

descending chain of submodules of M

Rx % rRx % r2Rx % · · ·

But then this yields a contradiction. Therefore J(R) ⊆ Z(M). �

4. LOCAL COHOMOLOGY MODULES OF FINITE LENGTH

Let (R,M) be a Noetherian local ring and I be an ideal of R. Then

for any finitely generated R-module M with dimension d, one knows that for

all i, Hi
M(M) and Hd

I(M) are Artinian modules. Here in this section, we use

the information of Section 3 to give necessary and sufficient conditions for

Hd
I(M) to be of finite length. The following is yet another proof (that uses

Proposition 3.6) of the so-called Grothendieck’s non-vanishing theorem, see for

example Section 6.1.4 of [1] and [7].

Theorem 4.1. Let R be a Noetherian local ring with maximal ideal M

and M be a finitely generated R- module of dimension d. Then Hd
M(M) is

finitely generated if and only if d = 0.

Proof. By the Independence of Base [4, Proposition 2.14], we may place

R by R/AnnM . Therefore we may assume that AnnM = 0 and so d =

dimRM = dimRR. On the other hand, as is well-known that Hi
M̂

(M̂) ∼=
Hi

M(M), we may also assume that R is complete, here M̂ denotes the M-adic

completion of R. Then by Cohen’s structure theorem, R is the homomorphic

image of a complete regular Noetherian local ring T with dimension n ≥ d and

thus there is a surjective homomorphism φ : T → R and clearly I = Kerφ is an

ideal of T with height n− d. Since every regular local ring is Cohen-Macaulay,

I contains a regular sequence (x1, x2, · · · , xn−d) and so T/(x1, x2, · · · , xn−d) is

a regular local ring. Let S = T/(x1, x2, · · · , xn−d). Then clearly dimS = d.

Let now MS be the maximal ideal of S and ES(S/MS) be the injective hull

of the residue field S/MS of S and so again by the Independence of Base,
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Hd
M(M) ∼= Hd

MS
(M). But then by the local duality theorem [4, Theorem 4.4],

we have

Hd
M(M) ∼= Hd

MS
(M) ∼= HomS(HomS(M,S), ES(S/MS)).

Since every regular local ring is an integral domain, 0 ∈ Ass(HomS(M,S))

which implies that HomS(M,S) is nonzero and then again by local duality

Hd
M(M) is nonzero. On the other hand, by Corollary 3.3

HomS(HomS(M,S), ES(S/MS))

is a divisible S-module. Then by Proposition 3.6, Hd
M(M) is finitely generated

only if S is Artinian and so d = dimS = 0.

Conversely, suppose dimM = 0. Then the result follows from the fact

that H0
M(M) ⊆M . �

Theorem 4.2. Let R be a reduced Noetherian local ring and M be a

finitely generated R-module of dimension d with the property that Z(M) ⊆
Z(R). Then for any ideal I of R, Hd

I(M) is a nonzero finitely generated R-

module if only if R is a field.

Proof. Suppose Hd
I(M) is a nonzero finitely generated R-module and x ∈

R− Z(R) ⊆ R− Z(M). Then the short exact sequence

0 −−−−→ M
.x−−−−→ M −−−−→ M/xM −−−−→ 0

yields the following long exact sequence

0 −−−−→ H0
I(M)

.x−−−−→ H0
I(M) −−−−→ H0

I(M/xM) −−−−→ · · ·

−−−−→ Hd−1
I (M/xM) −−−−→ Hd

I(M)
.x−−−−→ Hd

I(M)

−−−−→ Hd
I(M/xM) −−−−→ · · ·

Since dimM/xM < d, Hd
I(M/xM) is zero and so the map Hd

I(M)
.x−−−−→ Hd

I(M) is surjective. Therefore for any nonzero divisor x of R, we have

Hd
I(M) = xHd

I(M) which implies that Hd
I(M) is divisible. Then by Proposi-

tion 3.10, R is Artinian. The result now follows from the fact that a reduced

Artinian ring is nothing but a field.

The converse is obvious. �
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